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Why is topology even an issue?

Observation:

• The Einstein equations are local:

Gµν = 8π GNewton T
µν.

• Even at the semi-classical level they are
“quasi-local”:

Gµν = 8π GNewton 〈ψ|Tµν|ψ〉.

• The Einstein equations do not, by them-
selves, constrain any global features —

– topology;
(spatial or temporal)

– orientability;
(spatial, temporal, or spacetime)
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Consequence:

• Unless you enforce topological and/or ori-
entability constraints “by hand”, general
relativity (Einstein gravity) seems to be ab-
solutely infested with peculiar topological
objects.

• We have no direct observational/ experi-
mental evidence for the existence of such
objects; but GR — which in many other
ways is spectacularly successful — does
not (by itself) preclude them.

• The observational dearth of such topolog-
ically nontrivial objects is therefore some-
what puzzling...

• Ultimately, the key issue is (in GR lan-
guage) that of “prior structure”;
perhaps better called “ab initio structure”.
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Non-traversable wormhole:

• Old-style wormholes (the Schwarzschild worm-
hole, aka the Einstein–Rosen bridge, and
its cousins) are non-traversable — any at-
tempt at crossing from one asymptotically
flat region to the other leads you into the
singularity. You will die.

• Even if your personal death is not a con-
cern, the presence of an event horizon means
you are not getting any messages back to
the folks at home. As far as they are con-
cerned you might as well not have sacri-
ficed yourself.

• (Unless, of course, you have FTL drive or
FTL communications; but that opens up
another can of worms — see chronology
protection.)
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Wheeler wormholes:

• John Wheeler introduced (among many other
ideas) the notion of “charge without charge”;
the idea that electrons and positrons do
not carry point charges, but that the elec-
tric flux lines go into a wormhole throat on
the electron, through “hyperspace” via a
wormhole, and then emerge from its positron
partner.

• Net effect: objects that look similar to
point charges, but with flux lines that nowhere
terminate. (And no event horizons.)

• If you think of these as classical solutions
of Einstein plus Maxwell, we now know all
such solutions to be unstable. (Sphaleron)

• Quantum Wheeler wormholes ⇒
“spacetime foam”.
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Warning on spacetime foam:

• Wheeler’s argument in favour of “space-
time foam” has its limitations.

• If you linearize gravity around Minkowski
space, and quantize the linearized theory,
then in that model you can certainly cal-
culate the metric-metric 2-point function:

〈0|∆g(x) ∆g(y)|0〉 = k
`2P

(x− y)2

• This certainly implies that metric fluctu-
ations are of order unity for distances of
order the Planck length.

• This guarantees that quantized gravity will
be strongly interacting at the Planck scale.

• (But what about the light cone?)
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Warning on spacetime foam:

• Despite “common wisdom”, strongly inter-
acting does not guarantee that topology is
fluctuating at the Planck scale.

• There is in fact no guarantee that topology
fluctuates at the Planck scale.

• There is a lot of speculation that topology
fluctuates at the Planck scale.

• There is certainly no empirical or theoret-
ical need for topology fluctuation at the
Planck scale.

• There is a big difference between strongly
interacting (crumpled) and the creation/
destruction of links between distinct points.
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Traversable wormhole:

• Mike Morris and Kip Thorne asked:

“What sort of matter distribution would
be needed to generate a traversable worm-
hole, defined to be a classical geometry
with two asymptotically flat regions con-
nected by a throat, and with no event hori-
zon between them?”

• You can ask this question in classical GR
or semiclassical GR; it is not clear how to
formulate the question once the geometry
is fluctuating significantly.

• Answer: You need violations of the Aver-
aged Null Energy Condition (ANEC);
and therefore violations of all the standard
GR energy conditions.
(At this stage classical physicists tend to
choke and have difficulty in breathing.)
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Energy conditions:

• Violating the ANEC is not as big a deal as

you might naively think.

• Classically, ANEC violations are relatively

difficult to achieve — though non-minimally

coupled scalar fields can cause havoc in this

regard.

• Quantum mechanically, two significant ex-

amples of semiclassical ANEC violation are

known:

– Casimir effect — observationally veri-

fied (with caveats).

– Hawking radiation — ANEC violations

needed to get around the classical area

increase theorem.
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Hawking radiation:

• The ANEC violation in Hawking radiation

is particularly important.

• It demonstrates that while quantum vio-

lations of ANEC are typically small (order

h̄) there are situations in which their effect

can be secular; leading to massive changes

in the classical picture.

• Indeed in Hawking radiation, a tiny semi-

classical quantum effect completely reverses

the inference you would have drawn from

the classical area increase theorem.

