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Why are “analogue spacetimes” interesting?

For the purposes of this workshop the answer is simple:

Analogue spacetimes provide one with solid physically 
well-defined and well-understood concrete models of 
many of the phenomena that seem to be part of the yet 
incomplete theory of  “quantum gravity”, or more 
accessibly,  “quantum gravity phenomenology”.

Abstract:
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For example “analogue spacetimes” provide concrete models 
of   “emergence”  (the effective low-energy theory can be 

radically different from the high-energy  microphysics). 

I will provide an overview of the key items of  “unusual physics” 
that arise in analogue spacetimes, and argue that they provide us 

with hints of what we should be looking for in any putative 
theory of “quantum gravity”. 

Provide controlled models of  “Lorentz symmetry breaking”,
 extensions of the usual notions of Lorentzian geometry:  

“rainbow spacetimes”,  pseudo-Finsler geometries, and more...

Abstract:
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Emergence:

The word “emergence” is being tossed around 
an awful lot lately.....

But what does it really mean?

---  The sum is greater than its parts?

---  “More is different”?

---  Universality?

Short distance physics is often radically different 
from long distance physics...

---  Mean field?



Emergence:

Prime example:    Fluid  dynamics

Long distance physics:    Euler equation

Continuity equation

Equation of state

Short distance physics:    Quantum molecular dynamics

Note:   You cannot hope to derive quantum molecular 
dynamics by quantizing fluid dynamics...

(generic)

(generic)

(specific)



Emergence:

Could Einstein gravity be “emergent”?

1) Can we get an “analogue spacetime”?

2) Can we get Einstein’s equations?

(generic)

(specific)

*IF* Einstein gravity is “emergent”, 
      *THEN* it makes absolutely no sense 

          to “quantize gravity”...

The best one could then hope for is some uber-theory that 
approximately reduces to Einstein gravity in some limit.



Emergence:

The uber-theory would not necessarily be quantum...

It must have as approximate limits:

--- Classical Einstein gravity...

--- Quantum field theory (Minkowski)...

--- Curved space QFT...

--- Semiclassical quantum gravity...

[‘t Hooft]

Analogue spacetimes are (among other things) 
baby steps in this direction...



1.2 Quantum aspects of analogue gravity 11
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Figure 1.1: We illustrate the propagation of sound waves in convergent fluid flow.

can only cross the horizon from one direction, from subsonic to supersonic.

As pointed out above, Hawking radiation is a semi-classical quantum gravity effect, that does not

directly involve the validity of the Einstein equations. This is in contrast to the notion of Bekenstein

entropy, a geometrical entropy formulated in 1973 [25, 26]. The derivation for Bekenstein entropy
directly involves the Einstein equations. In the context of the analogue model programme the is-

sue of the “Essential and inessential features of Hawking radiation” has been summarized by Matt
Visser [184].

Hawking radiation requires — besides the existence of a Lorentzian metric — (1) an apparent

horizon (at least asymptotically), (2) non-zero “surface gravity”,

κ(t)
∣∣∣
Horizon

= csound
d [c(t, x) − |"v(t, x)|]

dx

∣∣∣∣
Horizon

, (1.25)

and (3) a relatively slow evolution of the geometry,

d [c(t, x) − |"v (t, x)|]
dx

"
ċsound

csound

∣∣∣∣
Horizon

. (1.26)

The latter is important to guarantee the dominance of spatial gradients over temporal gradients. The

slower the geometry evolves, the closer the apparent horizon sits to the event horizon (absolute

horizon), and the closer the actual spectrum is to a quasi-thermal spectrum [184]. (More recently,

in [11, 17] the authors argued that the presence of a pre-existing apparent horizon can be further

relaxed.)

Acoustic 
spacetime:

The simplest  “analogue spacetimes” are the 
“acoustic spacetimes”...

Consider sound waves in a moving fluid... [Unruh]
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6 Message

Lots of interesting dispersion relations can be modelled using water waves...

