
File: DISTIL 178901 . By:DS . Date:27:10:97 . Time:11:27 LOP8M. V8.0. Page 01:01
Codes: 3877 Signs: 2071 . Length: 50 pic 3 pts, 212 mm

Journal of Combinatorial Theory, Series B � TB1789

Journal of Combinatorial Theory, Series B 71, 215�230 (1997)

A 2-Isomorphism Theorem for Hypergraphs

Dirk Vertigan*

Mathematics Department, Louisiana State University, Baton Rouge, Louisiana

and

Geoff Whittle-

Mathematics Department, Victoria University, Wellington, New Zealand

Received October 23, 1996

One can associate a polymatroid with a hypergraph that naturally generalises
the cycle matroid of a graph. Whitney's 2-isomorphism theorem characterises when
two graphs have isomorphic cycle matroids. In this paper Whitney's theorem is
generalised to hypergraphs and polymatroids by characterising when two hyper-
graphs have isomorphic associated polymatroids. � 1997 Academic Press

1. INTRODUCTION

Without doubt, one of the most important invariants of a graph is its
cycle matroid. Since Whitney's 2-isomorphism Theorem [7] characterises
exactly when two graphs have isomorphic cycle matroids it is one of the
cornerstones of this area of mathematics.

Now polymatroids generalise matroids in much the same way that
hypergraphs generalise graphs; in the latter case one lifts the restriction
that edges meet at most two vertices, while in the former one lifts the
restriction that singletons have rank at most one. Moreover, given a hyper-
graph H, one can associate with it a polymatroid /H just as one can
associate a matroid with a graph. Indeed, if H is a graph, then /H is the
usual cycle matroid of this graph.

It is also the case that the polymatroid /H carries essentially the same
information as that carried by the cycle matroid of a graph (see for
example [1, 3, 8]). It follows that /H is as important an invariant of
the hypergraph H as is the cycle matroid of a graph. Given this, it is
natural to generalize Whitney's theorem to polymatroids and hypergraphs,
and the main theorem of this paper (Theorem 3.1) does just that by
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characterising exactly when two hypergraphs have isomorphic associated
polymatroids.

There are several proofs of Whitney's theorem in the literature [5�7]
(see also [2, Chapter 5]), but none of these generalise easily to hyper-
graphs. Specific difficulties occur in the hypergraph case that do not arise
for graphs. Thus the proof given here is quite independent of known proofs
for graphs. Moreover, when specialized to graphs, our proof gives yet
another proof of Whitney's theorem for graphs.

Theorem 3.1 also generalises a result of Swaminathan and Wagner [4].
They characterise when two graphs have the same sets of vertex sets of cycles.
This characterisation follows from Theorem 3.1 by considering hypergraphs
obtained from graphs by interchanging vertices and edges. It should be noted
that while both Whitney's Theorem and that of Swaminathan and Wagner
are stated in terms of cycles, this does not seem to be possible for
Theorem 3.1.

The remainder of this introduction is devoted to giving a geometric
description of /H that may aid the reader's intuition in reading this paper.
Formal definitions are given in Section 2.

Let G be a graph. Represent the vertices of G as the points of a simplex
V in some projective space P. (Any projective space of sufficiently high
dimension will do.) Apart from loops, we can regard the edges of G as
being lines of P. Now let F be a hyperplane of P that does not contain any
of the points of V. (It is not hard to show that such a hyperplane can
always be found.) Any edge of G meets F in a single point. The set of such
points with rank induced by P forms a matroid. It is straightforwardly
shown that this matroid is the cycle matroid of G.

Loosely speaking, one can regard polymatroids as axiomatising the
notion of configuration of subspaces in the same way that one can regard
matroids as abstracting point configurations. If we perform the above con-
struction for hypergraphs instead of just graphs we obtain such a configura-
tion of subspaces. Specifically let H be a hypergraph. Again the vertices of
H can be represented by a simplex V in a projective space P. A hyperedge
of H of size k spans a rank-k subspace of P, and such a subspace meets a
hyperplane F in a rank-(k&1) subspace. The collection of such subspaces
with rank function induced by rank in P forms a polymatroid. This poly-
matroid is /H . Note that while there are other polymatroids that can be
associated with a hypergraph it is only /H that is considered in this paper.

2. PRELIMINARIES

In this section we introduce basic definitions and notational conventions
for hypergraphs and polymatroids that will be used throughout the paper.
Other notions will be introduced as they are needed.
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Hypergraphs. A hypergraph H is a triple (V, E, I ) where V and E are
finite sets called vertices and edges respectively, and I�V_E is the
incidence relation of H. In this paper every edge is incident with at least one
vertex.

For a subset A of edges, A� denotes the set of vertices incident with at
least one edge in A. Also H | A denotes the restriction of H to A, that is
H | A denotes the hypergraph (A� , A, I & (A� _A)).

