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Abstract

Tutte defined a k-separation of a matroid M to be a partition ðA;BÞ of the ground set of M

such that jAj; jBjXk and rðAÞ þ rðBÞ � rðMÞok: If, for all mon; the matroid M has no m-

separations, then M is n-connected. Earlier, Whitney showed that ðA;BÞ is a 1-separation of

M if and only if A is a union of 2-connected components of M: When M is 2-connected,

Cunningham and Edmonds gave a tree decomposition of M that displays all of its 2-

separations. When M is 3-connected, this paper describes a tree decomposition of M that

displays, up to a certain natural equivalence, all non-trivial 3-separations of M:
r 2004 Elsevier Inc. All rights reserved.
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1. Introduction

One of Tutte’s many important contributions to matroid theory was the
introduction of the general theory of separations and connectivity [10] defined in
the abstract. The structure of the 1-separations in a matroid is elementary. They
induce a partition of the ground set which in turn induces a decomposition of the
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matroid into 2-connected components [11]. Cunningham and Edmonds [1]
considered the structure of 2-separations in a matroid. They showed that a 2-
connected matroid M can be decomposed into a set of 3-connected matroids with
the property that M can be built from these 3-connected matroids via a canonical
operation known as 2-sum. Moreover, there is a labelled tree that gives a precise
description of the way that M is built from the 3-connected pieces.

Because of the above decompositions, for many purposes in matroid theory, it is
possible to restrict attention to 3-connected matroids. For example, a matroid is
representable over a field if and only if the 3-connected components of its 2-sum
decomposition are representable over that field. For some time, it was felt that 3-
connectivity sufficed to eliminate most degeneracies caused by low connectivity.
Indeed, Kahn [7] conjectured that, for each prime power q; there is an integer mðqÞ
such that every 3-connected matroid has at most mðqÞ inequivalent GFðqÞ-
representations.

Unfortunately, examples are given in [9] to show that Kahn’s Conjecture is false
for all fields with at least seven elements. While the existence of such counter-
examples is disappointing, it is encouraging that all known counterexamples are of
two very specific types, each of which has many mutually interacting 3-separations.
This encourages the belief that a version of Kahn’s Conjecture could be recovered
for matroids whose 3-separations are controlled in some way. This motivates a study
of the structure of the 3-separations in a matroid, and this paper is the outcome of
that study.

Loosely speaking, the main theorem of this paper, Theorem 9.1, says that,
associated with a 3-connected matroid M having at least nine elements, there is a
labelled tree T with the property that, up to a certain equivalence, all ‘‘non-
sequential’’ 3-separations of M are displayed by T : There are three important
features of this theorem that require discussion at this stage.

The first is that, in contrast with the above-mentioned result of Cunningham and
Edmonds for 2-separations in a matroid, we do not give a decomposition of M into
more highly connected parts. This is because, in general, it is not possible to decompose
a matroid across a 3-separation in a reasonable way. To see this, consider the non-
representable Vámos matroid V8 (see [8, pp. 511]). This matroid has a number of 3-
separations, but there is no reasonable way to see V8 as a ‘‘3-sum’’ of smaller more-
connected parts. Having said this, we do believe that Theorem 9.1 can be used to obtain
a decomposition result for representable matroids that would be similar in flavour to
that of Cunningham and Edmonds’ 2-sum decomposition. The components of such a
decomposition would be sequentially 4-connected in the sense of [5].

A 3-separation ðA;BÞ of M is sequential if either A or B can be ordered
ðc1; c2;y; cnÞ such that, for all iAf3; 4;y; ng; the partition ðfc1; c2;y; cig;EðMÞ �
fc1; c2;y; cigÞ is a 3-separation. A second feature of Theorem 9.1 is that we make no
attempt to display sequential 3-separations. To see the necessity for this, consider the
matroid P ¼ PGðr � 1; qÞ for some prime power q and positive integer rX3: If L is a
line of P; then ðL;EðPÞ � LÞ is a 3-separation of P: But the structure of the lines of P

is very complex, at least as complex as the structure of P itself, and there is clearly no
reasonable way of displaying all these lines in a tree-like way.
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The third feature of our main result is that we only display 3-separations up to an
equivalence. To illustrate the need for this, let P1 and P2 be two distinct planes of
PGð3; qÞ and let M ¼ PGð3; qÞjðP1,P2Þ: Let A ¼ P1 � P2; B ¼ P1-P2; and C ¼
P2 � P1: Evidently B is a line of M: Moreover, it is easily seen that, for every subset

B0 of B; the partition ðA,B0;C,ðB � B0ÞÞ is a 3-separation of M: There are 2qþ1

distinct such 3-separations and there is clearly no reasonable way of displaying all of
them. Furthermore, there is a quite natural sense in which all these 3-separations are
equivalent.

Note that both sequential and equivalent 3-separations can appear more
complicated than the ones in the examples given above. But, from a structural
point of view, the existence of sequential and equivalent 3-separations is not
problematic. They can be characterised using a straightforward extension of the
closure operator, which is discussed in Section 3. Moreover, the interacting 3-
separations in the counterexamples to Kahn’s Conjecture given in [9] are mutually
inequivalent, non-sequential 3-separations.

We now discuss the structure of the paper in more detail. Two 3-separations ðA;BÞ
and ðC;DÞ cross if all intersections A-C;A-D;B-C; and B-D are non-empty.
Considering the structure of a collection of mutually crossing 3-separations leads to
the notion of a flower, defined in Section 4. Essentially, a flower is a cyclically
ordered partition of the ground set of a matroid that ‘‘displays’’ a collection of 3-
separations of M: Understanding the structure of flowers turns out to be crucial, and
the bulk of the paper is devoted to this. In Section 4, it is shown that the flowers in
matroids are of five specific types. Two flowers are equivalent if they display, up to
equivalence of 3-separations, the same collection of non-sequential 3-separations.
Sections 5 and 6 develop an understanding of flower equivalence that enables us to
give, in Section 7, a precise characterisation of equivalent flowers of different types.
There is a natural partial order on flowers induced by the non-sequential 3-
separations that they display. Theorem 8.1, the main result of Section 8, shows that
all non-sequential 3-separations of a matroid interact with a maximal flower in a
coherent way. At last, in Section 9, we introduce the notion of a partial 3-tree, which
is a tree associated with a matroid M; some of whose vertices are labelled by
members of a partition of the ground set of M: A flower can be thought of as a
special type of 3-tree and, just as with flowers, partial 3-trees display certain 3-
separations of M: Theorem 9.1 then shows that a maximal partial 3-tree displays, up
to equivalence of 3-separations, all non-sequential 3-separations of M:

Finally, we note that discussions with James Geelen over several years were crucial
to the evolution of many of the ideas that are fundamental in this paper. Indeed, if it
were not for these early discussions, it is likely that this paper would never have come
to fruition.

2. Preliminaries

Any unexplained matroid terminology used here will follow Oxley [8]. A 2-
connected matroid is also commonly referred to as a connected matroid or as a
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non-separable matroid. A partition of a set S is an ordered collection ðS1;S2;y;SnÞ
of subsets of S so that each element of S is in exactly one of the subsets Si: Note that
we are allowing the sets Si to be empty.

Connectivity: Tutte [10] considered matroid connectivity as part of a
general theory of separations. We recall aspects of that theory now. Let M

be a matroid on ground set E: The connectivity function l of M is defined, for all
subsets A of E; by lðAÞ ¼ rðAÞ þ rðE � AÞ � rðMÞ: The set A or the partition
ðA;E � AÞ is k-separating if lðAÞok: The partition ðA;E � AÞ is a k-separation

if it is k-separating and jAj; jE � AjXk: For nX2; the matroid M is n-connected

if it has no ðn � jÞ-separations for all j with 1pjpn � 1: A k-separating set A;
or k-separating partition ðA;E � AÞ; or k-separation ðA;E � AÞ is exact if lðAÞ ¼
k � 1:

The connectivity functions of a matroid M and its dual M
 are equal. Moreover,
the connectivity function of M is submodular, that is, lðXÞ þ lðYÞXlðX-Y Þ þ
lðX,YÞ for all X ;YDE: This means that if X and Y are k-separating, and one of
X-Y or X,Y is not ðk � 1Þ-separating, then the other must be k-separating.
Specialising to 3-connected matroids, we have the following:

Lemma 2.1. Let M be a 3-connected matroid, and let X and Y be 3-separating subsets

of EðMÞ:

(i) If jX-Y jX2; then X,Y is 3-separating.
(ii) If jEðMÞ � ðX,Y ÞjX2; then X-Y is 3-separating.

We apply Lemma 2.1 many times in this paper and, rather than constantly
referring to the lemma by name, we call such applications uncrossings.

Segments, cosegments and fans: Let M be a 3-connected matroid. A subset S of
EðMÞ is a segment if each 3-element subset of S is a triangle. Equivalently, given that
M is 3-connected, S is a segment if rðSÞp2: The subset S is a cosegment if
each 3-element subset of S is a triad. Equivalently, S is a cosegment if S is a segment
of M
:

Let ðs1; s2;y; snÞ be an ordering of the elements of S: Then ðs1; s2;y; snÞ is a
fan if

(i) for all iAf1; 2;y; n � 2g; the triple fsi; siþ1; siþ2g is either a triangle or a triad,
and

(ii) if iAf1; 2;y; n � 2g and fsi; siþ1; siþ2g is a triangle, then fsiþ1; siþ2; siþ3g is a
triad, while if fsi; siþ1; siþ2g is a triad, then fsiþ1; siþ2; siþ3g is a triangle.

Note that a fan in M is also a fan in M
: Note also that, according to the above
definitions, any set in M of size at most two is trivially both a segment and a
cosegment, while any ordered set of size at most two is trivially a fan. This is
somewhat non-standard, but allowing such structures gains considerable economy in
the statement and proofs of a number of the theorems in this paper. The following
result is straightforward.

ARTICLE IN PRESS
J. Oxley et al. / Journal of Combinatorial Theory, Series B 92 (2004) 257–293260



Lemma 2.2. Let S be a set in a 3-connected matroid. If S has an ordering ðs1; s2;y; snÞ
such that, for all iAf1; 2;y; n � 2g; the triple fsi; siþ1; siþ2g is 3-separating, then either

ðs1; s2;y; snÞ is a fan, or S is a segment or a cosegment.

Local connectivity: For subsets X and Y in M; the local connectivity between X

and Y ; denoted UðX ;YÞ; is defined by UðX ;Y Þ ¼ rðXÞ þ rðYÞ � rðX,Y Þ:
Evidently, UðY ;X Þ ¼ UðX ;YÞ: Note that if ðX ;Y Þ is a partition of EðMÞ; then

UðX ;YÞ ¼ lMðXÞ: If M is a representable matroid and we view it as a restriction of

a projective geometry P; then the modularity of P means that UðX ;YÞ is the rank of
the intersection of the closures, in P; of X and Y : The next elementary lemma is just
a restatement of Lemma 8.2.10 of [8].

Lemma 2.3. Let X1; X2; Y1; and Y2 be subsets of the ground set of a matroid M: If

X1+Y1 and X2+Y2; then UðX1;X2ÞXUðY1;Y2Þ:

The next lemma summarises some useful basic properties of the local connectivity
function.

Lemma 2.4. Let A; B; C; and D be subsets of the ground set of a matroid M: Then the

following hold:

(i) UðA,B;C,DÞ þ UðA;BÞ þ UðC;DÞ ¼ UðA,C;B,DÞ þ UðA;CÞ þ UðB;DÞ:
(ii) UðA,B;CÞ þ UðA;BÞ ¼ UðA,C;BÞ þ UðA;CÞ:
(iii) UðA,B;CÞ þ UðA;BÞXUðA;CÞ þ UðB;CÞ:
(iv) If fX ;Y ;Zg is a partition of the ground set of M; then

lðXÞ þ UðY ;ZÞ ¼ lðZÞ þ UðX ;Y Þ:
Hence UðX ;YÞ ¼ UðY ;ZÞ if and only if lðXÞ ¼ lðZÞ:

(v) When A and B are disjoint,

lM=AðBÞ ¼ lMðBÞ � UðA;BÞ:

Proof. By definition,

UðA,B;C,DÞ þ UðA;BÞ þ UðC;DÞ

¼ rðA,BÞ þ rðC,DÞ � rðA,B,C,DÞ

þ rðAÞ þ rðBÞ � rðA,BÞ þ rðCÞ þ rðDÞ � rðC,DÞ

¼ rðAÞ þ rðBÞ þ rðCÞ þ rðDÞ � rðA,B,C,DÞ:

Thus, by symmetry, (i) holds. Part (ii) follows immediately from (i) by putting D ¼ |:
By Lemma 2.3, UðA,C;BÞXUðB;CÞ: Part (iii) now follows from (ii). The first part

of (iv) follows from (ii) by observing that lðX Þ ¼ UðX ;Y,ZÞ; and lðZÞ ¼
UðX,Y ;ZÞ: The second part of (iv) is an immediate consequence of the first part.
Finally, (v) follows by writing both sides in terms of rM : &
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If follows from the definition of U that rðclðX Þ-clðYÞÞpUðX ;YÞ: This
immediately implies the following:

Lemma 2.5. Let M be a 3-connected matroid with at least four elements, let X and Y

be subsets of EðMÞ; and let Z ¼ clðX Þ-clðYÞ: If UðX ;Y Þ ¼ 2; then Z is a segment; if

UðX ;YÞ ¼ 1; then jZjp1; and if UðX ;YÞ ¼ 0; then Z ¼ |:

The last lemma in this section gives a useful relation between UMðX ;Y Þ and

UM
 ðX ;YÞ: The straightforward proof is omitted.