• Semiclassical quantum effects, though small,

can have enormous implications.
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Topological censorship:

• The best general theorem we currently have
is the “topological censorship theorem”.

• (Roughly) If you have an asymptotically
flat globally hyperbolic spacetime, with mul-
tiple disjoint past or future null infinities,
then there is at least one inextendible null
geodesic from past null infinity to future
null infinity along which ANEC is violated.

• The phrase “disjoint past or future null in-
finities” implies there are null curves from
past null infinity to future null infinity that
are not homotopic to the trivial curve.

• The theorem relates the occurrence of “vis-
ible” nontrivial topology (those that can be
probed by “optical means”) to the occur-
rence of ANEC violations.
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SSS wormholes:

• Instead of mucking around with global anal-

ysis on Lorentzian manifolds, you can get

the essence of the result by looking at spher-

ically symmetric static (SSS) traversable

wormholes — as did Morris and Thorne.

• Write down some model geometry, note

that if a traversable wormhole throat exists

then a pencil of radially moving null rays

will be defocussed by the wormhole throat.

• Apply the focussing theorem, in reverse, to

deduce ANEC violations.

• Alternatively; simply calculate the Einstein

tensor, and integrate it along a radial null

geodesic through the wormhole throat.
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SSS wormholes: Calculation

• Without loss of generality

ds2 = − exp[2φ(`)]dt2 + d`2

+r(`)2
[
dθ2 + sin2 θ dϕ2

]
Here ` is a proper radial coordinate.

• Einstein components in orthonormal frame:

Gt̂t̂ = −
2r′′ − 1 + (r′)2

r2

Gr̂r̂ =
−1 + (r′)2 + 2rφ′r′

r2

Gθ̂θ̂ =
r′′ + φ′r′ + rφ′′ + r(φ′)2

r
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SSS wormholes: Calculation

• Look along the radial null direction:

Gt̂t̂ +Gr̂r̂ = −2
r′′ − φ′r′

r

• Integrate by parts along a radial null geodesic:∮
Gab k

akb dλ = −
∮

exp[−φ(`)]
(r′)2

r2
d` < 0.

Here λ is the null affine parameter.

• Contributions from asymptotic limits van-

ish by assumed asymptotic flatness.
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SSS wormholes: Calculation

• Reminder:∮
Gab k

akb dλ = −
∮

exp[−φ(`)]
(r′)2

r2
d` < 0.

• This is at this stage a purely geometrical

statement; no information (yet) about en-

ergy conditions.

• Ditto for the full topological censorship the-

orem: You construct a purely geometrical

statement that∮
Gab k

akb dλ < 0

along at least one inextendible null geodesic.
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Energy condition violations:

• It is only after you apply the Einstein equa-
tions in the form

Gµν = 8π GNewton T
µν
effective

that you get an ANEC violating theorem:∮
T effective
ab kakb dλ < 0

• Warning: The ANEC violations are for the
T effective
ab defined in exactly this way; not

any other definition of stress energy.

• You can cause endless confusion (and, un-
fortunately, published papers) by playing
linguistic games and “slicing and dicing”
T effective
ab in peculiar ways.

• Warning: Similar confusion arises in time-
dependent wormholes if you do not follow
the null geodesic all the way through.
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Local definition of a wormhole:

• If you want (as above) a local definition

of wormhole that side-steps issues of null

infinity and homotopic inequivalence, then

the only known characterization is in terms

of the wormhole throat and its extremality

properties.

• Extremality properties are geometric;

in particular they are metric,

and depend on conformal frame.

• While a (nonsingular) conformal transfor-

mation does not change the null geodesics,

and does not change the topology, it can

(and typically will) change the location (and

number) of wormhole throats.
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Local definition of a wormhole:

• Similarly, (nonsingular) conformal transfor-

mations (with suitable fall-off at infinity)

can affect the value (but not the sign) of

the ANEC integral.

• Warning: If you use a local definition of

wormhole in terms of the extremality prop-

erties of the throat; then make sure that

when you define the wormhole you also

calculate the effective stress-energy in the

same conformal frame.

• Warning: Singular conformal transforma-

tions will lead to no end of confusion.

(Especially if the conformal transformation

goes singular where the throat used to be

in the original manifold...)
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Euclidean wormholes:

• There are related but distinct results for
Euclidean wormholes.
Try to avoid confusing the two.

• The null and dominant energy conditions
(NEC and DEC) make no sense in Eu-
clidean signature.

• You can define Euclidean versions of the
weak and strong energy conditions (WEC
and SEC), but they are now mutually ex-
clusive. (This is very different from the
situation in Lorentzian signature.)

• Euclidean WEC seems the most sensible...