For a subset W of vertices W� denotes the maximal set F of edges such
that F� is contained in W. Also H | W denotes the restriction of H to W, that
is H | W denotes the hypergraph (W, W� , I & (W_W� )).

The notation A� and W� may be ambiguous if more than one hypergraph
is being considered. In most cases the intention is clear from the context.
In other cases ambiguity is removed by explicitly specifying the appropriate
hypergraph H, using the notation VH(A) and EH(W).

A subset W of vertices is a separator of H if, for any edge e, either e� is
contained in W or e� is disjoint from W. A component of H is a minimal
non-empty separator. A non-trivial hypergraph is connected if it has exactly
one component. Two edges e and f are parallel if e� = f� . An edge e is a loop
if |e� |=1. A hypergraph H is simple if it has no loops or parallel edges.

Polymatroids. Let E be a finite set and consider an integer valued set
function \ : 2E � Z. The function \ is normalised if \(<)=0, is increasing
if \(A)�\(B) whenever A�B�E, and is submodular if \(A _ B)+
\(A & B)�\(A)+\(B) for all subsets A and B of E. If \ is normalised,
increasing and submodular, then \ is a polymatroid.

For a subset A of the edges of the hypergraph H=(V, E, I), let k(H | A)
denote the number of components of H | A. The hypergraphic polymatroid
/H of H is defined, for all subsets A of E, by

/H(A)=|A� |&k(H | A).

It is well known that /H is a polymatroid. Indeed it is straightforward to
verify that /H is just the polymatroid described geometrically in the Intro-
duction (see [8]). Evidently, if H is a graph, then /H is the rank function
of the cycle matroid of the graph.

Rank-equivalent hypergraphs. Two hypergraphs H and I are rank-
equivalent if /H=/I , that is, H and I have the same edge set E and
/H(A)=/I (A) for every A�E. It is clear that neither vertex labelling nor
the presence of an arbitrary number of isolated vertices affects rank-equiv-
alence. Therefore we shall be casual about this and generally will regard
two hypergraphs as being equal if they are equal up to vertex labelling and
isolated vertices.

However, relabelling edges of a hypergraph H gives a hypergraph H$
having the property that /H$ is isomorphic, but not necessarily equal to /H .
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Evidently, two hypergraphs have isomorphic hypergraphic polymatroids if
and only if, up to relabelling of the edges, they are rank-equivalent. Thus
the main task of this paper is to characterise when two hypergraphs are
rank-equivalent.

Twisting, splitting, and joining. A twisting partition of H=(V, E, I ) is
a partition [U, W, u, w] of V such that for every edge e of H, either
e� �U _ [u, w] or e� �W _ [u, w] or [u, w]�e� . Associated with a twisting
partition we define a twisting of H as follows: for each edge e of E
with e� �W _ [u, w] and |e� & [u, w]|=1, change e� to e� 2[u, w] (where 2
denotes symmetric difference). Evidently, if H is a graph, the notion of
twisting defined here reduces to the familiar one. Observe that the possible
presence of edges meeting both U and W is a feature which does not occur
in the graph case.

If H$ is obtained from H by twisting using the twisting partition
[U, W, u, w], then H$ is said to be obtained by twisting around [u, w].
Note that there may be more than one possible twisting around
[u, w]��consider, for instance, the graph K2, n .

Now consider splitting and joining. A vertex v of H is a cut vertex if the
edges of H can be partitioned into subsets A and B such that A� & B� =[v].
We can define a splitting of H at a cut vertex just as for graphs. Also, if v1

and v2 are vertices in different components of H the operation can be
reversed to obtain a hypergraph in which v1 and v2 are joined into a single
cut vertex.

Given that we are relaxed about the presence or absence of isolated
vertices it is worth noting that splitting and joining are special cases of
twisting. To split H at the cut vertex [v] proceed as follows: add a new
isolated vertex w and perform a twisting on the twisting partition
[A� &v, B� &v, v, w]. Joining is just the reverse of this.

Note that it can happen that a twisting does not change the hypergraph;
we call such twistings trivial.

2-isomorphism. Hypergraphs H and I are 2-isomorphic if H can be
transformed into I by a sequence of twistings, splittings and joinings. (If we
are to be pedantic, we can also include the operations of vertex relabelling
and addition and removal of isolated vertices.)

3. THE MAIN RESULT

We are now in a position to state the main result of the paper.

Theorem 3.1. Let H and I be hypergraphs. Then H and I are rank-
equivalent if and only if they are 2-isomorphic.
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Before proceeding to the proof we note the following immediate
corollary of Theorem 3.1. The hypergraph H is rank-unique if the only
hypergraph that is rank-equivalent to H is H itself (up to vertex labelling
and isolated vertices of course).