Lemma 2.6. Let X and Y be disjoint sets in a matroid M: Then

UMðX ;Y Þ þ UM
 ðX ;Y Þ ¼ lðXÞ þ lðYÞ � lðX,YÞ:

In particular, if X ;Y ; and X,Y are exactly 3-separating, then

UMðX ;Y Þ þ UM
 ðX ;Y Þ ¼ 2:

3. Sequential and equivalent 3-separations

Let A be a set in a matroid M: The coclosure cl
ðAÞ of A is the closure of A in M
: If
cl
ðAÞ ¼ A; then A is coclosed in M: If A is closed in both M and M
; then A is fully

closed. The full closure of A; denoted fclðAÞ; is the intersection of all fully closed sets
containing A: Since the intersection of fully closed sets is clearly fully closed, the full
closure is a well-defined closure operator. It is easily seen that one way of obtaining

the full closure of a set A is to take clðAÞ; and then cl
ðclðAÞÞ and so on until neither
the closure nor the coclosure operator adds new elements. It is just as easily seen that
the elements of fclðAÞ can be ordered ða1; a2;y; anÞ such that, for all iAf1; 2;y; ng;
either aiAclðA,fa1; a2;y; ai�1gÞ or aiAcl
ðA,fa1; a2;y; ai�1gÞ: We remark that
fclðAÞ has also been denoted by cclðAÞ and called the complete closure of A [6].

We say that xAclð
ÞðAÞ if either xAclðAÞ or xAcl
ðAÞ: Note that we do not regard

clð
Þ as an operator (if we did it would not be a closure operator); rather it is just a
convenient shorthand. The following easy lemma holds for k-separating sets for
arbitrary k; but, in this paper, our only interest is in the case k ¼ 3:

Lemma 3.1. Let ðA;BÞ be exactly 3-separating in a matroid M:

(i) For eAEðMÞ; the partition ðA,feg;B � fegÞ is 3-separating if and only if

eAclð
ÞðAÞ:
(ii) For eAB; the partition ðA,feg;B � fegÞ is exactly 3-separating if and only if e is

in exactly one of clðAÞ-clðB � fegÞ and cl
ðAÞ-cl
ðB � fegÞ:
(iii) The elements of fclðAÞ � A can be ordered ða1; a2;y; anÞ so that

A,fa1; a2;y; aig is 3-separating for all iAf1; 2;y; ng:

We can use the full closure operator to define an equivalence on 3-separating sets
as follows. Let M be a 3-connected matroid. Let A and B be exactly 3-separating sets
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of M: Then A is equivalent to B if fclðAÞ ¼ fclðBÞ: Let the partitions ðA1;A2Þ and
ðB1;B2Þ be exactly 3-separating in M: Then ðA1;A2Þ is equivalent to ðB1;B2Þ if, for
some ordering ðC1;C2Þ of fB1;B2g; we have A1 is equivalent to C1; and A2 is
equivalent to C2:

Let X be an exactly 3-separating set of a 3-connected matroid M: Then X is
sequential if it has an ordering ðx1; x2;y; xnÞ such that fx1;x2;y;xig is 3-separating
for all iAf1; 2;y; ng: Let ðX ;YÞ be exactly 3-separating in M: Then ðX ;YÞ is
sequential if either X or Y is a sequential 3-separating set. Another easy argument
proves the following.

Lemma 3.2. Let X be an exactly 3-separating set of a 3-connected matroid M: Then X

is sequential if and only if fclðEðMÞ � X Þ ¼ EðMÞ:

To test if ðA1;A2Þ is equivalent to ðB1;B2Þ; we must show that the sets
ffclðA1Þ; fclðA2Þg and ffclðB1Þ; fclðB2Þg are equal. To see this, let P be the set of
points of a finite projective plane, and let L1 and L2 be distinct lines of the plane.
Then ðL1;P � L1Þ is not equivalent to ðL2;P � L2Þ; even though fclðP � L1Þ ¼
fclðP � L2Þ ¼ P: For non-sequential 3-separations, we can simplify things some-
what.

Lemma 3.3. Let ðA1;A2Þ be a non-sequential 3-separation of a 3-connected matroid M

and let ðB1;B2Þ be a 3-separation of M: Then ðA1;A2Þ is equivalent to ðB1;B2Þ if and

only if fclðA1Þ ¼ fclðB1Þ or fclðA1Þ ¼ fclðB2Þ:

Proof. In one direction the lemma is trivial. For the other direction, assume that
fclðA1Þ ¼ fclðB1Þ ¼ X : Then, by Lemma 3.1, X is 3-separating. Set Y ¼ EðMÞ � X :
Since ðA1;A2Þ is not sequential, Y is non-empty. If jY jp2; then X is not fully closed,
so jY jX3 and hence Y is exactly 3-separating. By Lemma 3.1, A2DfclðYÞ and
B2DfclðY Þ: Since the full closure operator is a closure operator and Y is a subset of
both A2 and B2; we now have fclðA2Þ ¼ fclðYÞ ¼ fclðB2Þ; so that ðA1;A2Þ is indeed
equivalent to ðB1;B2Þ: &

The next two lemmas note some further elementary properties of 3-separating sets.
Part (ii) of the first of these follows by Lemma 2.4(v).

Lemma 3.4. Let ðX ;YÞ be exactly 3-separating in a 3-connected matroid M:

(i) If ðX ;YÞ is non-sequential, then jX j; jY jX4:
(ii) For yAY ; if yAcl
ðXÞ; then X is 2-separating in M\y; and if yAclðX Þ; then X is 2-

separating in M=y:

Lemma 3.5. Let A and B be disjoint 3-separating sets in a 3-connected matroid M: If

fclðAÞ does not contain B and jBjX3; then fclðAÞ � B is 3-separating and fclðfclðAÞ �
BÞ ¼ fclðAÞ:
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Proof. Evidently, fclðAÞ � B is the intersection of the 3-separating sets fclðAÞ and
EðMÞ � B: Thus, by uncrossing, if jB � fclðAÞjX2; then fclðAÞ � B is certainly 3-
separating. Now suppose that jB � fclðAÞj ¼ 1; say B � fclðAÞ ¼ fbg: As fclðAÞKB;
it follows that jEðMÞ � fclðAÞjX4 so jEðMÞ � ðfclðAÞ,BÞjX3: Hence, by uncross-
ing, fclðAÞ-B; which equals B � fbg; is 3-separating. As jBjX3; it follows that

bAclð
ÞðB � fbgÞ so bAfclðB � fbgÞDfclðfclðAÞÞ ¼ fclðAÞ; a contradiction. We
conclude that fclðAÞ � B is 3-separating. The final assertion of the lemma follows
from the fact that ADfclðAÞ � BDfclðAÞ: &

4. Flowers

The complexity in characterising 3-separations in a matroid is caused by the fact
that they can cross, in other words, it is possible to have 3-separations ðA1;A2Þ and
ðB1;B2Þ such that each of the four sets of the form Ai-Bj is non-empty. However, if

each of these sets has at least two elements, it follows from Lemma 2.1 that each is 3-
separating. We now have an ordered partition into four 3-separating sets,
ðA1-B1;A1-B2;A2-B2;A2-B1Þ such that, in this cyclic order, the union of any
consecutive pair is 3-separating.

This is an example of a structure that turns out to be fundamental. Let
n be a positive integer and M be a 3-connected matroid. Then ðP1;P2;y;PnÞ
is a flower in M with petals P1;P2;y;Pn if ðP1;P2;y;PnÞ is a partition
of EðMÞ; each Pi has at least two elements and is 3-separating, and each
Pi,Piþ1 is 3-separating, where all subscripts are interpreted modulo n: Observe
that flowers have only been defined in 3-connected matroids. In what follows,
whenever we refer to a flower, it will be implicit that this flower occurs in a 3-
connected matroid.

The purpose of this section is to characterise flowers by describing which unions of
petals are 3-separating and by specifying the local connectivity between petals. Let F
be a flower ðP1;P2;y;PnÞ: We say that F is an anemone if

S
sAS Ps is 3-separating

for every subset S of f1; 2;y; ng; and F is a daisy if, for all i and k in f1; 2;y; ng;
the set Piþ1,Piþ2,?,Piþk is 3-separating and no other union of petals is 3-
separating. Thus a flower is an anemone if all unions of petals are 3-separating, and
it is a daisy if a union of petals is 3-separating if and only if the petals are consecutive
in the cyclic order.

Note that, if np3; the concepts of daisy and anemone coincide, but if nX4; then a
flower cannot be both a daisy and an anemone. A trivial flower has just the one petal,
namely EðMÞ: A flower with two petals is just a 3-separating partition. Genuine
structure emerges in flowers with at least three petals. The 3-petal case presents
certain difficulties as we shall see.

Amongst anemones, we distinguish three different types according to the
behaviour of the local connectivity function. For nX3; an anemone
ðP1;P2;y;PnÞ is called

(i) a paddle if UðPi;PjÞ ¼ 2 for all distinct i; jAf1; 2;y; ng;
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(ii) a copaddle if UðPi;PjÞ ¼ 0 for all distinct i; jAf1; 2;y; ng; and
(iii) spike-like if nX4; and UðPi;PjÞ ¼ 1 for all distinct i; jAf1; 2;y; ng:

Similarly, we distinguish two different types of daisies. Specifically, a daisy
ðP1;P2;y;PnÞ is called

(i) swirl-like if nX4 and UðPi;PjÞ ¼ 1 for all consecutive i and j; while UðPi;PjÞ ¼ 0

for all non-consecutive i and j; and
(ii) Vámos-like if n ¼ 4 and UðPi;PjÞ ¼ 1 for all consecutive i and j; while

fUðP1;P3Þ;UðP2;P4Þg ¼ f0; 1g:

Finally, we say that a flower is unresolved if n ¼ 3; and UðPi;PjÞ ¼ 1 for all distinct

i; jAf1; 2; 3g: At this stage, we could define an unresolved flower to be both spike-like
and swirl-like. But we will see in Section 6 that, due to the presence of additional
structure, some unresolved flowers are best viewed as spike-like and others as
swirl-like.

The next theorem is the main result of this section.

Theorem 4.1. If F ¼ ðP1;P2;y;PnÞ is a flower, then F is either an anemone or a

daisy. Moreover, if nX3; then F is either a paddle, a copaddle, spike-like, swirl-like,
Vámos-like, or is unresolved.

Before turning to the proof of Theorem 4.1, we illustrate the types of flowers with
some generic examples. We first note that there is a straightforward connection
between flowers in M and M
; which follows from Lemma 2.6.

Proposition 4.2. If F ¼ ðP1;P2;y;PnÞ is a flower, then it is also a flower in M
:
Moreover, for nX3;

(i) if F is either spike-like, swirl-like, Vámos-like, or unresolved, then F has the same

type in M
 as in M; and

(ii) if F is a paddle in M; then F is a copaddle in M
:

What follows is an informal description that may help the reader’s intuition for
different types of flowers. To visualise a flower geometrically, it is useful to think of a
collection of lines in projective space. These lines can be thought of as lines of
attachment of the 3-separating sets that form the petals of the flower. We obtain a
paddle by gluing the petals along a single common line. Fig. 1 represents a 5-petal
paddle in which each petal is a plane with sufficient structure to make the overall
matroid 3-connected. The resulting matroid, whose points have been suppressed in

the figure, has rank 7. In general, the rank of a paddle is
Pn

i¼1 rðPiÞ � 2ðn � 1Þ: We

obtain a copaddle by choosing a collection fL1;L2;y;Lng of lines placed as freely
as possible in rank 2ðn � 1Þ: Thus, if any one of the lines is deleted, the remaining
lines are mutually skew. Each petal Pi is attached to the line Li and the overall rank

of M is
Pn

i¼1 rðPiÞ � 2: For all nX3; we obtain a paddle in MðK3;nÞ by taking the
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petals to be the 3-element bonds in K3;n: In this case, the common line of attachment

for the petals contains no elements of the matroid. Clearly, the same flower is a
copaddle in M
ðK3;nÞ:

For a spike-like flower, consider a set L ¼ fL1;L2;y;Lng of copunctual
lines placed as freely as possible in rank n: Again these lines are the lines of

attachment for the petals and the overall rank of M is
Pn

i¼1 rðPiÞ � n: The

terminology arises from the connection with a class of matroids called spikes.
If two points are chosen from each of the lines in L so that each chosen point is on no
other line in L; then the matroid induced by this set of points is an example of a
spike. Spikes turn out to be a fundamental class of matroids (see, for example,
[2,3,4,9,12]).

Consider a swirl-like flower. Choose an independent set fp1; p2;y; png in a
projective space and let Li be the line spanned by fpi; piþ1g: Since subscripts are
interpeted modulo n; the line Ln is spanned by fpn; p1g: Using these lines as lines of

attachment for the petals gives a swirl-like flower with overall rank
Pn

i¼1 rðPiÞ � n:

An example of such a flower has been given in Fig. 2. In that figure, four planes have
been attached to lines of a rank-4 matroid to produce a rank-8 matroid. The points
p1; p2; p3; and p4; which may or may not be in the matroid, have been indicated but
the other points of the matroid, all of which lie on one of the planes P1;P2;P3; or P4;
have been suppressed. If, in the general construction above, exactly two points are
chosen from each of the lines in fL1;L2;y;Lng so that each chosen point is on
exactly one such line, the matroid induced by this set of points is an example of a
swirl. As with spikes, swirls have turned out to be important in recent work in
matroid theory (see, for example [4,9]).