7 Formulae

gµν(t, !x) ≡ 1

ρ0c




−1

... −vj
0

· · · · · · · · · · · · · · · · · · ·
−vi

0

... (c2 δij − vi
0 vj

0)



 .

gµν ≡
ρ0

c




−(c2 − v2

0)
... −vj

0

· · · · · · · · · · · · · · · · · · ·
−vi

0

... δij



 .

ds2 ≡ gµν dxµ dxν =
ρ0

c

[
−c2 dt2 + (dxi − vi

0 dt) δij (dxj − vj
0 dt)

]
.

8 Sketch plan

• Emergence.

• Acoustic spacetime.

• Normal modes.

• Rainbow spacetime — at least 2 distinct metrics...

• Analogue deviations from Lorentz invariance.

Theorem: Consider an irrotational, inviscid, barotropic perfect fluid,
governed by the Euler equation, continuity equation, and an equation of state.
The dynamics of the linearized perturbations (linear sound, phonons)
is governed by a D’Alembertian equation

∆gΦ =
1
√

g
∂a

(√
g gab∂b Φ

)
= 0

involving an “acoustic metric”.
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Acoustic 
spacetime:

[Algebraic function of the background fields.]
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Acoustic 
spacetime:

(3+1 dimensions)



Acoustic 
spacetime:

There is by now a quite sizable literature on acoustic,
 and other more general analogue spacetimes

Unruh: Experimental black hole evaporation, 
Phys Rev Lett 46 (1981) 1351-1353.    

Barcelo,  Liberati,   Visser:  Analogue gravity,
 Living Reviews in Relativity, 8:12, 2005.

Main message:   Finding an effective low-energy metric 
       is not all that difficult....



Acoustic 
spacetime:

Controlled signature change   [White, Weinfurtner]

Examples of exotic physics:

Bose-nova                            [Hu, Calzetta]

c^2    propto     (scattering length)

Can be controlled by using a Feschbach resonance.
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Rainbow
geometries:

There is no general widely accepted precise
mathematical definition of what is meant by a 

“rainbow geometry”...

The physicist’s definition is rather imprecise:
“energy dependent metric”?

“momentum dependent metric”?
“4-momentum dependent metric”?

Q:     4-momentum of what? The observer? 
The object being observed?

Rainbow 
spacetime:



Rainbow
geometries:

Finsler geometries, with a direction-dependent 
metric that is independent of the magnitude 
of the tangent vector,   are not “rainbow”...

To capture the essence of “energy dependence” 
need a metric that depends also on the 

magnitude of the tangent vector....

Dispersion 
relation:

Another approach is to start straight from 
the dispersion relations....

Consider a fluid at rest,    in very many cases the 
dispersion relation can be written in the form:

ω = c k — the quanta of excitations are thus phonons. An interesting consequence
of Bogoliubov theory in Bose condensates is that in general the excitation spectrum
displays nonlinear dispersion, being linear (i.e., phononic) for low |k| and becoming
quadratic (i.e., free-particle like) at large |k|. When the nonlinear dispersion (90)
is incorporated into analogue models of gravity it is equivalent to breaking Lorentz
invariance [1, 16]. For the general case, where we do not want to be restricted to
the phononic region, we must retain the momentum-dependent “rainbow metric” of
equation (89). Since each mode is propagating with a speed depending on k, we get
in the eikonal approximation

ck(t, x)2 = c(t, x)2 + ε2
qpk

2, (93)

with

εqp =
!

2m
. (94)

The dispersion relation in the eikonal limit is,

ωk(t, x) = ck(t, x) k =
√

c(t, x)2 k2 + ε2
qpk

4, (95)

and hence violates “acoustic Lorentz invariance”. This is not surprising at all, since
we know the quasi-particles become “atom-like”, and so non-relativistic, at high
momentum.

The usual line of argument is that the smallness of εqp makes it possible to
neglect the second order term in the dispersion relation for low-energy excitations,
where εqpk ! c. However, it is important to realise that the propagation speed
can be a function of time, c = c(t, x), and hence if c(t, x) → 0 then one is dealing
with a system that eventually violates Lorentz invariance at all energy scales. There
are no theoretical or experimental restrictions to prevent U(t, x) ∝ c(t, x) becoming
arbitrarily small. In the specific cases we are interested, we run into exactly this
situation and therefore a more subtle analysis is required, as to whether the the
acoustic metric (92) is an sufficient approximation, or whether we have to use the
more sophisticated concept of a rainbow metric (89).