Corollary 3.2. A hypergraph is rank-unique if and only if it has no
non-trivial twisting partitions.

Another corollary follows from comments in Section 2.

Corollary 3.3. Let H and I be hypergraphs. Then /H is isomorphic to
/I if and only if I is isomorphic to a hypergraph that is 2-isomorphic to H.

Note that Corollary 3.3 is strictly weaker than Theorem 3.1 since there
are hypergraphs H and I which are isomorphic and rank-equivalent, but
are not equal.

In one direction Theorem 3.1 is straightforward.

Lemma 3.4. If H and I are 2-isomorphic, then they are rank-equivalent.

Proof. It clearly suffices to consider the case when I is obtained from H
via a single twist. Assume then, that I is obtained from H by twisting
on the twisting partition [U, W, u, w]. Let A be a subset of edges. If
A� & [u, w] has the same cardinality in H as in I, then it is clear that
/H(A)=/I (A). If this is not the case, then we may assume without loss of
generality, that A� contains more elements of [u, w] in I than in H. There
are two cases, the only one that could cause difficulty is when A� contains
one element of [u, w] in H and A� contains both. In this case it is readily
checked that k(I | A)=k(H | A)+1 and it follows that /H(A)=/I (A). K

The rest of the paper is devoted to the converse of Lemma 3.4. We begin
by examining connectivity in more detail. A hypergraph is 2-connected if it
is connected and has no cut vertices. A separator of a polymatroid \ on E
is a subset A of E with the property that \(A)+\(E&A)=\(E). A compo-
nent of \ is a minimal non-empty separator. It is easily seen that unions of
components are separators. The polymatroid \ is connected if its only
separators are E and <. The following proposition generalises a well-
known fact for graphs and matroids; we omit the routine proof.

Proposition 3.5. Let H be a hypergraph. Then /H is connected if and
only if H is 2-connected.

A simple argument that is essentially the same as that for the graph case
shows that Theorem 3.1 will follow if the following lemma holds.
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Lemma 3.6. If H and I are rank-equivalent hypergraphs and H is simple
and 2-connected, then H and I are 2-isomorphic.

The task then is to prove Lemma 3.6. First an example to illustrate just
how different things are for hypergraphs and polymatroids than for graphs
and matroids.

Let H be a hypergraph with V=[1, 2, 3, 4, 5] and E=[a, b, c, d] where
a� =[1, 2], b� =[1, 3, 4], c� =[2, 3, 5] and d� =[4, 5]. It is easily seen that H
is 2-connected and rank-unique. However deleting edges incident with 3,
namely b and c, leaves a hypergraph that is not connected. In the graph
case this is not possible for 2-connected graphs, let alone rank-unique
graphs.

A complete hypergraph is a hypergraph (V, E, I ), |V |�2 having the
property that for every subset W of V having at least two elements, there
is a unique edge e� such that e� =W. The following lemma is evident.

Lemma 3.7. Complete hypergraphs are rank-unique.

The next lemma follows immediately from Proposition 3.5.

Lemma 3.8. If H and I are rank-equivalent hypergraphs and A is a set
of edges for which H | A is 2-connected, then I | A is 2-connected.

A subset A of the polymatroid \ on E is spanning if \(A)=\(E).

Lemma 3.9. Let H and I be 2-isomorphic hypergraphs and let F be a
subset of edges. If F is spanning in /H and H | F is 2-connected, then H | F
and I | F are 2-isomorphic.

Proof. We can assume that neither H nor I have isolated vertices. Since
F is spanning in /H , F� =V(H). A twisting partition of H is certainly a
twisting partition of H | F. By choosing the twists corresponding to the
sequence of twisting partitions that transforms H to I we transform H | F
to I | F. K

Note that if VH(F )=V(H) and VI (F )=V(I ), then the condition that F
be spanning or even 2-connected can be dropped so long as we regard
splittings and joinings as twistings.

We can now outline the structure of the proof. We show that two rank-
equivalent hypergraphs H and I can be transformed to rank-equivalent
(and therefore equal by Lemma 3.7) complete hypergraphs via a sequence
of operations. The operations consist of twistings, and the simultaneous
addition of an edge to both hypergraphs in such a way that rank-equiv-
alence is preserved. By Lemma 3.9, the twistings correspond to a well-
defined sequence of twistings that transforms H to I.
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We need two types of lemma. One type to tell us when edges can be
added, and the other to tell us when twistings can be performed. We first
give some more basic lemmas and definitions.

4. SOME BASICS

There are various natural ways one could define ``paths'' and ``circuits''
for hypergraphs. The following definitions are appropriate for our
purposes.