Finally, consider a Vámos-like flower. There is a group of non-representable
matroids with eight elements amongst which is the Vámos matroid (see, for example
[8, p. 511]) that share a common feature: their ground sets can be partitioned into
four lines L1;L2;L3;L4 such that ðL1;L2;L3;L4Þ is a Vámos-like flower as described
above. More general Vámos-like flowers can be formed by using these lines to glue
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on larger 3-separating sets. Intuitively, any matroid with a Vámos-like flower is not
representable over any field, and we shall prove this in Corollary 6.2.

We now turn to the proof of Theorem 4.1, which will follow from a sequence of
lemmas. We show first that any consecutive union of petals in any flower must be 3-
separating.

Lemma 4.3. Let ðP1;P2;y;PnÞ be a flower. Then, for all i and k in f1; 2;y; ng; the

set Piþ1,Piþ2,?,Piþk is 3-separating.

Proof. We argue by induction on k: Since ðP1;P2;y;PnÞ is a flower, the result holds
for kAf1; 2g: Now let kX3; and assume that the result holds for k � 1: Then
Piþ1,Piþ2,?,Piþk�1 and Piþk�1,Piþk are 3-separating, and their intersection
Piþk�1 contains at least two elements so we see by uncrossing that their union
Piþ1,Piþ2,?,Piþk is 3-separating as required. &

Lemma 4.4. Let F ¼ ðP1;P2;y;PnÞ be a flower. Then F is either an anemone or a

daisy.

Proof. The result is trivial if np3: Assume nX4: By Lemma 4.3, all consecutive sets
of petals are 3-separating. If no other union of petals is 3-separating, then F is a
daisy.

Assume that F is not a daisy. Then there is a non-consecutive set of petals whose
union P is 3-separating. Evidently, P contains a pair Pi and Pj of non-consecutive

petals with the property that ioj and no petal between Pi and Pj is contained in P:

There is at least one petal not contained in P,Pi,Piþ1,?,Pj; otherwise P is the

union of a consecutive set of petals. Uncrossing P and Pi,Piþ1,?,Pj now shows

that Pi,Pj is 3-separating. Thus F has a non-consecutive pair of petals that is 3-

separating.
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We now show that the union of every pair of petals is 3-separating. Consider
the non-consecutive pair Pi and Pj such that Pi,Pj is 3-separating. We

begin by showing that Pi,Pj�1 is 3-separating. Since Pi,Pj and Pj�1,Pj are

both 3-separating and their intersection has at least two elements, uncrossing
implies that Pi,Pj�1,Pj is 3-separating. Furthermore, by Lemma 4.3,

Pi,Piþ1,?,Pj�1 is 3-separating. The set Pjþ1 has at least two elements and

avoids the last two 3-separating sets and so, by uncrossing again, Pi,Pj�1

is 3-separating. By repeatedly applying this argument, we deduce that the union
of every pair of petals of F containing Pi is 3-separating. It follows that if n ¼ 4;
then the union of every pair of petals of F is 3-separating. Hence, we may assume
that nX5:

By repeating the argument of the last paragraph with Pi replaced by Pj; we get

that the union of every pair of petals of F containing Pj is 3-separating. Since nX5;

there is at most one petal in fP1;P2;y;Png � fPi;Pjg that is adjacent to both Pi

and Pj in the original ordering. If there is such a petal, call it Pk: For all petals Pm

with mak; the argument of the last paragraph implies that the union of every pair of
petals containing Pm is 3-separating. It follows that the union of every pair of petals
of F is 3-separating. Therefore, any circular ordering of the petals is a flower and it
follows, from Lemma 4.3, that all unions of petals are 3-separating and hence that F
is an anemone. &

We show next that every anemone is a paddle, a copaddle, is spike-like, or is
unresolved. We begin with a preliminary lemma that holds for all flowers.

Lemma 4.5. Let ðP1;P2;y;PnÞ be a flower. Then UðPi;Piþ1Þ ¼ UðPj;Pjþ1Þ for

all i; j:

Proof. Choose k ¼ maxfUðPi;Piþ1Þ : iAf1; 2;y; ngg: We lose no generality in

assuming that UðP1;P2Þ ¼ k and that nX3: It suffices to show that UðP2;P3Þ ¼ k:
Now E � ðP2,P3Þ is 3-separating, so

lðE � ðP2,P3ÞÞ ¼ 2 ¼ lðP3Þ:

Thus, by Lemma 2.4(iv) and Lemma 2.3,

kXUðP3;P2Þ ¼ UðP2;E � ðP2,P3ÞÞXUðP2;P1Þ ¼ k:

Hence, UðP3;P2Þ ¼ k; so UðP2;P3Þ ¼ k: &

Lemma 4.6. Let nX3; and let F ¼ ðP1;P2;y;PnÞ be an anemone in a matroid M:
Then F is a paddle, a copaddle, is spike-like, or is unresolved.

Proof. Since an anemone is a flower relative to any circular ordering of the petals, it

follows from Lemma 4.5 that there is a constant k such that UðPi;PjÞ ¼ k for all

distinct i; j: Since M is 3-connected, kAf0; 1; 2g: If k ¼ 2; then F is a paddle; if k ¼ 1;
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then F is spike-like or, when n ¼ 3; is unresolved; and, if k ¼ 0; then F is a
copaddle. &

We now work towards showing that if a flower is a daisy, then it is swirl-like or
Vámos-like.

Lemma 4.7. Let nX4 and F ¼ ðP1;P2;y;PnÞ be a flower of a matroid M on E:

(i) If UðPj;Pjþ1Þ ¼ 2 for some jAf1; 2;y; ng; then F is a paddle.

(ii) If UðPj;Pjþ1Þ ¼ 0 for some jAf1; 2;y; ng; then F is a copaddle.

(iii) If F is a daisy, then UðPi;Piþ1Þ ¼ 1 for all iAf1; 2;y; ng:

Proof. Suppose that UðPj;Pjþ1Þ ¼ 2 for some jAf1; 2;y; ng: Then, by Lemma 4.5,

UðPi;Piþ1Þ ¼ 2 for all iAf1; 2;y; ng: Hence UðP1;P2Þ ¼ 2 ¼ lMðP1Þ: By Lemma

2.4(v), lM=P2
ðP1Þ ¼ lMðP1Þ � UðP1;P2Þ; so lM=P2

ðP1Þ ¼ 0: Similarly, lM=P2
ðP3Þ ¼ 0:

Thus, by submodularity, lM=P2
ðP1,P3Þ ¼ 0 so, by Lemma 2.4(v) again,

lMðP1,P3Þ ¼ UðP1,P3;P2ÞplMðP2Þ ¼ 2:

Hence P1,P3 is 3-separating so F is an anemone. Thus, by Lemma 4.6, F is a
paddle and (i) is proved.

Part (ii) follows from (i) by duality since, by Proposition 4.2, ðP1;P2;y;PnÞ is a

flower in M
; and, by Lemma 2.6, UM
 ðPj;Pjþ1Þ ¼ 2� UMðPj;Pjþ1Þ: Finally, if F is

a daisy, then it is neither a paddle nor a copaddle, so (iii) follows from (i) and (ii)
using Lemma 4.5. &

Lemma 4.8. Let nX5; and let ðP1;P2;y;PnÞ be a daisy of a matroid with ground set

E: If UðPs;PtÞ ¼ 0 for some non-consecutive s and t; then UðPi;PjÞ ¼ 0 for all non-

consecutive i and j:

Proof. Since Pi,Piþ1 is 3-separating and contains at least two elements,

2 ¼ UðPi,Piþ1;E � ðPi,Piþ1ÞÞ

for all i: Now taking A; B; and C equal to Piþ1; Pi; and E � ðPi,Piþ1Þ; respectively,
we get from Lemma 2.4(ii) that

2 ¼ UðPi;E � PiÞ þ UðPiþ1;E � ðPi,Piþ1ÞÞ � UðPi;Piþ1Þ:

Since Pi is 3-separating, we deduce that

UðPiþ1;E � ðPi,Piþ1ÞÞ ¼ UðPi;Piþ1Þ ¼ 1:

Thus, for all jefi; i þ 1; i þ 2g; by Lemma 2.3,

1 ¼ UðPiþ1;E � ðPi,Piþ1ÞÞXUðPiþ1;Piþ2,PjÞXUðPiþ1;Piþ2Þ ¼ 1:
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Therefore UðPiþ1;Piþ2,PjÞ ¼ 1 for all jefi; i þ 1; i þ 2g: By symmetry, if jefi þ
3; i þ 2; i þ 1g; then UðPiþ2;Piþ1,PjÞ ¼ 1: By Lemma 2.4(ii),

UðPiþ1;Piþ2,PjÞ þ UðPiþ2;PjÞ ¼ UðPiþ1,Pj;Piþ2Þ þ UðPiþ1;PjÞ:

Therefore

UðPiþ1;PjÞ ¼ UðPiþ2;PjÞ ð1Þ

for all jefi; i þ 1; i þ 2; i þ 3g:
Now we know that UðPs;PtÞ ¼ 0 for some s and t that are non-consecutive. By

relabelling if necessary, we may assume that fs; tg ¼ f1; kg and that k is chosen so
that, among all such pairs involving 1, we have k � 1pn þ 1� k and k � 1 is

minimized. If k43; then kpn � 2 so 1efk � 2; k � 1; k; k þ 1g and UðP1;Pk�1Þ ¼
UðP1;PkÞ by (1). This contradicts the choice of k: Thus UðP1;P3Þ ¼ 0: Therefore, by

(1), UðP1;P4Þ ¼ 0 since n44: By repeatedly applying (1), we obtain that UðP1;PgÞ ¼
0 for all g with 3pgpn � 1; that is, UðP1;PgÞ ¼ 0 for all g such that 1 and g are non-

consecutive. Hence if UðPi;PjÞ ¼ 0 for some j; then UðPi;PhÞ ¼ 0 for all h such that i

and h are non-consecutive. As UðPg;P1Þ ¼ 0 for all g such that 1 and g are non-

consecutive, we may apply the observation of the last sentence to deduce that

UðPi;PjÞ ¼ 0 for all non-consecutive i and j such that ief2; ng: In particular,

UðPc;P2Þ ¼ UðPd ;PnÞ for all c and d such that c and 2 are non-consecutive and d

and n are non-consecutive. It follows that UðPi;PjÞ ¼ 0 for all non-consecutive i and

j with iAf2; ng; and the lemma holds. &

The next lemma is an immediate consequence of Lemma 4.3.

Lemma 4.9. If ðP1;P2;y;PnÞ is a flower and iAf1; 2;y; ng; then

ðP1;P2;y;Pi�1;Pi,Piþ1,?,PnÞ is a flower.

Lemma 4.10. Let nX4 and let F ¼ ðP1;P2;y;PnÞ be a daisy of a matroid M: Then F
is either swirl-like or Vámos-like.

Proof. Set P4
0 ¼ P4,P5,?,Pn: By Lemma 4.9, ðP1;P2;P3;P4

0Þ is a flower. As
P1,P3 is not 3-separating in M; this flower is a daisy, so, by Lemma 4.7,

UðP1;P2Þ ¼ UðP3;P4
0Þ ¼ 1: Assume that

UðP1;P3Þ þ UðP2;P4
0ÞX2:

Then

rðP1,P3Þ þ rðP2,P4
0Þp rðP1Þ þ rðP2Þ þ rðP3Þ þ rðP4

0Þ � 2

¼ rðP1,P2Þ þ rðP3,P4
0Þ

¼ rðMÞ þ 2:

Thus P1,P3 is 3-separating, contradicting the fact that F is a daisy. Therefore

UðP1;P3Þ þ UðP2;P4
0Þp1:
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As UðP2;P4ÞpUðP;P4
0Þ; at least one of UðP1;P3Þ and UðP2;P4Þ is 0 and the other is

at most 1. In the case that n ¼ 4; it follows immediately that F is either swirl-like or
Vámos-like. In the case that nX5; it follows from Lemma 4.8 that F is swirl-
like. &

Proof of Theorem 4.1. By Lemma 4.4, F is either an anemone or a daisy. Say nX3:
Assume that F is an anemone. Then, by Lemma 4.6, F is either a paddle, a copaddle,
spike-like, or unresolved. Assume that F is not an anemone. Then nX4 and F is a
daisy, so it follows from Lemma 4.10 that F is either swirl-like or Vámos-like. &

We will often seek to verify that a partition of the elements of a matroid is a flower
of a certain type. The following is an economical way to check this.

Lemma 4.11. Let F ¼ ðP1;P2;y;PnÞ be a partition of the ground set of a 3-connected

matroid M; where nX4 and jPijX2 for all i:

(i) If Pi,Piþ1 is 3-separating for each iAf1; 2;y; n � 1g; then F is a flower.
(ii) Assume that F is a flower with nX5 and that i; j; and k are elements of f1; 2;y; ng

such that j and k are distinct and non-consecutive.
(a) If UðPi;Piþ1Þ ¼ 2; then F is a paddle.
(b) If UðPi;Piþ1Þ ¼ 1 and UðPj ;PkÞ ¼ 1; then F is spike-like.

(c) If UðPi;Piþ1Þ ¼ 1 and UðPj ;PkÞ ¼ 0; then F is a swirl-like.

(d) If UðPi;Piþ1Þ ¼ 0; then F is a copaddle.