ω2 = F (k)

19

for some possibly nonlinear function F(k)...

Eg: BECs (acoustic and post-acoustic), ripplons,  
gravity waves (fluid mechanics), etc, etc ...

(2nd-order in time;   arbitrary order in space...)

Rainbow 
spacetime:

[Unruh,  Jacobson]
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[2] C. Barceló, S. Liberati and M. Visser, “Analog gravity from field theory normal
modes?”, Class. Quant. Grav. 18, 3595 (2001) [arXiv:gr-qc/0104001].
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Dispersion 
relation:

Phase velocity: 

Dispersion 
relation: 

Fluid in motion:    Doppler shift the frequency...

Rainbow 
spacetime:
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[2] C. Barceló, S. Liberati and M. Visser, “Analog gravity from field theory normal
modes?”, Class. Quant. Grav. 18, 3595 (2001) [arXiv:gr-qc/0104001].
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Dispersion 
relation:

Rewrite as:

Pick off components:

Momentum dependent metric depending on phase velocity.

Rainbow 
spacetime:



Dispersion 
relation:

Dispersion relation approach is physically transparent...

Only weakness:   Conformal factor left unspecified...
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[4] M. Visser, C. Barceló and S. Liberati, “Bi-refringence versus bi-metricity,”
arXiv:gr-qc/0204017.

[5] Visser M and Weinfurtner S 2004 Massive phonon modes from a BEC-based
analog model Preprint cond-mat/0409639.

[6] Visser M and Weinfurtner S 2005 “Massive Klein-Gordon equation from a BEC-
based analogue spacetime” Phys. Rev. D 72 044020 (Preprint gr-qc/0506029).

[7] Liberati S, Visser M and Weinfurtner S 2005 Analogue quantum gravity
phenomenology from a two-component Bose–Einstein condensate Preprint gr-
qc/0510125.

20

ω2 = c2
k k2

ω → ω − "v · "k

(
ω − "v · "k

)2

− c2
k k2 = 0

gab
k ka kb = 0.

gab
k ∝




− 1 −vj

− vi c2
k δij − vivj



 . (96)

gk
ab ∝

[
−(c2

k − v2) −vj

−vi δij

]
. (97)

4.3 Summary

References

[1] C. Barceló, S. Liberati and M. Visser, “Analogue gravity,” Living Rev. Rel. 8
(2005) 12 [arXiv:gr-qc/0505065].
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[2] C. Barceló, S. Liberati and M. Visser, “Analog gravity from field theory normal
modes?”, Class. Quant. Grav. 18, 3595 (2001) [arXiv:gr-qc/0104001].
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Rainbow 
spacetime:

There are at least two distinct very different notions 
of  “Rainbow metric” in an analogue setting. 

What is the dispersion relation of a pure mode?

They answer different questions:

How do wave packets propagate?

If you are lucky there is a “hydrodynamic” limit:

*

*
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[3] C. Barceló, S. Liberati and M. Visser, “Refringence, field theory, and normal
modes”, Class. Quant. Grav. 19, 2961 (2002) [arXiv:gr-qc/0111059].
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Signal speed?

c  ==>  infinity?
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Rainbow 
spacetime:

Bogoliubov dispersion relation (eg,  BECs):

Controlled breaking of Lorentz invariance...

See “quantum gravity phenomenology”...

(supersonic)

See “cosmological particle production” [Weinfurtner]

[Liberati...]



For two layered fluids

ω2 =

[
ρ1 − ρ2

ρ1 + ρ2

]
g k.

v2
phase =

[
ρ1 − ρ2

ρ1 + ρ2

]
g

k
.

3.3 Intermediate regime

See derivation in Lamb §228, p354, eq (5):

ω =
√

g k tanh(k d);

ω2 = g k tanh(k d) = c2
0 k2 tanh(k d)

k d
As the water begins to get deeper

ω2 = c2
0 k2

{
1− (k d)2

3
+

2(k d)2

15
+ . . .