A walk from v0 to vn in a hypergraph is a sequence v0 , e0 , v1 , e1 , ..., en&1 ,
vn of vertices and edges such that, for 1�i�n&1, ei is incident with vi and
vi+1. An inpath from vertex v0 to vertex vn is such a sequence where, if
|i& j |>1 then ei & ej =<. An incircuit is such a sequence where n�2,
v0=vn , and ei & ej =< unless |i& j | # [1, n&1]. We may abuse notation
by identifying an incircuit or inpath with its set of edges. Note that an
incircuit or an inpath may properly contain a two-edge incircuit (where the
two edges are mutually incident with more than one vertex).

The notion of contraction for graphs and matroids easily extends to
hypergraphs and polymatroids. Let e be an edge of H. Then the contraction
of e from H, denoted H�e, is obtained by coalescing e� into a single vertex.
An edge is incident with this new vertex if and only if it is incident with at
least one vertex in e� . If e is an element of the polymatroid \, then the con-
traction of e from \ is the set function on E&e defined, for all A�E&e,
by \�e(A)=\(A _ e)&\(e). It is routinely checked that /H�e=(/H)�e.

The set J is independent in the polymatroid \ if each element of J is a
component of \ | J. Equivalently, J is independent if \(J)=�i # J \(i). A set
F of edges of a hypergraph is a hyperforest if F is independent in /H . Equiv-
alently F is a hyperforest if and only if it does not contain the edge set of
an incircuit.

The following lemma lists several properties of a hypergraph H that are
determined by its rank function /H .

Lemma 4.1. Let \ be a polymatroid. The following hold for any hyper-
graph H with \=/H and for any edges e, f, g and any subset of edges A.

(i) |e� |=\(e)+1.

(ii) If \(e)+\( f )&\([e, f ])=k�1, then |e� & f� |=k+1 and H | [e, f ]
is rank unique.

(iii) If \(e)+\( f )&\([e, f ])=0, then |e� & f� | # [0, 1] and H | [e, f ]
is not rank unique.
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(iv) If |e� & f� |�2 and |(e� _ f� ) & g� |�2 then H | [e, f, g] is rank
unique.

(v) \( f )=\([e, f ]) if and only if e� � f� , unless e is a loop.

(vi) \( f )=\([e, f ])=\(e) if and only if e� = f� , unless e or f is a loop.

(vii) If \(e)+\(A)&\(A _ e)>0 and e � A, then H | (A _ e) has an
incircuit that contains e, or equivalently, H | A contains an inpath between
two vertices in e� .

Proof. Those items that are not immediately self evident, are routine to
verify. K

Lemma 4.2. If H and I are rank-equivalent and e is an edge, then H | e�
and I | e� are rank-equivalent.

Proof. It suffices to show that H | e� and I | e� have the same edge set. But
this follows from Lemma 4.1(v). K

5. EDGE ADDING LEMMAS

Let H be a hypergraph and let I be a hypergraph that is rank-equivalent
to H. Consider an extension of H by the edge e. We wish to know when
it is also possible to extend I by e and preserve rank-equivalence. Usually
this will depend on the choice of I. But for certain extensions we are
guaranteed that we can simultaneously extend I. These extensions turn out
to be of considerable interest. We now make this notion precise.

The hypergraph H$ is an extension of H if H=H$ | E(H). The extension
is proper if H$ is simple. (Of course, if H$ is simple, then so is H.) If H and
I are rank-equivalent, then (H$, I$) is a coherent extension of (H, I ) if H$
and I$ are respectively extensions of H and I, and H$ and I$ are rank-equiv-
alent. Also H$ is a coherent extension of H if, for every I that is rank-equiv-
alent to H, there exists I$ such that (H$, I$) is a coherent extension of
(H, I ). The coherent extension is non-trivial, if H$ is simple and at least one
edge is added. We wish to characterize some situations when coherent
extensions can be guaranteed. We begin by noting yet another elementary
lemma.

Lemma 5.1. Let e be an edge of the hypergraph H, and A be a subset of
edges of H with the property that /H(e)=/H(A)=/H(A _ e). Suppose
H | (A _ e) has no loops. Then H | A is connected and A� =e� . Moreover, for
any B�E(H), /H(B _ A)=/H(B _ e).

The next lemma describes a coherent extension of a pair (H, I ).
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Lemma 5.2. Let H and I be rank-equivalent hypergraphs and let H$ and
I$ be extensions of H and I by the edge e. Assume that there exists a set A
of edges that is connected in both H and I and has the property that e� =A�
in both H$ and I$. Then H$ and I$ are also rank-equivalent.

Proof. Say that H and I have edge set E. We need to show that
/H$(B)=/I$ (B) for all subsets B of E _ e. If e is not in B this follows from
the fact that H and I are rank-equivalent. Say that e is in B. Then, using
Lemma 5.1 and the fact that H and I are rank-equivalent we see that

/H$(B)=/H$((B&e) _ A)

=/H((B&e) _ A)

=/I ((B&e) _ A)

=/I$ ((B&e) _ A)

=/I$ (B). K

The next lemma describes some coherent extensions of a hypergraph H.