Proof. Since P2,P3 and P3,P4 are 3-separating, we see by uncrossing that
P2,P3,P4 is 3-separating. By repeating this argument, we deduce that
P2,P3,?,Pn�1 is 3-separating. Hence Pn,P1 is 3-separating. Thus the union
of each consecutive pair of Pi’s is 3-separating. Another easy uncrossing argument
shows that each Pi is 3-separating. This establishes (i). Part (ii) follows by combining
Theorem 4.1 and Lemma 4.7. &

The next lemma gives one more useful fact about flowers.

Lemma 4.12. If ðP1;P2;y;PnÞ is a flower with nX4; then clðPi,Piþ1Þ and

clðPiþ1,Piþ2Þ form a modular pair of flats whose intersection is spanned by Piþ1:

Proof. Evidently, we may assume that i ¼ 1: Since each of P1,P2;P2,P3;
P1,P2,P3; and P2 is exactly 3-separating,

lðP1,P2Þ þ lðP2,P3Þ ¼ lðP1,P2,P3Þ þ lðP2Þ: ð2Þ
By submodularity,

rðP1,P2Þ þ rðP2,P3ÞXrðP1,P2,P3Þ þ rðP2Þ
and

rðE � ðP1,P2ÞÞ þ rðE � ðP2,P3ÞÞXrðE � ðP1,P2,P3ÞÞ þ rðE � P2Þ:
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On summing the last two inequalities and comparing the result with (2), we deduce
that both inequalities must be equations, and the lemma follows. &

5. Equivalent flowers

Let F be a flower of a matroid M recalling that, whenever we refer to a flower, it is
implicit that the underlying matroid is 3-connected. We say that F displays a 3-
separating set X or a 3-separation ðX ;Y Þ if X is a union of petals of F: Now let F1

and F2 be flowers of M: Then F1%F2 if every non-sequential 3-separation displayed
by F1 is equivalent to one displayed by F2: Evidently, % is a quasi order on the
collection of flowers of M: We will say that F1 and F2 are equivalent flowers if
F1%F2 and F2%F1: Thus equivalent flowers display, up to equivalence of 3-
separations, exactly the same non-sequential 3-separations.

The order of a flower F is the minimum number of petals in a flower equivalent to
F: Thus, a flower has order 1 if it displays no non-sequential 3-separations, so that it
is equivalent to the flower with one petal consisting of all elements of M: A flower
has order 2 if it displays a single non-sequential 3-separation.

Let F ¼ ðP1;P2;y;PnÞ be a flower. The flower F0 is obtained from F by an
elementary move if it is obtained in one of the following ways:

(0) F0 is obtained by an arbitrary permutation of the petals of F in the case that F is
an anemone or is obtained from F by a cyclic shift or a reversal of the order of
the petals of F in the case that F is a daisy.

(1) jP2jX3; there is an element aAP2 such that aAclð
ÞðP1Þ; and F0 ¼ ðP1,fag;P2 �
fag;P3;y;PnÞ:

(2) jP2j ¼ 2; there is an element aAP2 such that aAclð
ÞðP1Þ; and F0 ¼
ðP1,P2;P3;y;PnÞ:

(3) jP1jX4; and P1 has a 2-element subset fa; bg such that bAclð
ÞðP2Þ and

aAclð
ÞðP2,fbgÞ; and F0 ¼ ðP1 � fa; bg; fa; bg;P2;y;PnÞ:

Note that, given moves of Type 0, we lose no generality in defining the other
moves with reference only to petals P1;P2;P3: In what follows, when we refer to the
moves needed to effect a certain change, we shall usually omit explicit reference to
Type-0 moves. The main goal of this section is to prove the following
characterisation of equivalent flowers.

Theorem 5.1. Two flowers of order at least 3 are equivalent if and only if one can be

obtained from the other by a sequence of elementary moves.

Note that Theorem 5.1 does not hold for flowers of order less than 3. For example,
let M have a single non-sequential 3-separation ðA;BÞ; where B ¼ fb1; b2; b3; b4g: It
is easily seen that such a matroid exists. Then F ¼ ðA; fb1; b2g; fb3; b4gÞ is a flower
equivalent to the 2-petal flower F0 ¼ ðA;BÞ: But F0 cannot be obtained from
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F by a sequence of elementary moves. A similar example can be given for flowers of
order 1.

Theorem 5.1 will follow from a sequence of lemmas in which we develop
further structural properties of flowers. An element e of M is loose in the
flower F if eAfclðPiÞ � Pi for some petal Pi of F: An element that is not loose is
tight. The petal Pi is loose if all elements in Pi are loose. A tight petal is one that is
not loose, that is, one that contains at least one tight element. A flower of order at
least 3 is tight if all of its petals are tight. A flower of order 2 or 1 is tight if it has two
petals or one petal, respectively. The next lemma is an immediate consequence of
Lemma 3.1(i).

Lemma 5.2. Let ðP1; fa; bg;P3;y;PnÞ be a flower where aAclð
ÞðP1Þ: Then

bAclð
ÞðP1,fagÞ; so that fa; bgDfclðP1Þ; and fa; bg is a loose petal of F:

It follows that elementary moves of Types 1–3 can be seen as ways of moving loose
elements from one petal to another or of adding or removing loose petals.

Lemma 5.3. Let F ¼ ðP1;P2;y;PnÞ be a flower of order at least 2 of a matroid M;
and suppose that F0 is obtained from F by an elementary move. Then F and F0 are

equivalent and an element is loose in F if and only if it is loose in F0:

Proof. Evidently, nX2: It is clear that moves of Type 0 satisfy the lemma. Consider

moves of Type 1. Say that jP2jX3; that aAP2; and that aAclð
ÞðP1Þ: Let F0 ¼
ðP1,fag;P2 � fag;P3;y;PnÞ:

We first show that F0 is a flower. If n ¼ 2; this is immediate and, if n ¼ 3; it is easy.
Assume that nX4: Consider consecutive pairs of sets in the partition F: The only
unions of such pairs that are not unions of consecutive pairs of petals of F are
Pn,ðP1,fagÞ and ðP2 � fagÞ,P3: By Lemma 4.11, we only have to check that the

former set is 3-separating. But this holds since aAclð
ÞðPn,P1Þ: Thus F0 is a flower.

Moreover, aAclð
ÞðP2 � fagÞ:
We now show that F and F0 are equivalent. Let ðS;TÞ be a non-sequential 3-

separation. Say that ðS;TÞ is displayed by F; where P1DS: Now aAclð
ÞðSÞ; and
ðS,fag;T � fagÞ is a 3-separation that is equivalent to ðS;TÞ and is displayed by
F0: A similar argument shows that if ðS;TÞ is displayed by F0; then it is equivalent to
a 3-separation that is displayed by F: Thus F and F0 are equivalent.

We now consider the loose elements. Since aAclð
ÞðP1Þ; we see that fclðP1,fagÞ ¼
fclðP1Þ: Similarly, fclðP2Þ ¼ fclðP2 � fagÞ: It follows easily from these observations
that the loose elements of F and F0 are the same.

Now consider Type-2 moves. Assume that P2 ¼ fa; bg; where aAclð
ÞðP1Þ; and let
F0 ¼ ðP1,fa; bg;P3;y;PnÞ: By Lemma 4.9, F0 is a flower. We now show that F and
F0 are equivalent. Let ðS;TÞ be a non-sequential 3-separation of M: Since F is a
refinement of F0; it is immediate that if ðS;TÞ is displayed by F0; then it is displayed
by F: Assume that ðS;TÞ is displayed by F; where P1DS: By Lemma 5.2,
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fa; bgDfclðP1Þ: Hence ðS;TÞ is equivalent to ðS,fa; bg;T � fa; bgÞ and the latter 3-
separation is displayed by F0: Thus F and F0 are equivalent.

Consider loose elements of F and F0: Since F0 is equivalent to F and F has order at
least two, nX3: We know that fa; bgDfclðP1Þ: From this, it follows that F and F0

have the same loose elements as long as all elements of fclðfa; bgÞ are loose in F0:
Clearly, elements of fclðfa; bgÞ that are not in P1 are loose in F0: But it is easily seen
that fa; bgDfclðP3Þ; so fclðP3Þ-P1+fclðfa; bgÞ-P1: Thus the elements of fclðfa; bgÞ
are indeed loose in F0 as required.

Consider a move of Type 3. Say that jP1jX4; that fa; bgDP1; that bAclð
ÞðP2Þ;
and that aAclð
ÞðP2,fbgÞ: Then P2,fa; bg is 3-separating. Let F0 ¼ ðP1 �
fa; bg; fa; bg;P2;y;PnÞ: Uncrossing E � ðP2,fa; bgÞ and P1 shows that the
intersection of these two sets, P1 � fa; bg; is 3-separating. Then each set in the
partition F0 is 3-separating. An analogous argument shows that Pn,ðP1 � fa; bgÞ is
3-separating. It follows that each union of a consecutive pair of sets in F0 is 3-
separating. Hence F0 is a flower. We now observe that F is obtained from F0 by a
Type-2 move. Hence F and F0 are equivalent and have the same sets of loose
elements. &

We will say that the flower F1 is move-equivalent to the flower F2 if F2 can be
obtained from F1 by a sequence of elementary moves.

Lemma 5.4. Let M be a 3-connected matroid. Then move-equivalence is an equivalence

relation on the set of flowers of M of order at least 2.

Proof. The relation of move-equivalence is certainly reflexive and transitive. Assume
that F1 is a flower of M of order at least 2. If F2 is obtained from F1 by a move of
Type 2, then F2 is obtained from F1 by a move of Type 3, provided F2 has at least 2
petals, which it does as F2 has order at least 2. Moreover, if F2 is obtained from F1

by a move of Type 1, then F1 is obtained from F2 by a move of Type 0 followed by a
move of Type 1. Thus move-equivalence is also symmetric and is hence an
equivalence relation. &

We now work towards showing that every flower of order at least 3 is move-
equivalent to a tight flower.

Lemma 5.5. Let F ¼ ðP1;P2;y;PnÞ be a flower and suppose iAf1; 2;y; n � 2g:

(i) If xAclðP1,P2,?,PiÞ � ðP1,P2,?,PiÞ and xePn; then xAclðPiÞ:
(ii) If xAclðP1,P2,?,PiÞ � ðP1,P2,?,PiÞ; then xAclðP1Þ � P1 or

xAclðPiÞ � Pi:

Proof. Assume the hypotheses of (i) hold. Then P1,P2,?,Pi,fxg and
Pi,Piþ1,?,Pn�1 are 3-separating, and their union avoids Pn; so, by uncrossing,

their intersection, Pi,fxg; is 3-separating. Thus xAclð
ÞðPiÞ: If xAcl
ðPiÞ; then
xAcl
ðP1,P2,?,PiÞ: By Lemma 3.1(ii), this contradicts the fact that
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xAclðP1,P2,?,PiÞ: Hence xAclðPiÞ: Part (ii) follows from part (i) using
symmetry. &

We omit the statement of the obvious dual of Lemma 5.5, which we shall also use
in what follows.

Lemma 5.6. Let F ¼ ðP1;P2;y;PnÞ be a flower. Let a be an element of clð
ÞðP1Þ-Pi

for some i41:

(i) If jPijX3; then ðP1,fag;P2;y;Pi�1;Pi � fag;Piþ1;y;PnÞ is a flower F0 that is

move-equivalent to F via a sequence of Type-1 moves. Moreover, fclðPj
0Þ ¼ fclðPjÞ

for every petal Pj
0 of F0:

(ii) If Pi ¼ fa; bg; then F is move-equivalent to

ðP1,fag;P2;y;Pi�1,fbg;Piþ1;y;PnÞ:

Proof. Consider (i). If i ¼ 2 or i ¼ n; the result follows from a single Type-1

move. Otherwise, by Lemma 5.5(i) or its dual, aAclð
ÞðPi�1Þ: Assume that jPijX3:
Then we can use a Type-1 move to obtain a flower equivalent to F by taking a

out of Pi and adding it to Pi�1: This process can clearly be repeated, until a

eventually arrives at P1 as required. This establishes the first part of (i). For
the second part, observe that, as both P1 and P1,fag are 3-separating,
we have fclðP1Þ ¼ fclðP1,fagÞ: Similarly, fclðPi � fagÞ ¼ fclðPiÞ: The rest of (i)
follows from these observations. Consider (ii). By a single Type-2 move, we can
add fa; bg to Pi�1 and delete the petal Pi: But, now we can apply (i) to move a to the
petal P1: &

We call a move of the type described in Lemma 5.6(i) a Type-1a move and a move
of the type described in Lemma 5.6(ii) a Type-2a move.

Lemma 5.7. Let F ¼ ðP1;P2;y;PnÞ be a flower of order at least 3. Then F is move-

equivalent to a tight flower.

Proof. Assume that F is not tight having Pn; say, as a loose petal. We show that,
using only Types-1a and 2a moves, we can transform F to a move-equivalent
flower with fewer petals. Neither of these moves increases the number of petals, so if,
at any stage, we have the opportunity to use a Type-2a move, then we have
reduced the number of petals. Assume that we never have the opportunity to use
such a move.