• Warning — Do not try jumping from
Euclidean to Lorentzian signature in the
middle of the calculation.
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Prior structure:

• GR by itself does not seem to place partic-
ularly strong constraints on topology.

• Nevertheless we have not directly observed
any nontrivial topology.

• Maybe, to get an accurate representation
of empirical reality, we should be using Ein-
stein equations plus some extra conditions?

– Prior geometry?

– Prior topology?

– Prior time-ordering?

– Prior whatever?

(At this stage general relativists tend to
choke and have difficulty in breathing.)
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Prior structure:

• To the general relativity community, “prior

structure” is an anathema.

• Remember that GR cones in two segments:

– Manifold picture/ Einstein Equivalence

principle/ UFF.

– Einstein field equations.

• UFF (and by implication EEP and the use-

fulness of the manifold picture) are tested

to one part in 1013 via Eötvös-type exper-

iments.

• Specific tests of the Einstein field equa-

tions are much less stringent.
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Aside — curvature squared:

• As a particular example, consider:

S =
∫ √

−g
{
κR+ λR2

}
d4x

Here λ is a dimensionless number.

• The direct experimental bounds are pitiful

|λ| < 1064

• The bounds are so poor because:

– Schwarzschild is still an exact solution
of the field equations for arbitrary λ.

– In linearized gravity there is now a “mas-
sive component” to the graviton, but
with mass

m =
mPlanck√

λ
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Back to prior structure:

• Relativists have looked for “prior structure”

both observationally and theoretically.

– PPN formalism — no sign of prior struc-

ture.

– All known attempts at “prior structure”

are rather ugly.

– Historically, Einstein made a big deal of

his “principle of general covariance”.

– These days, relativists view “general co-

variance” as close to tautological.

– What Einstein meant by his “principle

of general covariance” is in modern lan-

guage simply “absence of prior struc-

ture”.
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Absence of prior structure?

• “Absence of prior structure” is simply the

assertion that the spacetime geometry is

determined dynamically by the field equa-

tions — Einstein (plus distortions) — with-

out any “ab initio” restriction on the ge-

ometry or topology.

• But as soon as you adopt this viewpoint,

you also open the door to nontrivial topol-

ogy (and worse: chronology violations).

• Maybe this is too high a price for maintain-

ing the purity of one’s “geometric roots”?

• Is there a middle ground?
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Acceptability of prior structure?

Question: Is there an “a priori” restriction on

geometry that is sufficiently weak to avoid

severely constraining the field equations,

but sufficiently strong to:

• Protect chronology.

• (Possibly)

Suppress topology change.

• (Possibly)

Supress all strange topologies?

Answer: We really don’t know because we’ve

been to busy looking under other rocks.

• This is very definitely a minority view-

point.

24



Acceptability of prior structure?

Example: The “acoustic metrics” are a little

too strong a constraint

ds2 = −c2dt2 + δij (dxi− vi dt) (dxj− vj dt)

• Topology and causal structure are au-

tomatically trivial.

• Any spherically symmetric geometry (not

necessarily static) can be put in this form

(at least locally) — eg Schwarzschild in

Painleve–Gullstrand form.

• Kerr cannot be put in this form.

• Maximal analytic extensions are a non-

trivial issue.

• Inspired by acoustics in a flowing fluid.
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Acceptability of prior structure?

Example: The “globally ADM metrics” are quite
suitable:

ds2 = −c2dt2+ gij (dxi− vi dt) (dxj− vj dt)

• We want at least one global (or close to
global) slicing where the metric takes
this form with c2 > 0 everywhere and
det{gij} > 0 everywhere.

• Causal structure is then automatically
trivial. (Stable causality.)

• Topology (spatial) can still be nontriv-
ial.

• Schwarzschild and Kerr can (with caveats)
be put in this form.

• Maximal analytic extensions are still a
nontrivial issue.
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Conclusions:

• Without some ab initio prior structutre,
without some constraint on spatial and tem-
poral topologies, the Einstein are equations
(by themselves) incapable of preventing se-
rious weirdness in the physics.

• To protect chronology, and supress wierd
and wonderful topologies, you need to ei-
ther:

– Blame it all on quantum gravity, and
pray that when we finally have a de-
cent theory of quantum gravity every-
thing will become pelluidly clear.

– Put some constraints in at the front
end; before we try to quantize anything.

For example: Lorentzian lattice quan-
tum gravity.
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Conclusions:

• Be aware that “Lorentzian lattice quantum

gravity” is an anathema to relativists.

(Prior structure.)

• Be aware that “Lorentzian lattice quantum

gravity” is an anathema to string theorists.

(For very different reasons; string theorists

view the absence of supersymmetry with

great fear and loathing.)

• Personal view:

Prior structure is well worth pursuing.

— # # # —
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