Lemma 5.3. Let H be a hypergraph with edge set E, and let H$ be a
proper extension of H by the edge e. Then H$ is a coherent extension of H
if any of the following conditions are satisfied.

(i) There is a subset A of E with the property that H | A is 2-connected
and e� =A� .

(ii) There is a subset A of E, and an edge f # E&A such that H�f | A
is 2-connected and e� =A� .

(iii) There are edges f and g such that | f� & g� |�2 and e� = f� & g� .

Proof. Let I be a hypergraph that is rank-equivalent to H. We extend
I by e in the same way as described for H.

Let A be as in (i). By Lemma 3.8 I | A is 2-connected, that is, A is
connected in both H and I. Thus (i) follows by Lemma 5.2.

Let A and f be as in (ii). Assume that A is not connected in H, so
that A can be partitioned into non-empty subsets A1 and A2 such that
VH(A1) & VH(A2)=< in H. Then, VH�f (A1) and VH�f (A2) can have at
most one vertex in common, namely the new vertex obtained by coalescing
the vertices in VH( f ). This contradicts the fact that H�f | A is 2-connected.
It follows that A is connected in H. The same argument shows that A is
also connected in I, and (ii) now follows by Lemma 5.2.
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Let e, f, g be as in (iii). By Lemma 4.1(i, ii), /H(e)=/I (e). Suppose there
is a set A�E such that /H(A _ e){/I (A _ e) and suppose that |E| is as
small as possible. Deleting any edge not in A _ [e, f, g] would give a
smaller counterexample. Also, contracting any edge in A that preserves the
property that e� = f� & g� in both hypergraphs, would give a smaller coun-
terexample. If follows from the minimality of |E| that every edge h # A has,
in at least one of H and I, vertices in common with both f and g, but not
with e. By Lemma 4.1(iv), g has this property in both hypergraphs. Thus
A� & e� =< in both hypergraphs. But then /H(A _ e)=/H(A)+/H(e)=
/I (A)+/I (e)=/I (A _ e), contradicting the existence of a counterexample.

K

The hypergraph H is closed under coherent extensions if it has no non-
trivial coherent extensions. By Lemma 3.9, there is no loss of generality in
only considering such hypergraphs. (There may be coherent extensions
other than those obtained by repeated applications of Lemma 5.3, but we
do not use them.) The next corollary mentions some useful structure
implied by closure under coherent extensions.

Corollary 5.4. Suppose H is simple and closed under coherent exten-
sions. Let C be the edge set of an incircuit of H, and let f # C. In each of the
following cases there is an edge e such that

(i) e� =C�
(ii) e� =C& f

(iii) e� =C& f & f�

Moreover, if D is the edge set of an incircuit of H with D/C (so that
|D|=2) then there is an edge e such that

(iv) e� =C&D
(v) e� =C&D & D�

Proof. Parts (i), (ii) and (iii) follow from Lemma 5.3, noting that H | C,
(H | C)�f are 2-connected. Consider parts (iv) and (v). First note that by
(i), there is an edge d, with d� =D� . The result now follows by (ii) and
(iii). K

The next lemma describes a coherent extension of a pair (H, I ).

Lemma 5.5. let H and I be rank-equivalent hypergraphs and assume that
H is simple and closed under coherent extensions. If the edge f is such that
H | VH( f )=I | VI ( f ), then H and I can be extended to rank-equivalent
hypergraphs H$ and I$ where H$ | f� and I$ | f� are equal complete hypergraphs.

Proof. Let H, I and f be as described in the lemma. We may relabel the
vertices of I so that the vertex labellings of H | f� and I | f� agree. For W� f� ,
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with |W|�2, let HW and IW denote extensions of H and I by adding an
edge g with g� =W. It is sufficient to show that HW and IW are rank-equiv-
alent. Suppose not. Choose a minimal W such that HW and IW are not
rank-equivalent. Then |W |=2, say W=[u, w], since if all the 2-vertex
edges can be added, then so can the others by Lemma 5.3(i). Without loss
of generality there exists a set F of edges such that /HW (F _ g)&/HW (F )=0
and /IW (F _ g)&/IW (F )=1. Choose F so that |F | is minimised, and sub-
ject to that, |F� | is minimised. By Lemma 4.1(vii), F contains an inpath
from u to w in H, but not in I. By minimality, F must be that inpath and
by Corollary 5.4, F contains no incircuit. Clearly H | (F _ f ) is 2-connected,
so that for each edge h # F there is an incircuit C containing h, as well as
f. By Corollary 5.4(iii), there is an edge with vertex set C& f & f� , and by
minimality h must be that edge. It follows that h� � f� for every h # f. But
then H | F is a restriction of H | f� =I | f� , so that F is also an inpath from
u to w in I; a contradiction. K