We now describe a sequence of flowers obtained by using only Type-1a moves. By

a sequence of such moves, we may add elements to P1 to obtain the flower F1 ¼
ðP1

1;P1
2;y;P1

nÞ; where P1
1 ¼ fclðP1Þ and P1

i ¼ Pi � fclðP1Þ for all i41: Also, by

Lemma 5.6(i), fclðPi
1Þ ¼ fclðPiÞ: Now repeat this process with successive petals. After

k iterations, we will have a flower Fk with the following properties: Fk is equivalent
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to F; for each i; fclðPk
i Þ ¼ fclðPiÞ; and Pk

n ¼ Pn � ðfclðP1Þ,fclðP1
2Þ,?,fclðPi�1

i ÞÞ:
Thus Pk

n ¼ Pn � ðfclðP1Þ,fclðP2Þ,?,fclðPiÞÞ: In particular, after n � 1 iterations,

we have

Pn�1
n ¼ Pn � ðfclðP1Þ,fclðP2Þ,?,fclðPn�1ÞÞ:

But, as Pn is loose, the above set is empty so that Fn�1 is not a well-defined flower.
This contradiction shows that F is move-equivalent to a flower with fewer petals.
The result now follows easily. &

Lemma 5.8. Let F ¼ ðP1;P2;y;PnÞ be a flower of order at least 3, and let T be the

set of tight elements of F:

(i) If F0 is move-equivalent to F; then there is a bijection a between the tight petals of

F and those of F0 such that P-T ¼ aðPÞ-T for every tight petal P of F:
(ii) If P is a petal of F; then jP-T ja1:
(iii) If P is a tight petal of F; then fclðP-TÞ ¼ fclðPÞ:

Proof. Part (i) is easily seen to hold if F0 is obtained from F by a single elementary
move. Thus it holds if F0 is obtained by a sequence of such moves. Consider (ii). We
prove that a tight petal contains at least two tight elements. By (i) and Lemma 5.7,
we lose no generality in assuming that F is a tight flower. From this, it follows that if
we perform a sequence of moves of Type 1a or Type 2a, we will never have the
opportunity to perform a move of Type 2a, as this decreases the number of petals.
To complete the proof of (ii), it suffices to show that jPn-T jX2: Perform the
sequence of moves on F as described in the proof of Lemma 5.7. In this case, Fn�1 is
a well-defined flower and it is tight. Moreover,

Pn�1
n ¼ Pn � ðfclðP1Þ,fclðP2Þ,?,fclðPn�1ÞÞ ¼ Pn-T :

Since Fn�1 is a well-defined flower, jPn�1
n jX2 so Pn meets T in at least two elements.

This establishes (ii).
Consider (iii). Reversing the moves used in (ii) gives a sequence of elementary

moves that transforms Fn�1 to F: If, for some i; an element is added to Pi
n in going

from Fi to Fi�1; then that element is in clð
ÞðPi
nÞ: It follows that PnDfclðPn-TÞ:

Hence fclðPnÞDfclðPn-TÞ: Thus (iii) holds when P ¼ Pn and, by symmetry, it holds
in general. &

The proof of the next lemma uses Lemmas 5.5(ii), 5.6, and 5.8 within a
straightforward induction argument. We omit the details.

Lemma 5.9. Let F ¼ ðP1;P2;y;PnÞ be a tight flower of order at least 3.

(i) If 1pjpn � 2; then

fclðP1,P2,?,PjÞ � ðP1,P2,?,PjÞDðfclðP1Þ � P1Þ,ðfclðPjÞ � PjÞ
and every element of ðfclðP1Þ � P1Þ,ðfclðPjÞ � PjÞ is loose.
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(ii) If 2pjpn � 1; then P1,P2,?,Pj is a non-sequential 3-separating set. If, in

addition, jpn � 2; then ðP1,P2,?,Pj;Pjþ1,Pjþ2,?,PnÞ is a non-

sequential 3-separation.

At last, we can prove the main result of this section.

Proof of Theorem 5.1. By Lemma 5.3, two flowers are equivalent if one can be
obtained from the other by a sequence of elementary moves. To prove the converse,
let F ¼ ðP1;P2;y;PnÞ and C ¼ ðO1;O2;y;OmÞ be equivalent flowers of order at
least 3. By Lemma 5.7, we may assume that F and C are both tight flowers. We may
also assume that F has at least as many petals as C: Let T be the set of tight elements
of F:

Assume that F has at least four petals. Let s and t be tight elements of F that are in
different petals of F: Then there is a consecutive pair of petals Pi and Piþ1 of F such
that sAPi,Piþ1 and tAE � ðPi,Piþ1Þ: By Lemma 5.9, tefclðPi,Piþ1Þ and
sefclðE � ðPi,Piþ1ÞÞ: Thus, if ðS;TÞ is a 3-separation equivalent to ðPi,Piþ1;E �
ðPi,Piþ1ÞÞ and sAS; then tAT : But C displays some 3-separation equivalent to
ðPi,Piþ1;E � ðPi,Piþ1ÞÞ: This shows that s and t are in different petals of C: It
follows that C has n petals and there is a bijection a between the petals of F and
those of C such that aðPiÞ-T ¼ Pi-T : Moreover, we may assume that the petals of
C are labelled so that Pi-T ¼ Oi-T : This is immediate if C is an anemone while, if
C is a daisy, it follows from the fact that a union of two petals is 3-separating if and
only if the petals are consecutive, so consecutive petals in F must map to consecutive
petals in C:

Assume that F has three petals. Then, since F has at least as many petals as C and
C has order at least 3, C also has three petals. Also F must have at least two petals
that are non-sequential regarded as 3-separating sets; otherwise F displays at most
one non-sequential 3-separation contradicting the fact that it has order 3. Assume,
without loss of generality, that P1 and P2 are not sequential although P3 may be

sequential. By using elementary moves, we may also assume that fclðP1Þ-P3 ¼
fclðP2Þ-P3 ¼ |: This is because ðP1;P2;P3Þ is move-equivalent to ðfclðP1Þ;P2 �
fclðP1Þ;P3 � fclðP1ÞÞ which, in turn, is move-equivalent to ðfclðP1Þ; ðP2 �
fclðP1ÞÞ,ðP3-fclðP2 � fclðP1ÞÞÞ;P3 � fclðP1Þ � fclðP2 � fclðP1ÞÞÞ: We may further
assume that C ¼ ðO1;O2;O3Þ; where fclðOiÞ ¼ fclðPiÞ for i in f1; 2g and

fclðO1Þ-O3 ¼ fclðO2Þ-O3 ¼ |: Say that s is a tight element of F: Assume that
sAP1: Since s is tight, sefclðP2Þ: Assume that seO1: Then, since fclðO1Þ ¼ fclðP1Þ;
we have sAfclðO1Þ; so sAO2: But fclðO2Þ ¼ fclðP2Þ contradicting the fact that
sefclðP2Þ: This proves that sAO1: The same argument shows that if sAP2; then
sAO2: Assume that sAP3: Then sefclðP1Þ by assumption, so seO1: Similarly, seO2:
Hence sAO3: Therefore, in this case too, we have Pi-T ¼ Oi-T for all i:
Moreover, it is easily seen that every element of T is tight in C: By reversing the
roles of F and C in the argument above, we conclude that T is the set of tight
elements of C:

Now consider P1 and O1: By Lemma 5.8(iii), fclðP1Þ ¼ fclðP1-TÞ; and fclðO1Þ ¼
fclðO1-TÞ: Hence fclðP1Þ ¼ fclðO1Þ: But, we can now use elementary moves to
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transform F and C into equivalent flowers F1 ¼ ðP1
1;P1

2;y;P1
nÞ and C1 ¼

ðO1
1;O1

2;y;O1
nÞ; where O1

1 ¼ P1
1 and if iX2; then O1

i -T ¼ P1
i -T : Arguing

inductively, assume that we have transformed F and C into equivalent flowers Fk ¼
ðPk

1 ;Pk
2 ;y;Pk

nÞ and Ck ¼ ðOk
1 ;Ok

2 ;y;Ok
nÞ for some kpn � 1; where Ok

i ¼ Pk
i for

ipk; and Ok
i -T ¼ Pk

i -T otherwise. Then fclðPk
kþ1Þ ¼ fclðOk

kþ1Þ; so that we can use

elementary moves to transform Fk and Ck into equivalent flowers Fkþ1 and Ckþ1

such that if ipk þ 1; then Pkþ1
i ¼ Okþ1

i and, otherwise, Pkþ1
i -T ¼ Okþ1

i -T :
Finally, we have Fn ¼ Cn: Now F is move-equivalent to Fn; and C is move-
equivalent to Cn: Since move-equivalence is an equivalence relation, this proves that
F is move-equivalent to C: &

Finally, we note some corollaries of results in this section. We omit the routine
proofs.

Corollary 5.10. If F is a flower, then the order of F is the number of petals in any tight

flower equivalent to F:

Corollary 5.11. If F and F0 are equivalent tight flowers of order at least 2, then F can

be transformed to F0 by a sequence of moves of Type 0 and Type 2a.

Corollary 5.12. If F ¼ ðP1;P2;y;PnÞ is a tight flower, and P1
0 is a 3-separating set

that contains and is equivalent to P1; then ðP1
0;P2 � P1

0;y;Pn � P1
0Þ is a tight flower

equivalent to F: In particular, this holds when P1
0AfclðP1Þ; cl
ðP1Þ; fclðP1Þg:

6. Flower types and equivalence

It would seem clear that equivalent flowers should have the same type. But, for
flowers of order less than 3, this is not the case. In this section, we seek to show that
flower equivalence preserves type for flowers of order at least three. But, for this to
be possible, we need to clarify the status of unresolved flowers. Before doing that, we
deal with the Vámos-like case, which is quite special.

Theorem 6.1. Let F be a Vámos-like flower. Then F has no loose elements. Hence any

flower equivalent to F is equal to F up to a permutation of the petals.

Proof. Assume that F ¼ ðP1;P2;P3;P4Þ: Then, by the definition of a Vámos-like

flower, UðPi;Piþ1Þ ¼ 1 for all i: Moreover, we may assume that UðP1;P3Þ ¼ 0; while

UðP2;P4Þ ¼ 1: Note that ðP1;P4;P3;P2Þ is an equivalent Vámos-like flower. In what
follows, we take advantage of this symmetry. Assume that F has a loose element e:
Then, by duality, we may assume that eAclðPiÞ � Pi for some petal Pi: Up to
symmetry, there are two cases. For the first, assume that eAclðP1Þ � P1: As
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UðP1;P3Þ ¼ 0; it follows from Lemma 2.5 that eeP3: Hence, by symmetry, we may
assume that eAP2: Thus

eAclðP1Þ and eAclðP2Þ: ð3Þ

For the second case, we may assume that eAclðP2Þ � P2: If eAP1; then (3) holds,
while, if eAP3; then (3) holds up to symmetry. Say eAP4: Then eAclðP4,P1Þ and
eAclðP1,P2Þ: By Lemma 4.12, these two flats form a modular pair whose
intersection is spanned by P1: Hence eAclðP1Þ: Thus, in all cases, we may assume
that (3) holds.

By (3), eAclðP1,P4Þ and eAclðP2,P4Þ: While it does not follow from Lemma
4.12 that clðP1,P4Þ and clðP2,P4Þ are a modular pair of flats, this is still true. To
see this, observe that

rðMÞ ¼ rðP1,P2Þ þ rðP3,P4Þ � 2

¼ rðP1Þ þ rðP2Þ þ rðP3Þ þ rðP4Þ � 4:

Also, rðMÞ ¼ rðP1,P2,P4Þ þ rðP3Þ � 2: So

rðP1,P2,P4Þ ¼ rðP1Þ þ rðP2Þ þ rðP4Þ � 2:

But

rðP1,P4Þ þ rðP2,P4Þ ¼ rðP1Þ þ rðP2Þ þ 2rðP4Þ � 2:

Hence rðP1,P4Þ þ rðP2,P4Þ ¼ rðP1,P2,P4Þ þ rðP4Þ; so clðP1,P4Þ and
clðP2,P4Þ are a modular pair of flats whose intersection is spanned by P4: Thus
eAclðP4Þ:

We now know that eAclðP2,P3Þ; and eAclðP3,P4Þ; and we can apply Lemma
4.12 to deduce that eAclðP3Þ: We conclude that eAclðP1Þ and eAclðP3Þ; contra-

dicting the fact that UðP1;P3Þ ¼ 0: &

The last theorem enables us to verify that Vámos-like flowers do not occur in
representable matroids.

Corollary 6.2. If F is a Vámos-like flower in a matroid M; then M is not representable

over any field.