}

so the first correction is a “wrong-sign Bogoliubov-like piece”.
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ω
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=

√
g tanh(k d)

k
=

√
g d

tanh(k d)

k d
= c0

√
tanh(k d)
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≤ c0.
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∂ω

∂k
= just plain ugly.
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]
.

In fact, the best you can get from Lamb [§236, p381] is:
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or the equivalent
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}
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Rainbow 
spacetime:

Surface waves in finite depth of liquid:

(subsonic)

So analogue models provide concrete examples for both 
supersonic an subsonic dispersion,   and more...

[Lamb]
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4

Rainbow 
spacetime:

Surface waves in infinite depth of liquid:

No hydrodynamic limit...

No well-defined low-momentum spacetime...

[You could argue that this is an unphysical limit...]
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5 Finite-depth Surface–Capillary waves

(Finite depth ocean, with surface tension, and free surface.)
Based on Lamb §267, p 459

ω2 = c2
0 k2

{
1 +

σ

ρ c2
0 d

(kd)2

}
tanh(kd)

kd
.

c2 = c2
0

{
1 +

σ

ρ c2
0 d

(kd)2

}
tanh(kd)

kd
.

Derivation: Key formulae are:

φ = C cosh(k[y + d]) cos(kx) cos(ωt + ε)

η = a cos(kx) sin(ωt + ε)

η̇ = −∂yφ (at surface)

ωa = −Ck sinh(kd)
p

ρ
= φ̇− gy (in bulk)

p

ρ
= φ̇− gη (at surface)

p = −σ∂2
xη (at surface)

Therefore:
φ̇− gη = −σ∂2

xη/ρ (at surface)

−Cω cosh(kd)− ga = σk2a/ρ

+ω2a coth(kd)/k − ga = σk2a/ρ

Dispersion relation:
ω2 = (g + σk2/ρ)k tanh(kd)

ω2 = (gd + σdk2/ρ)k2 tanh(kd)

kd
Define

c2
0 = gd

Then:

ω2 = c2
0k

2

{
1 +

σ

ρc2
0d

(kd)2

}
tanh(kd)

kd
.
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Check dimensions:
[

σ

ρc2
0d

]
=

[F ]/[L]

([E]/[L]3)[L]
=

[F ][L]

[E]
= 1. OK!

Check limits:
d→∞ get Lamb §267 (2) [ρ′ → 0]
d→ 0 get

ω2 = gdk2 + σdk2/ρ + O(d3)

which is a Bogoliubov type spectrum.

ε =
σ

ρc2
0d

=
σ

ρgd2
=

(0.27 cm)2

d2
.

6 Message

Lots of interesting dispersion relations can be modelled using water waves...

7 Formulae

gµν(t, %x) ≡ 1

ρ0c




−1

... −vj
0

· · · · · · · · · · · · · · · · · · ·
−vi

0

... (c2 δij − vi
0 vj

0)



 .

gµν(t, %x) ≡ ρ0

c




−(c2 − v2

0)
... −vj

0

· · · · · · · · · · · · · · · · · · ·
−vi

0

... δij



 .

ds2 ≡ gµν dxµ dxν =
ρ0

c

[
−c2 dt2 + (dxi − vi

0 dt) δij (dxj − vj
0 dt)

]
.

(d%x− %v dt)2 = c2
k dt2

ds2 = 0 = gab dxa dxb

lim
k→0

c2
phase(k) = c2

hydrodynamic = lim
k→0

c2
group(k)

7

Rainbow 
spacetime:

Asymptotically supersonic,  though it can be 
adjusted to have a subsonic dip.

Surface waves in finite depth of liquid + surface tension:

Water:
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7

Rainbow 
spacetime:

Can tune away the lowest order Lorentz violation...

(Water at 0.47 cm depth)

These are just some examples of the types of 
dispersion relation you can arrange...
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7

Rainbow 
spacetime:

Can also arrange for particle masses:

[2 interacting BECs:   Weinfurtner et al...]