6. LOCAL TWISTING LEMMAS

For distinct vertices u and w of the hypergraph H, set Vuw=V&[u, w],
and Euw=[e # E(H) | [u, w]�3 e� ]. Define an equivalence relation t on
Vuw _ Euw to be the least equivalence relation having the property that, for
z # Vuw and e # Euw , if z # e� , then zte. The t-equivalence classes are the
parts of H with respect to [u, w]. If the pair [u, w] is clear from the con-
text we will simply refer to the parts of H. Let P be a part of H. Edges in
P meet some subset X of [u, w]. In this case we say that P is an X-part.
We also say that P is a 0-, 1- or 2-part depending on whether |X| is 0, 1,
or 2 respectively.

What are the possible twistings around [u, w]? Such twistings are given
by partitions of the form [U, W, u, w], where, for any part P, the vertices
in P are contained in either U or W. Such a twisting is non-trivial provided
that both U and W contain the vertices of a 1- or 2-part. Thus non-trivial
twistings around [u, w] are possible provided that there are at least two
parts other than 0-parts.

Note also that in a 2-connected graph only 2-parts occur. But 1-parts
can occur in 2-connected hypergraphs. This represents a new complication
that arises in generalising from graphs to hypergraphs.

As an example, let H be a hypergraph with V=[1, 2, 3, 4] and
E=[a, b, c] where a� =[1, 2], b� =[3, 4], c� =[1, 2, 3, 4]. The parts of H
with respect to [2, 3] are [1, a] and [4, b]. These are both 1-parts, even
though H is 2-connected. It is clear that it is possible to perform a non-
trivial twisting around [2, 3].
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A [u, w]-walk from v0 to vn in a hypergraph is a walk v0 , e0 , v1 ,
e1 , ..., en&1 , vn such that, [v0 , v1 , ..., vn]�Vuw and [e0 , e1 , ..., en&1]�Euw .
Note that edges in this walk may be incident with one of u and w, but not
both. It is easily seen that vertices v0 and vn are in the same part of H with
respect to [u, w] if and only if there is a [u, w]-walk from v0 to vn . The
length of a walk is the number of edges in it.

It had been hoped that for an edge e of a hypergraph H that is closed
under coherent extensions, any twisting partition of H | e� could have been
extended to a twisting partition of H. However there is a very specific
exception as described in the case below.

Lemma 6.1. Suppose H is simple and 2-connected with edge set E and
vertex set V. Assume that H is closed under coherent extensions. Suppose
that e # E, and that [U, W, u, w] is a twisting partition of H | e� . Then, either
(1) or (2) below holds, but not both.

(1) There exists a twisting partition [U$, W$, u, w] of H with U�U$
and W�W$.

(2) There is a u-part of H | e� with vertex set R0 �U, and there is a
w-part of H | e� with vertex set R2 �W and there are edges f, g # Euw and
there are vertices v0 # R0 and v2 # R2 such that [u, v0]� f� & e� �R0 _ [u],
[w, v2]� g� & e� �R2 _ [w], f� & g� {<, and e� & f� & g� =<, or the same
situation with the roles of u and w reversed holds.

Proof. It is clear that if (2) holds, then (1) does not hold. Assume that
(1) does not hold. Then there exists, in H, a [u, w]-walk, P=v0 , e0 , v1 ,
e1 , ..., en&1 , vn , from some v0 # U to some vn # V. Choose such a walk of
minimum length. Let R0 and R2 be the vertex sets of parts P0 and P2 ,
respectively, of H | e� such that v0 # R0 and vn # R2 .

The remainder of the proof is devoted to showing that P has only two
edges f and g as in (2). From the minimality of P we immediately obtain

6.1.1. (i) If ei and ej are edges in P with |i& j |�2, then
ei & ej # [<, [u], [w]].

(ii) ei & U{< if and only if i=0.

(iii) ei & W{< if and only if i=n&1.

(iv) If |i& j |�2, then there is no edge h # Euw incident with both vi

and vj .

For 1�i< j�n&1, let P[i, j] denote the subwalk vi , ei , ..., ej&1 , vj .
(Note that ej&1 is the ``last'' edge in P[i, j].) Most of the proof will use the
following type of argument. When n>2 we shall find a subwalk P[i, j],
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with |i& j |�2, that can be replaced by a shorter subwalk vi , h, vj , where
[vi , vj]�h� and h # Euw . In other words we shall obtain a contradiction to
6.1.1(iv). The existence of such an edge h will be implied by closure under
coherent extensions.

6.1.2. u and w are each incident with at most one edge in P.