Proof. Let F ¼ ðP1;P2;P3;P4Þ and UðP1;P3Þ ¼ 1: Assume that M is representable
over some field F : Then we can view M as a restriction of the vector space

VðrðMÞ;FÞ: As UðP1;P3Þ ¼ 1; the subspaces of VðrðMÞ;FÞ spanned by P1 and P3

meet in a rank-one subspace, V1: By the last theorem, F has no loose elements so no
element of V1 is in M: Let M 0 be the matroid that is obtained by extending M by a
non-zero vector e from V1: Then ðP1,feg;P2;P3;P4Þ is a Vámos-like flower in M 0

and e is loose, contradicting the last theorem. &

Lemma 6.3. Let F ¼ ðP1;P2;P3Þ be an unresolved flower. Assume that F has an

element eAclðP1Þ-clðP2Þ-clðP3Þ: Then e is loose and F has at most one other loose
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element. Moreover, if F has a second loose element f ; then

fAcl
ðP1Þ-cl
ðP2Þ-cl
ðP3Þ:

Proof. By Lemma 2.5 and Proposition 4.2,

\3

i¼1

clðPiÞ
�����

�����p1 and
\3

i¼1

cl
ðPiÞ
�����

�����p1: ð4Þ

6.3.1. If there is a loose element g different from e; then there is a loose element f that

is different from e and is in cl
ðPiÞ � Pi for some i:

Subproof. Suppose that 6.3.1 fails. Then the presence of a second loose element
means that there is an element z different from e such that, to within relabelling of
the petals, P1; P1,feg; and P1,fe; zg are 3-separating where fe; zgDP2,P3:

Let f j; kg ¼ f2; 3g and suppose that eAPj and jPjj ¼ 2: Let Pj � feg ¼ fxg: Then

Pk,fxg is 3-separating, so xAclð
ÞðPkÞ � Pk: As UðPj;PkÞ ¼ 1; the unique element

of clðPjÞ-clðPkÞ is e; so xeclðPkÞ: Hence xAcl
ðPkÞ � Pk and 6.3.1 holds. Thus, we

may assume that the petal containing e has at least three elements.
Without loss of generality, assume that zAP2: From the last paragraph, jP3 �

fegjX2: Moreover, it is easily seen that eAclðP3 � fegÞ: Thus eAclððP3,P2Þ �
fe; zgÞ; so ðP3,P2Þ � fzg and its complement, P1,fzg; are 3-separating. Hence

zAclð
ÞðP1Þ: It follows, as in the last paragraph, that zeclðP1Þ so
zAcl
ðP1Þ � P1: &

We now show that, when there is a loose element f satisfying the conclusion
of 6.3.1, fAcl
ðP1Þ-cl
ðP2Þ-cl
ðP3Þ: Without loss of generality, fAcl
ðP1Þ � P1

and fAP2: We need to show that fAcl
ðP3Þ: Assume this is not the case. Let
M 0 ¼ M=e; and, for iAf1; 2; 3g; set Pi

0 ¼ Pi � feg: As fecl
ðP3Þ; it follows
that f is not a coloop of MjðP1,P2Þ; so f is not a coloop of M 0jðP1

0,P2
0Þ:

As fAcl
ðP1Þ; we see that f is a coloop of MjðP2,P3Þ and hence of MjP2:
But eAclðP3Þ; so f is a coloop of MjðP2,P3,fegÞ: Thus, f is a coloop

of M 0jðP2
0,P3

0Þ and hence f is a coloop of M 0jP2
0: But, since UðP1;P2Þ ¼ 1 and

eAclðP1Þ-clðP2Þ; we have UM 0 ðP1
0;P2

0Þ ¼ 0: From this, it follows easily that f is a
coloop of M 0jðP1

0,P2
0Þ: This contradiction implies that fAcl
ðP3Þ and the lemma

follows by (4). &

Now let F ¼ ðP1;P2;P3Þ be an unresolved flower. If F has no loose elements, then
it can be viewed equally as well as spike-like or swirl-like. We shall call such a flower
ambiguous. If F has an element e such that either eAclðP1Þ-clðP2Þ-clðP3Þ or
eAcl
ðP1Þ-cl
ðP2Þ-cl
ðP3Þ; then F is spike-like. If F has at least one loose element
and is not spike-like, then it is swirl-like.

Lemma 6.4. Assume that F is an anemone with at least four petals.

(i) If aAclðPkÞ � Pk for some petal Pk; then aAclðPiÞ for each petal Pi of F:
(ii) If aAcl
ðPkÞ � Pk for some petal Pk; then aAcl
ðPiÞ for each petal Pi of F:
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Proof. Without loss of generality, we may assume that aAclðP1Þ � P1 and
that aAP3: The result will follow if we can show that aAclðP2Þ: Now
aAclðP1Þ; so aAclðP1,P2Þ: Moreover, aePn as nX4: It follows immediately
from Lemma 5.5 that aAclðP2Þ as required. This establishes (i). Part (ii) is the
dual of (i). &

Theorem 6.5. Let F be a flower of order at least 3. Then every flower equivalent to F
has the same type as F:

Proof. Let F ¼ ðP1;P2;y;PnÞ and assume that F0 is obtained from F by
performing a single elementary move. We show that F and F0 have the same type.
This is clearly the case after a Type-0 move. Say F0 is obtained by a Type-1 move. By
duality, we may assume that F0 ¼ ðP1,feg;P2 � feg;P3;y;PnÞ; where

eAP2-clðP1Þ and jP2jX3: Then UðP1;P3Þ ¼ UðP1,feg;P3Þ: If F has at least four
petals, this shows that the local connectivity between non-adjacent petals is the same

in both flowers. Also, UðP3;P4Þ is the local connectivity between adjacent petals in
both flowers. By Theorem 6.1, F is not a Vámos-like flower. Hence, by Lemma 4.11,
F and F0 have the same type.

Assume that F has three petals. As UðP1;P3Þ ¼ UðP1,feg;P3Þ; it follows by
Theorem 5.1 and Lemma 5.3 that F and F0 have the same type unless one is spike-
like and the other is swirl-like. In this case, since the inverse of a Type-1 move is a
Type-1 move, we may assume that F is spike-like. But it is easily seen that eAclðP2 �
fegÞ so, by the last lemma, e is in the closure of each petal of F0: Hence, by the
definition of a spike-like 3-petal flower, F0 is also spike-like.

Since the inverse of a Type-2 move is a Type-3 move, it only remains to consider
Type-2 moves. Say that F ¼ ðP1; fe; f g;P3;y;PnÞ; and that F0 ¼
ðP1,fe; f g;P3;y;PnÞ where eAclð
ÞðP1Þ; and fAclð
ÞðP1,fegÞ: Since F has order
at least 3, we have nX4: Again it follows easily from Lemma 4.11 that F and F0 have
the same type unless n ¼ 4 and one of F and F0 is spike-like and the other is swirl-
like.

Consider the exceptional case and assume that F0 is spike-like. Then, by Lemma
6.3, either e or f is in the closure of each petal. Thus, we may assume that eAclðP3Þ:
But then Uðfe; f g;P3Þ40; so F is not swirl-like and hence must be spike-like.
Assume that F is spike-like and assume, by taking the dual if necessary, that
eAclðP1Þ: Then, by Lemma 6.4, eAclðP4Þ and eAclðP3Þ: It now follows from the
definition of a spike-like 3-petal flower that F0 is spike-like. &

The last theorem fails for flowers of order 2. For example, consider the
cycle matroid of the graph G in Fig. 3. Let ðA;B;X ;Y ;ZÞ be the partition
of EðGÞ indicated in the diagram. Then ðA,Y,Z;X ;BÞ is a paddle while
ðA;Z;Y ;B,X Þ is a swirl-like flower. Both of these flowers are equivalent to
the tight flower ðA;B,X,Y,ZÞ: It is not difficult to see how to modify this
example to obtain numerous other examples of flowers of order 2 for which the
theorem fails.
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7. More flower structure

In this section, we give a structural description of equivalent flowers. We focus on
tight flowers. The extension to general flowers is easy but somewhat messy to
describe and we omit it.

Theorem 7.1. Let M be a 3-connected matroid and let F be a tight flower of M

of order nX3 that is a paddle, a copaddle, or is spike-like. Let T and L denote

the sets of tight and loose elements of F; respectively. For each petal Pi of F; let

Ti ¼ Pi-T :

(i) If F is a paddle, then L is a segment, and LDclðTiÞ for each iAf1; 2;y; ng;
(ii) if F is a copaddle, then L is a cosegment, and LDcl
ðTiÞ for each iAf1; 2;y; ng;

and

(iii) if F is spike-like, then jLjp2: If L contains a single element, then that element is

either in the closure of Ti for each i; or is in the coclosure of Ti for each i: If

jLj ¼ 2; then one member of L is contained in the closure of each Ti; while the

other member is contained in the coclosure of each Ti:

Moreover, up to arbitrary permutations of the petals, the tight flowers equivalent to F
are precisely the partitions of EðMÞ of the form

ðT1,L1;T2,L2;y;Tn,LnÞ;

where ðL1;L2;y;LnÞ is a partition of L:

The next two lemmas build towards the proof of Theorem 7.1.

Lemma 7.2. Let F ¼ ðP1;P2;y;PnÞ be a flower with nX3:

(i) If F is a paddle, then each petal of F is coclosed.
(ii) If F is a copaddle, then each petal of F is closed.
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Proof. Consider (i). Let F be a paddle. We show that P1 is coclosed. Assume not; say
fAcl
ðP1Þ � P1: Then, as ðP1;P2,P3,?,PnÞ is a 3-separation, it follows from

Lemma 3.4(ii) that UðP1; ðP2,P3,?,PnÞ � f f gÞ ¼ 1: Since F has at least three
petals, fePj for some jAf2;y; ng: Then

UðP1;PjÞpUðP1; ðP2,P3,?,PnÞ � f f gÞ ¼ 1:

But, by the definition of a paddle, UðP1;PjÞ ¼ 2: Part (i) follows from this

contradiction; (ii) is the dual of (i). &

Lemma 7.3. Let F ¼ ðP1;P2;y;PnÞ be a tight flower with at least 3 petals.

(i) If F is a paddle, then fclðPiÞ ¼ clðPiÞ for each petal Pi of F:
(ii) If F is a copaddle, then fclðPiÞ ¼ cl
ðPiÞ for each petal Pi of F:

Proof. Say that F is a paddle. Consider P1: By Corollary 5.12, ðclðP1Þ;P2 �
clðP1Þ;y;Pn � clðP1ÞÞ is a paddle equivalent to F: But clðP1Þ is certainly closed and,
by Lemma 7.2, it is coclosed. Hence, it is fully closed. This proves (i). Again, (ii) is
the dual of (i). &

Proof of Theorem 7.1. Let F be a tight flower of order at least 3 that is a paddle, a
copaddle, or is spike-like. Assume that F is a paddle and that x is loose. We shall
show first that xAclðPiÞ for all i: By Lemma 7.3, xAclðPjÞ for some j and so, by

Lemma 6.4, when F has at least four petals, xAclðPiÞ for all i: Consider the case

when F has three petals. We may assume that xAclðP1Þ-P2: Since UðPk;Pkþ1Þ ¼ 2
for all k; an elementary rank argument shows that clðP1,P3Þ and clðP2,P3Þ are a
modular pair of flats whose intersection is spanned by P3: Thus xAclðP3Þ and so
xAclðPiÞ for all i: We conclude that, when F is a paddle, LDclðPiÞ for all i: Since

UðP1;P2Þ ¼ 2; we have rðclðP1Þ-clðP2ÞÞp2: Hence L is a segment. Moreover, since
LDclðP1Þ and clðP1Þ-PnDL; we deduce that Pn � clðP1Þ ¼ Tn: As ðclðP1Þ;P2 �
clðP1Þ;y;Pn � clðP1ÞÞ is a paddle equivalent to F having Tn as a petal, it follows
that LDclðTnÞ: By symmetry, LDclðTiÞ for all i: This proves (i); part (ii) follows by
duality.

Assume that F is spike-like. If F has three petals, then (iii) follows by Lemma 6.3.
Assume that F has at least four petals. By Lemma 6.4, every element of

S
i ðclðPiÞ �

PiÞ is in clðP1Þ-clðP2Þ: But, by the definition of a spike-like flower, UðP1;P2Þ ¼ 1 so,
by Lemma 2.5, j

S
i ðclðPiÞ � PiÞjp1: Dually, j

S
i ðcl


ðPiÞ � PiÞjp1: Let L0 be the

union of
S

i ðclðPiÞ � PiÞ and
S

i ðcl

ðPiÞ � PiÞ: Then jL0jp2 and L0DL:

We now show that L0 ¼ L: By Corollary 5.12 and Theorem 6.5, F0 ¼
ðP1,L0;P2 � L0;y;Pn � L0Þ is a spike-like flower equivalent to F: Say that
P1,L0 is not fully closed. Then, up to duality, there is an element xAclðP1,L0Þ �
ðP1,L0Þ: Without loss of generality, xeP2: As F0 is an anemone with at least four
petals, it follows, from Lemma 6.4, that xAclðP2 � L0Þ; so xAclðP2Þ � P2: This
contradicts the fact that clðP2Þ � P2DL0: Thus P1,L0 is fully closed. Hence
fclðP1Þ � P1DfclðP1,L0Þ � P1 ¼ ðP1,L0Þ � P1DL0: By symmetry, we deduce that
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LDL0 and so L0 ¼ L: Part (iii) of the theorem now follows routinely and the details
are omitted.

To complete the proof, let F be a tight flower of order nX3 that is a paddle, a
copaddle, or is spike-like. From above, clðP1Þ,cl
ðP1Þ contains L: Thus, by
Corollary 5.12, ðP1,L;P2 � L;y;Pn � LÞ is equivalent to F: Moreover, for every

i41 and every lAL; we have lAclð
ÞðPi � LÞ: Hence we may arbitrarily distribute the
members of L amongst the petals of F: This shows that every flower of the form
described in the statement of the theorem must be equivalent to F: Moreover, as this
structure is clearly preserved under Type-2a moves, it follows, from Lemma 5.11,
that every tight flower equivalent to F is of this form. &

We now consider the swirl-like case. If F ¼ ð f1; f2;y; fnÞ is a fan, and
i; jAf1; 2;y; ng; then we will say that f f1; f2;y; fig is an initial section of F ; and
that f fj; fjþ1;y; fng is a terminal section of F :

Theorem 7.4. In a matroid M; let F ¼ ðP1;P2;y;PnÞ be a tight swirl-like flower of

order at least 3 with set T of tight elements and L of loose elements. Let Ti ¼ Pi-T

for all i: Then there is a partition ðF1;F2;y;FnÞ of L into fans, some of which may be

empty, with the following property: a partition ðQ1;Q2;y;QnÞ of EðMÞ is a tight

swirl-like flower equivalent to F if and only if Qi ¼ F�
i�1,Ti,Fþ

i for all

iAf1; 2;y; ng; where F�
i�1 is a terminal section of Fi�1; and Fþ

i is an initial section

of Fi:

The proof of this theorem will use the next three lemmas.

Lemma 7.5. Let Pi and Pj be petals of a tight swirl-like flower F of order at least 3.

(i) jclðPiÞ-clðPjÞjp1; and, if Pi and Pj are not consecutive, then clðPiÞ-clðPjÞ ¼ |:
(ii) jcl
ðPiÞ-cl
ðPjÞjp1; and, if Pi and Pj are not consecutive, then

cl
ðPiÞ-cl
ðPjÞ ¼ |:
(iii) If clðPiÞ-Pja|; then cl
ðPiÞ-Pj ¼ |:

Proof. By the definition of a swirl-like flower, UðPi;PjÞ is 1 if Pi and Pj are

consecutive, and is 0 otherwise. Part (i) now follows from Lemma 2.5. Part (ii) is the
dual of (i). Consider (iii). Say that eAclðPiÞ-Pj: By (i), we may assume that ði; jÞ ¼
ð1; 2Þ: Assume that there is an element fAcl
ðP1Þ-P2: Then f is a coloop of M\P1;
so f is a coloop of MjP2: Now it is easily seen that eAclðP2 � fegÞ and that f is a
coloop of MjðP2 � fegÞ: Thus eAclðP2 � fe; f gÞ: By a Type-3 move, transform F
into the flower ðP1; fe; f g;P2 � fe; f g;P3;y;PngÞ: By Theorem 6.5, this flower is

swirl-like. Hence UðP1;P2 � fe; f gÞ ¼ 0: But eAclðP1Þ-ðP2 � fe; f gÞ; so, by Lemma

2.5, UðP1;P2 � fe; f gÞ40: Part (iii) follows from this contradiction. &

Lemma 7.6. In a matroid M; let F ¼ ðP1;P2;y;PnÞ be a tight swirl-like flower of

order at least 3. Then fclðP2ÞDP1,P2,P3 and there is a unique ordering
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ða1; a2;y; alÞ of the elements of P3-fclðP2Þ such that, for all iAf1; 2;y; lg; the set

P2,fa1; a2;y; aig is 3-separating.

Proof. Suppose xAclð
ÞðP2Þ � P2: Then, by Lemma 2.5, xAP1 or xAP3: We
may assume the latter. Then ðP1;P2,fxg;P3 � fxg;P4;y;PnÞ is a flower
equivalent to F: It now follows by an obvious inductive argument that
fclðP2ÞDP1,P2,P3: The elements of fclðP2Þ � P2 can be ordered ðs1; s2;y; smÞ
such that, for all iAf1; 2;y;mg; the set P2,fs1; s2;y; sig is 3-separating.
Now P2,P3 is 3-separating and F is tight so there are at least two elements of M

not contained in P2,P3,fs1; s2;y; sig: Thus, by uncrossing,
P2,ðP3-fs1; s2;y; sigÞ is 3-separating. It follows that there is an ordering
ða1; a2;y; anÞ of the elements of P3-fclðP2Þ such that P2,fa1; a2;y; aig is 3-
separating for all iAf1; 2;y; lg:

We now show that the above ordering is unique. Say that ðb1; b2;ybnÞ is another
such ordering. Let k be the least integer such that bkþ1aakþ1: Then
ðP1;P2,fa1; a2;y; akg;P3 � fa1; a2;y; akg;P4;y;PnÞ is a flower equivalent to

F: But both bkþ1 and akþ1 are in clð
ÞðP2,fa1; a2;y; akgÞ; contradicting Lemma 7.5.
Thus the ordering is, indeed, unique. &

Lemma 7.7. Let F ¼ ðP1;P2;y;PnÞ be a tight swirl-like flower of order at least 3. Let

ða1; a2;y; alÞ be the ordering of fclðP2Þ-P1 such that, for all iAf1; 2;y; lg; the set

P2,fai; aiþ1;y; alg is 3-separating, and let ðalþ1; alþ2;y; amÞ be the ordering of

fclðP1Þ-P2 such that, for all iAfl þ 1; l þ 2;y;mg; the set P1,falþ1; alþ2;y; aig is

3-separating. Then A ¼ ða1; a2;y; amÞ is a fan of M:

Proof. Consider a triple fai; aiþ1; aiþ2g of consecutive elements of A: It is
easily seen that ðP2 � AÞ,fai; aiþ1; aiþ2;y; amg and ðP1 � AÞ,fa1; a2;
y; ai; aiþ1; aiþ2g are both 3-separating. So, by uncrossing, their intersection,
fai; aiþ1; aiþ2g; is 3-separating. Thus, every consecutive triple of elements of A is 3-
separating.

If A is not a fan, then, by Lemma 2.2, jAjX4; and A is either a segment
or a cosegment. By duality, we may assume that A and hence fa1; a2; a3; a4g is a
segment. But ððP1 � AÞ,fa1; a2g;P2,ðA � fa1; a2gÞ;P3;y;PnÞ is a swirl-like
flower and both a3 and a4 are in clððP1 � AÞ,fa1; a2; gÞ contradicting
Lemma 7.5. &

Theorem 7.4 follows straightforwardly from the last three lemmas and we omit the
details.

The next corollary will be useful in the proof of the main result of the paper,
Theorem 9.1.

Corollary 7.8. Let F ¼ ðP1;P2;y;PnÞ be a tight flower. If 2pipn � 2 and ðX ;Y Þ is

a 3-separation that is equivalent to ðP1,P2,?,Pi;Piþ1,Piþ2,?,PnÞ; then

there is a tight flower equivalent to F that displays ðX ;YÞ:
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Proof. We may assume that fclðX Þ ¼ fclðP1,P2,?,PiÞ and fclðY Þ ¼
fclðPiþ1,Piþ2,?,PnÞ: Then all tight elements of P1,P2,?,Pi and
Piþ1,Piþ2,?,Pn are in X and Y ; respectively. We now argue by induction on
jX � ðP1,P2,?,PiÞj þ jY � ðPiþ1,Piþ2,?,PnÞj: The result is immediate if
this sum S is 0. Assume it holds if Sok and let S ¼ k: We may assume that xAX �
ðP1,P2,?,PiÞ: Then xAfclðP1,P2,?,PiÞ � ðP1,P2,?,PiÞ: Thus, by
Lemma 5.9, we may assume that xAfclðPiÞ � Pi:

If xAclð
ÞðPiÞ; then F is equivalent to the tight flower F0 that is obtained by
adjoining x to Pi and removing it from its original petal. In this case, the result
follows by applying the induction assumption to F0:

We may now assume that xeclð
ÞðPiÞ: Then, by Theorem 7.1, F is not a paddle,
not a copaddle, and is not spike-like. Since F has at least four petals, it follows that F
is swirl-like. Then, by Lemma 7.6, xAPiþ1 and there are elements a1; a2;y; at of
Piþ1-fclðPiÞ such that Pi,fa1; a2;y; ajg is 3-separating for all jpt; and x ¼ at: We

may assume that none of a1; a2;y; at�1 is in X otherwise we replace x by the first
such element. By uncrossing, both X-Pi and ðX-PiÞ,fxg are exactly 3-

separating. Hence xAclð
ÞðPiÞ; a contradiction. &

8. Maximal flowers

A flower F is maximal if F is equivalent to F0 whenever F%F0: Let ðX ;Y Þ be a 3-
separation of M: We say that ðX ;Y Þ conforms to the flower F if either ðX ;YÞ is
equivalent to a 3-separation that is displayed by F or ðX ;Y Þ is equivalent to a 3-
separation ðX 0;Y 0Þ with the property that either X 0 or Y 0 is contained in a petal of F:

The goal of this section is to prove the following theorem which is a key result for
this paper.

Theorem 8.1. Let M be a matroid with at least 9 elements and let F be a tight maximal

flower in M: Then every non-sequential 3-separation of M conforms with F:

The flower F is a refinement of the flower F0 if the underlying partition of EðMÞ
for F refines that of F0: Evidently, if F is a refinement of F0; then F0

%F: A partition

ðX ;Y Þ of EðMÞ crosses the petal P if P-Xa| and P-Ya|:

Lemma 8.2. Let F ¼ ðP1;P2;y;PnÞ be a flower of a matroid M and let ðR;GÞ be a 3-
separation of M such that:

(i) neither R nor G is contained in a petal of F; and

(ii) if ðR;GÞ crosses a petal P; then jP-Rj; jP-GjX2:

Then there is a flower that refines F and displays ðR;GÞ:

Proof. The lemma holds trivially if n ¼ 1: If n ¼ 2; then, by Lemma 4.11(i),
ðP1-G;P1-R;P2-R;P2-GÞ is the desired flower. Say nX3: If ðR;GÞ does not
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cross any petal, then ðR;GÞ is displayed by F: Thus assume that ðR;GÞ crosses a
petal, say P1: Set P3

0 ¼ P3,P4,?,Pn:

8.2.1. Up to switching G and R; both jP2-Rj and jP3
0-Gj exceed 1.

Subproof. If ðR;GÞ crosses P2; then, up to switching G and R; we have jP3
0-GjX2

and, by (ii), jP2-RjX2: We may now assume that ðR;GÞ does not cross P2: Then,
up to switching G and R; we have P2DR: But then, by (i), P3

0 must have at least one
green element and, by (ii), it must have at least two such elements, so again
jP2-Rj; jP3

0-GjX2: &

Assume that labels are chosen so that jP2-Rj; jP3
0-GjX2: Then

8.2.2. F0 ¼ ðP1-G;P1-R;P2;y;PnÞ is a flower.

Subproof. Evidently, F0 has at least four petals. So, by Lemma 4.11(i), it suffices to
show that the union of all but one consecutive pair of petals is 3-separating. We
know that ðP1-GÞ,ðP1-RÞ ¼ P1 is 3-separating. Thus it suffices to show that
ðP1-RÞ,P2 is 3-separating. Since jP3

0-GjX2; the set R,ðP1,P2Þ avoids at least
two members of G; so, by uncrossing, R-ðP1,P2Þ is 3-separating. But
ðR-ðP1,P2ÞÞ-P2; which equals P2-R; contains at least two members of R so,
by uncrossing, ðR-ðP1,P2ÞÞ,P2; which equals ðP1-RÞ,P2; is 3-separating, as
required. &

It now follows from 8.2.2 and an induction on the number of petals crossed by
ðR;GÞ that there is a flower that refines F and displays ðR;GÞ: &

Proof of Theorem 8.1. Let F ¼ ðP1;P2;y;PnÞ: Assume that the theorem fails, and
that ðX ;YÞ is a non-sequential 3-separation that does not conform with F: Let
ðR;GÞ be a 3-separation equivalent to ðX ;YÞ with the property that it crosses a
minimum number of petals. Since ðR;GÞ is non-sequential, jRj; jGjX4:

8.1.1. If jR-Pij ¼ 1; then jG-Pij ¼ 1:

Subproof. Say R-Pi ¼ feg and jG-PijX2: Then, by uncrossing, G,Pi is 3-
separating. But G,Pi ¼ G,feg; so ðR � feg;G,fegÞ is a 3-separation that is
equivalent to ðR;GÞ: But ðR � feg;G,fegÞ crosses fewer petals that ðR;GÞ;
contradicting the choice of ðR;GÞ: &

8.1.2. There is no petal Pi with jR-Pij ¼ 1:

Subproof. Assume that jR-P1j ¼ 1; say R-P1 ¼ feg: By 8.1.1, jG-P1j ¼ 1:
Certainly F has at least two petals. If F has two petals, then F displays no non-
sequential 3-separation, so F is equivalent to the trivial flower and is therefore not
tight. We may now assume that F has at least three petals. We shall define a partition
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ðPþ;P�Þ of EðMÞ � P1 into 3-separating sets Pþ and P� such that

Pþ,P1 is 3-separating; jP�jX3; and jR-PþjX2 or jG-PþjX2: ð5Þ

Assume first that F has exactly three petals. If jP2j ¼ 2; then F displays at most
one non-sequential 3-separation, contradicting the fact that F is tight. Thus

jP2j; jP3jX3: In this case, set Pþ ¼ P2 and P� ¼ P3: Clearly, (5) holds. Next, assume
that F has four petals. Then, since jEðMÞj48; one of the petals of F has at least 3
elements. This means that we can assume that, amongst 2-element crossed petals, P1

is chosen so that jP2-RjX2 or jP2-GjX2: In this case, set Pþ ¼ P2 and P� ¼
P3,P4: Again (5) holds. Finally, if F has at least five petals, set Pþ ¼ P2,P3; and
P� ¼ P4,P5,?,Pn: Then (5) holds in this case too and so holds in general.

Next we assert that we may assume, by possibly interchanging R and G; that

jPþ-RjX2 and jP�-GjX2: ð6Þ

By (3), jPþ-RjX2 or jPþ-GjX2: If both of the last two inequalities hold, then (6)

follows from the fact that both R and G meet Pþ,P� in at least 3 elements. If

exactly one of the last two inequalities holds, say jPþ-RjX2; then jPþ-Gjp1 so
jP�-GjX2 and again (6) holds.