Proof. Suppose the lemma is false. Without loss of generality there exist
integers i and j, with 1�i< j�n&1, such that u is incident with both ei

and ej and u is not incident with any edge in P[i+1, j], and w is incident
with at most one edge in P[i+1, j]. The edges of P[i, j+1] form an
incircuit C. If w � C� then by Corollary 5.4(i) there is an edge h with h� =C� ,
which contradicts 6.1.1(iv). Otherwise there exists k such that i<k< j and
w # ek . Now by Corollary 5.4(ii) there is an edge h with h� =C&ek , again
contradicting 6.1.1(iv). K

6.1.3. (i) e0 & [u, w, vn]{<.

(ii) en&1 & [u, w, v0]{<.

(iii) n>1.

(iv) u and w are each incident with exactly one edge in P.

Proof. Let k be the minimum integer with the property that ek &
[u, w, vn]{<. Suppose (i) is false so that k>0. Then P[0, k+1] together
with e forms an incircuit C. By Corollary 5.4(i) there is an edge h with
h� =C� , which contradicts 6.1.1(iv). Item (ii) follows similarly.

Suppose (iii) is false, so that n=1 and [v0 , vn]�e0 . By Lemma 5.3(iii),
there is an edge h with h� =e0 & e� . Now h is an edge of H | e� with
[v0 , vn]�h� and [u, w]�3 h� . This contradicts the fact that v0 and vn are
in different parts of H | e� . Thus (iii) follows. Combining 6.1.2 and
6.1.3(i)(ii)(iii) gives (iv). K

By swapping the roles of u and w if necessary we assume without loss of
generality that u # e0 and w # en&1.

6.1.4. P has length n=2.

Proof. Since [u, v0]�e� & e0 , it follows that H | [e, e0] is an incircuit D
say. Using facts so far established, P together with edge e forms an incircuit
C say. Suppose n>2. By Corollary 5.4 there is an edge h with h� =C&D.
Now h is incident with v1 , vn and w, but not with u, contradicting
6.1.1(iv). K

We now know that P has two edges e0 and e1 . Set f =e0 and g=e1 , so
that P=v0 , f, v1 , g, v2 . Evidently f� & g� {<. By Lemma 5.3, there are

2272-ISOMORPHISM FOR HYPERGRAPHS



File: DISTIL 178914 . By:DS . Date:27:10:97 . Time:11:27 LOP8M. V8.0. Page 01:01
Codes: 3615 Signs: 2533 . Length: 45 pic 0 pts, 190 mm

edges hu and hw in H with hu =e� & f� and hw =e� & g� . We now show that
f� & g� & e� =hu & hw =<. Assume not. Say z # hu & hw . Then v0 , hu , z, hw , v2

is a [u, w]-walk in H | e� . It follows that v0 and v2 are in the same part of
H | e� . This contradicts the fact that v0 # R0 and v2 # R2 .

Clearly hu is an edge of part P0 of H | e� and u # hu = f� & e� �R0 _ u. Also
hw is an edge of part P2 of H | e� and w # hw = g� & e� �R2 _ w. Hence P0 is
either a u-part or a uw-part and P2 is either a w-part or a uw-part. It
remains to show that P0 is a u-part and P2 is a w-part.

Assume that P0 is a uw-part. Then P could be extended to a walk P$=w,
d0 , w0 , ..., wq&1 , dq , wq , f, v1 , g, w, such that all edges and vertices in P$
except f, v1 , g and w are in part P0 , and such that d0 and g are the only
edges incident with w. By arguments similar to those above it can be
inferred that there exists an edge h such that h� �e� and w, v0 , v2 # h� and
u � h� . Thus v0 and v2 are in the same part of H | e� ; a contradiction. Hence
P0 , and similarly P2 are not uw-parts. Therefore P0 is a u-part and P2 is
a w-part. K

An edge e in a simple hypergraph H is called minimal incomplete if H | e�
is not complete but for every edge f with f� /e� , the hypergraph H | f� is
complete. The hypergraph H is near-complete if it has a minimal incomplete
edge e with e� =V(H). Clearly, for any simple hypergraph H, the edge e is
minimal incomplete if and only if H | e� is near-complete.

For n�4, let Cn denote the graph which is a circuit on n edges. Let K &
4

denote the graph obtained by deleting an edge from K4 . Let the hyper-
graphs HCn and HK &

4 be obtained, respectively, from Cn and K &
4 by

performing all possible coherent extensions, or equivalently (in these cases)
adding every hyperedge h such that h� is the vertex set of a circuit. For a
vertex set W with |W|�3 and a hyperforest with edge set A and A� �W,
let HF(W, A) denote the hypergraph with vertex set W and an edge e with
e� =W and every edge f such that | f� |�2 and f� � g� for some g # A. Observe
that these hypergraphs are all near-complete (except HF(W, A) in the case
that |A|=1 and A� =W).

Lemma 6.2. Assume that H is 2-connected, simple and is closed under
coherent extensions. Let e be a minimal incomplete edge. Then H | e� is
isomorphic to one of the following hypergraphs

(i) HCn for some n�4, or
(ii) HK &

4 , or
(iii) HF(W, A) for some vertex set W with |W |�3 and a hyperforest

with edge set A and A� �W, (unless |A|=1 and A� =W).

Proof. Let G be the graph formed by the 2-edges of H | e� . Suppose G
has, as an induced subgraph, K &

4 or Cn for some n�4. By minimality,
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G must be that subgraph, and by closure, H | e� must be as in (i) or (ii).
Otherwise every block of G is a clique, and by minimality and closure, H | e�
must be as in (iii). K

The following lemma is routine to verify.

Lemma 6.3. Suppose H is 2-connected, simple and is closed under
coherent extensions and I is rank-equivalent to H. Let e be a minimal incom-
plete edge of H. Then H | e� and I | e� are 2-isomorphic.

Lemma 6.4. Suppose H is 2-connected, simple, closed under coherent
extensions. Suppose I is rank-equivalent to H. Let e be a minimal incomplete
edge of H.

(a) Every twisting partition of H | e� extends to a twisting partition
of H unless H | e� consists of e, edges h1 and h2 such that |h1 |, |h2 |�2,
h1 _ h2 =e� and h1 & h2 =<, and every edge h such that h� �2 and h� �h1 or
h� �h2 , and there are edges f and g in H such that f� & e� =h1 , g� & e� =h2 , and
f� & g� {<, in which case no twisting partition of H | e� extends to a twisting
partition of H.

(b) H is 2-isomorphic to a hypergraph H1 such that H1 | e� =I | e� .

Proof. Suppose that [U, W, u, w] is a twisting partition of H | e� that
cannot be extended to H. Then, by Lemma 6.1, there exist edges f and g
of H satisfying condition (2) of Lemma 6.1. Let the other symbols in
Lemma 6.1(2) also be as in that statement. Now, [v0 , u]�e� & f� and
[v2 , w]�e� & g� and [e, f, g] is an incircuit, so H has edges h1 , h2 and h3

where h1 =e� & f� , h2 =e� & g� , and h3 =e� & ( f� _ g� )=h1 _ h2 . Clearly,
|h1 |�2, |h2 |�2, h1 & h2 =e� & f� & g� =<, h1 �U & [u], h2 �W _ [w],
v0 # h1 and v2 # h2 . Since h1 and h2 are proper subsets of e� , both H | h1 and
H | h2 are complete and either H | h3 is complete or h3 =e� . But if H | h3 is
complete, the edge [v0 , v2] contradicts the fact that [U, W, u, w] is a
twisting partition. Hence e� =h3 =h1 _ h2 , while h1 & h2 =<. Hence H | e�
is of the form described in (a).

Let B=[h # E | h� �e� or h= f or h= g]. It is easily shown that H | B is
rank-unique and that no twisting partition of H | e� extends to a twisting
partition of H.

By Lemma 6.3 there is a sequence of twistings (each associated with a
twisting partition) from H | e� to I | e� . If we can extend every twisting parti-
tion in the sequence to the whole hypergraph, then we are done. If not then
we can conclude that H has as a restriction, the rank unique hypergraph
H | B described above. But then H | B=I | B, so that H | e� =I | e� . In this
case we can simply set H1=H. K
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7. THE PROOF OF THE THEOREM

We are now in a position to complete the proof of Lemma 3.6, which
will complete the proof of the theorem.

Proof. Let H be a 2-connected simple hypergraph and let I be a hyper-
graph that is rank-equivalent to H. Say E(H)=E(I )=E. Suppose that the
lemma is false, so that I is not 2-isomorphic to H. Choose a counter-
example (H, I ) such that |V(H)|=|V(I )|=n is minimum and, subject to
that, |E|=m is maximum. (Note that m is bounded above by 2n&n&1,
the number of edges in a n-vertex complete hypergraph.) Clearly H is
simple, closed under coherent extensions and is not complete. Therefore H
has a minimal incomplete edge e. By Lemma 6.4 H is 2-isomorphic to a
hypergraph H1 such that H1 | e� =I | e� . By Lemma 5.5 there is a non-trivial
coherent extension of (H1 , I ) to (H$, I$) such that H$ | e� =I$ | e� is complete.
Since E(H$)>m, then by our maximality assumption, H$ is 2-isomorphic
to I$. But then H1=H$ | E is 2-isomorphic to I=I$ | E, by Lemma 3.9. It
follows that H is 2-isomorphic to I. K
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