As ðPþ,P1Þ,R avoids P�-G; it follows by uncrossing that ðPþ,P1Þ-R; which

equals ðPþ-RÞ,feg; is 3-separating. Another uncrossing argument shows that

Pþ-R is 3-separating and, as this set has at least two elements, we see that

eAclð
ÞðPþ-RÞ and hence eAclð
ÞðPþÞ: But Pþ is a union of at most n � 2
consecutive petals so, by Lemma 5.9, e is loose in F: Thus P1 contains at most one
tight element. But F is tight and has at least three petals, so F has order at least 3.
Hence, by Lemma 5.8, P1 contains at least two tight elements. The sublemma follows
from this contradiction. &

From 8.1.2, we see that ðR;GÞ satisfies the hypotheses of Lemma 8.2. Thus, by
that lemma, there is a flower that refines F and displays ðR;GÞ contradicting the fact
that F is maximal. &

The requirement that M has at least 9 elements is essential in the last theorem. For
example, let R8 be the 8-element rank-4 that is represented geometrically by a cube in
3–space (see Fig. 4). Let F ¼ ðf1; 2g; f3; 4g; f5; 6g; f7; 8gÞ: Then F is a tight maximal
flower. However, the non-sequential 3-separation ðf1; 3; 5; 7g; f2; 4; 6; 8gÞ does not
conform with F: Evidently, we can relax certain circuit-hyperplanes in R8 to obtain
other 8-element matroids for which the theorem fails.

9. Partial 3-trees

Let p be a partition of a finite set E: Let T be a tree such that every member of p
labels a vertex of T ; some vertices may be unlabelled and no vertex is multiply
labelled. We say that T is a p-labelled tree; labelled vertices are called bag vertices

and members of p are called bags.
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Let T 0 be a subtree of T : The union of those bags that label vertices of T 0

is the subset of E displayed by T 0: Let e be an edge of T : The partition of E displayed

by e is the partition displayed by the components of T\e: Let v be a vertex that
is not a bag vertex. Then the partition of E displayed by v is the partition dis-
played by the components of T � v: The edges incident with v are in natural
one-to-one correspondence with the components of T � v; and hence with the
members of the partition displayed by v: In what follows, if a cyclic ordering
ðe1; e2;y; enÞ is imposed on the edges incident with v; this cyclic ordering is taken to
represent the corresponding cyclic ordering on the members of the partition
displayed by v:

Let M be a 3-connected matroid with ground set E: An almost partial 3-tree T for
M is a p-labelled tree, where p is a partition of E such that the following conditions
hold:

(i) For each edge e of T ; the partition ðX ;Y Þ of E displayed by e is 3-separating,
and, if e is incident with two bag vertices, then ðX ;YÞ is a non-sequential 3-
separation.

(ii) Every non-bag vertex v is labelled either D or A: Moreover, if v is labelled D;
then there is a cyclic ordering on the edges incident with v:

(iii) If a vertex v is labelled A; then the partition of E displayed by v is a tight
maximal anemone of order at least 3.

(iv) If a vertex v is labelled D; then the partition of E displayed by v; with the cyclic
order induced by the cyclic ordering on the edges incident with v; is a tight
maximal daisy of order at least 3.

By conditions (iii) and (iv), a vertex v labelled D or A corresponds to a flower of M:
The 3-separations displayed by this flower are the 3-separations displayed by v: A
vertex of a partial 3-tree is referred to as a daisy vertex or an anemone vertex if it is
labelled D or A; respectively. A vertex labelled either D or A is a flower vertex. A 3-
separation is displayed by an almost partial 3-tree T if it is displayed by some edge or
some flower vertex of T :

A 3-separation ðR;GÞ of M conforms with an almost partial 3-tree T if either
ðR;GÞ is equivalent to a 3-separation that is displayed by a flower vertex or an edge
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Fig. 4. Theorem 8.1 fails for this matroid, R8:
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of T ; or ðR;GÞ is equivalent to a 3-separation ðR0;G0Þ with the property that either R0

or G0 is contained in a bag of T :
An almost partial 3-tree for M is a partial 3-tree if

(v) every non-sequential 3-separation of M conforms with T :

We now define a quasi-order on the set of partial 3-trees for M: Let T1 and T2 be
two partial 3-trees for M: Then T1%T2 if all of the non-sequential 3-separations
displayed by T1 are displayed by T2: If T1%T2 and T2%T1; then T1 is equivalent to
T2: A partial 3-tree is maximal if it is maximal with respect to this quasi order.

The following is the main theorem of the paper.

Theorem 9.1. Let M be a 3-connected matroid with jEðMÞjX9; and let T be a

maximal partial 3-tree for M: Then every non-sequential 3-separation of M is

equivalent to a 3-separation displayed by T :

Let F ¼ ðP1;P2;y;PnÞ be a flower. We associate with F a p-labelled tree T : If
n ¼ 1; then T consists of a single bag vertex labelled by P1: If n ¼ 2; then T consists
of two adjacent bag vertices labelled by P1 and P2: Assume that nX3: Then the
vertex set of T is fv; v1; v2;y; vng; where v is incident with each vi and each vi is
labelled by the bag Pi: Finally, label v by A or D according to whether F is an
anemone or daisy, respectively. In the case that n ¼ 3; we are free to label v either A

or D: We will often identify F with its associated p-labelled tree. Under this
identification, we get the following immediate consequence of Theorem 8.1.

Corollary 9.2. Tight maximal flowers of 3-connected matroids are partial 3-trees.

The next result will be useful in the proof of Theorem 9.1.

Lemma 9.3. If ðX ;E � X Þ is a non-sequential 3-separation of a 3-connected matroid

M; then there is a tight maximal flower that displays a 3-separation equivalent to

ðX ;E � X Þ:

Proof. Clearly, ðX ;E � XÞ is a tight flower F0 that displays ðX ;E � XÞ: If F0 is not
maximal, then there is a maximal flower F1kF0: Since F1 must display some non-
sequential 3-separation that is not equivalent to one displayed by F0; we must have
that F1 has order at least three. Thus, by Lemma 5.7, F1 is equivalent to a tight
maximal flower F2: As F2kF0; there is a 3-separation equivalent to ðX ;E � XÞ that
is displayed by F2: &

The next lemma contains the core of the proof of Theorem 9.1.

Lemma 9.4. Let M be a 3-connected matroid with jEðMÞjX9 and let T be a partial 3-
tree for M having at least one edge. If M has a non-sequential 3-separation ðW ;E �
WÞ that is not equivalent to any 3-separation displayed by T ; then there is a partial
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3-tree T 0 such that T 0
kT and T 0 displays some non-sequential 3-separation that is not

equivalent to any 3-separation displayed by T :

Proof. By the definition of a partial 3-tree, ðW ;E � WÞ conforms with T and so is
equivalent to a 3-separation ðX ;E � X Þ; where X is contained in a bag B of T :
Evidently, B is non-sequential. Let u be the vertex of T labelled by B: We distinguish
two cases:

(I) u is a leaf of T ; and
(II) u is not a leaf of T :

Consider Case I. In that case, ðB;E � BÞ is non-sequential. This follows from the
definition of a partial 3-tree when u is adjacent to a bag vertex, and follows from
Lemma 5.9 when u is adjacent to a flower vertex.

If B is not fully closed, then we can move the elements of fclðBÞ � B one by one out
of their current bags and into the bag B: Each step of this process produces a new
partial 3-tree equivalent to T and, at the conclusion of the process, we obtain a
partial 3-tree in which u is labelled by fclðBÞ: It follows that we may assume that B is
fully closed.

Now X is a 3-separating set that is contained in but is not equivalent to B: Let Y

be such a set whose full closure is maximal among such sets. By Lemma 9.3, there is a
tight maximal flower F that displays a 3-separation ðZ;E � ZÞ equivalent to ðY ;E �
YÞ: Since B is fully closed, ZDB:

9.4.1. There is a tight maximal flower equivalent to F that has a petal containing

E � B:

Subproof. By Theorem 8.1, ðE � B;BÞ conforms with F: Thus either

(i) E � B is equivalent to a 3-separating set Q0 contained in a petal Q of F; or
(ii) E � B is equivalent to a union of petals of F:

Consider (i). By Lemma 3.5, fclðQÞ � Z is equivalent to Q: Also fclðQÞ � Z+E �
B: So, by Corollary 5.12, there is a flower equivalent to F that displays Z such that
E � B is contained in a petal.

Now consider (ii). Let F ¼ ðQ1;Q2;y;QnÞ: Then we may assume that E � B is
equivalent to Q1,Q2,?,Qk for some kX2: As Z is displayed by F and Z is not
equivalent to B; we must have n � kX2: By Corollary 7.8 and Lemma 5.8(i),
there is a tight flower F0 ¼ ðQ1

0;Q2
0;y;Qn

0Þ equivalent to F where
ðQ1

0,Q2
0,?,Qk

0;Qkþ1
0,Qkþ2

0,?,Qn
0Þ ¼ ðE � B;BÞ: As F0 is tight,

fclðQ1
0,Qn

0Þ contains neither Qkþ1
0 nor Qk

0 and so contains neither B nor E � B:
Similarly, fclðE � ðQ1

0,Qn
0ÞÞ contains neither B nor E � B: Thus every 3-separation

equivalent to ðQ1
0,Qn

0;E � ðQ1
0,Qn

0ÞÞ crosses both B and E � B: Therefore,
ðQ1

0,Qn
0;E � ðQ1

0,Qn
0ÞÞ does not conform with T contradicting the fact that T is

a partial 3-tree. &
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By 9.4.1, we may assume that F ¼ ðP1;P2;y;PnÞ where E � BDPn and Z is some
union of consecutive petals from fP1;P2;y;Pn�1g: If n ¼ 2; then Z ¼ P1 and we
modify T to produce T 0 by adding a new vertex z adjacent to u; relabelling u by
B � Z; and labelling z by Z: If nX3; we construct T 0 from T as follows: first adjoin a
new flower vertex v adjacent to u labelling v either A or D depending upon whether F
is an anemone or a daisy, respectively; then adjoin bag vertices v1; v2;y; vn�1

adjacent to v labelling these by P1;P2;y;Pn�1; finally, relabel the vertex u by B �
ðP1,?,Pn�1Þ: To verify that T 0 is a partial 3-tree, it suffices to consider the non-
sequential 3-separations with RDB: By Theorem 8.1, such a 3-separation conforms
with F and hence with T 0 unless ðR;GÞ is equivalent to ðR0;G0Þ where R0 or G0 is
contained in Pn: Consider the exceptional case. If R0DPn; then R0DE �
ðP1,P2,?,Pn�1Þ: But fclðR0Þ ¼ fclðRÞDB; so R0DB: Hence R0DB �
ðP1,P2,?,Pn�1Þ: As the last set labels a bag of T 0; it follows, in this case,
that ðR;GÞ conforms with T 0: We may now assume that G0DPn: Then
R0+P1,P2,?,Pn�1: Moreover, we may assume that BRfclðR0ÞRfclðP1,
P2,?,Pn�1Þ otherwise ðR;GÞ is equivalent to a 3-separation displayed by T 0:
But fclðYÞ ¼ fclðZÞDfclðP1,P2,?,Pn�1Þ: Thus R0 contradicts the choice of Y

and we conclude that T 0 is a partial 3-tree. Clearly, T 0
kT : Moreover, ðP1;E � P1Þ is

a non-sequential 3-separation for which there is no equivalent 3-separation displayed
by T : Hence the lemma holds in Case I.

Consider Case II. Choose a 3-separating set Z of M that is maximal with the
property that XDZDB: Let T 0 be the tree that is obtained from T by adjoining a
new leaf v adjacent to u such that v is a bag vertex labelled by Z; and u is relabelled
by B � Z: It is easily verified that T 0 satisfies the first four properties of a partial 3-
tree. Assume that it does not satisfy (v). Then there is a non-sequential 3-separation
ðY ;E � Y Þ that does not conform with T 0: Since T is a partial 3-tree and T 0 only
differs from T by adding v and changing the bag B; we may assume, by possibly
replacing ðY ;E � Y Þ by an equivalent 3-separation, that YDB and that both Y-Z

and Y-ðB � ZÞ are non-empty. Assume that jY-Zj ¼ 1; say Y-Z ¼ fzg: Since
Z+X and ðX ;E � X Þ is non-sequential, we have jZ � fzgjX2: But Z � fzg ¼
E � ðY,ðE � ZÞÞ; and so, by uncrossing, Y-ðE � ZÞ; which equals Y � fzg; is 3-
separating. Thus Y is equivalent to Y � fzg: But, as Y � fzgDB � Z; we see that
ðY � fzg;E � ðY � fzgÞÞ conforms with T 0: Hence ðY ;E � Y Þ conforms with T 0; a
contradiction. Thus we may assume that jY-ZjZ2: Therefore, by uncrossing,
Y,Z is 3-separating, contradicting the maximality of Z: Hence T 0 is indeed a partial
3-tree.

Clearly, T%T 0 and ðZ;E � ZÞ is a non-sequential 3-separation. Thus the lemma
holds or Z is equivalent to a 3-separating set displayed by T : Since X is not
equivalent to such a 3-separating set, the sets X and Z are not equivalent. Now we
may assume that ðX ;E � X Þ is not equivalent to any 3-separation displayed by T 0

otherwise the lemma holds. Since X is contained in the bag Z of T 0 and this
bag is a leaf bag, it follows from Case I that there is a partial 3-tree T 00

kT 0 such that
T 00 displays some non-sequential 3-separation that is not equivalent to any 3-
separation displayed by T 0 and hence is not equivalent to any 3-separation displayed
by T : &
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Proof of Theorem 9.1. Let E be the ground set of M: If M has no non-sequential 3-
separations, then T consists of a single bag vertex labelled by E; and T satisfies the
theorem. If M has a non-sequential 3-separation ðR;GÞ; then, by Lemma 9.3, there is
a tight maximal flower displaying a 3-separation equivalent to ðR;GÞ and so, by
Corollary 9.2, there is a partial 3-tree T displaying a 3-separation equivalent to
ðR;GÞ: Thus we may assume that T has at least one edge. Then the theorem holds,
otherwise, by Lemma 9.4, we obtain the contradiction that T is not maximal. &
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