Basic message:   Lots of physically well behaved and 
well controlled toy models for many different

types of  “beyond the standard model” physics...
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which now defines the characteristics in terms of the vanishing of the pseudo-co–
Finsler structure

Q(k) = Qabcdkakbkckc, (21)

defined on the cotangent bundle. As explained below, this pseudo-co–Finsler struc-
ture can be Legendre transformed to provide a pseudo–Finsler structure, a Finslerian
notion of distance

ds4 = gabcd dxadxbdxcdxd. (22)

Here the completely symmetric rank 4 tensor gabcd determines the “sound cones”
through the relation ds = 0. It is interesting to note that a distance function of the
form

ds = 4
√

gabcd dxadxbdxcdxd (23)

first made its appearance in Riemann’s inaugural lecture of 1854, though he did
nothing further with it, leaving it to Finsler to develop the branch of geometry
now bearing his name. The present discussion is sufficient to justify the use of
the term “pseudo–Finsler” in the generic 2-BEC situation, but we invite the more
mathematically inclined reader to see the discussion below for a sketch of how much
further these ideas can be taken.

The pseudo–Finsler geometry implicit in (14) is rather complicated compared
with the pseudo-Riemannian geometry we actually appear to be living in, at least as
long as one accepts standard general relativity as a good description of reality.

3 Finsler and co–Finsler geometries

Finsler geometries are sufficiently unusual that a brief discussion is in order — espe-
cially in view of the fact that the needs of the physics community are often somewhat
at odds with what the mathematical community might view as the most important
issues. Below are some elementary results, where we emphasise that for the time
being we are working with ordinary “Euclidean signature” Finsler geometry. For
general references, see [17].

3.1 Basics

Euler theorem: If H(z) is homogeneous of degree n then

zi ∂H(z)

∂zi
= n H(z). (24)

6

History:

1854:

Riemann’s inaugural lecture at Goettingen

But Riemann never developed the idea...

Left to Paul Finsler in early 20’th century...

But physicists need pseudo-Finsler spacetime,
not Finsler space...

Finsler 
spacetime:
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• F 2 is homogeneous of degree 2.

• gij is homogeneous of degree 0.

• ∂[F 2]/∂t is homogeneous of degree 1.

• Therefore p(t) is homogeneous of degree 1
and t(p) is homogeneous of degree 1.

• Therefore t(p)p− F 2(t(p)) is homogeneous of degree 2.

• Therefore G(p) is homogeneous of degree 1.

Thus from a Finsler function F (x, t) we can always construct a co–Finsler function
G(x, p) which is homogeneous of degree 1 on the cotangent bundle.

From the way the proof is set up it is clearly reversible — if you are given a
co–Finsler function G(x, p) on the cotangent bundle this provides a natural way of
extracting the corresponding Finsler function:

F 2(x, t) = t p(t)−G2(x, p(t)). (34)

3.2 Connection with the quasi-particle PDE analysis

From the PDE-based analysis we obtain the second-order system of PDEs

∂a

(
fab

AB ∂bθ
B
)

+ lower order terms = 0. (35)

or the equivalent

∂a

(
fab ∂b

#θ
)

+ lower order terms = 0. (36)

We are now generalizing in the obvious manner to any arbitrary number n of
interacting BECs, but the analysis is even more general than that — it applies to
any field-theory normal-mode analysis that arises from a wide class of Lagrangian
based systems [2, 3].

Going to the eikonal approximation this becomes

fab
AB papb εB + lower-order terms = 0, (37)

which leads (neglecting lower order terms for now) to the Fresnel-like equation [2, 3]

det[fab
AB papb] = 0. (38)
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PDE analysis:

For a second-order system of PDEs:

Equivalently:

Eikonal approximation:
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AB papb εB + lower-order terms = 0, (37)

which leads (neglecting lower order terms for now) to the Fresnel-like equation [2, 3]

det[fab
AB papb] = 0. (38)
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But by expanding the n×n determinant (n is the number of fields, not the dimension
of spacetime) we have

det[fab
AB papb] = Qabcd... papbpcpd . . . (39)

where if there are n fields there will be 2n factors of p.
Now define

Q(x, p) = Qabcd... papbpcpd . . . , (40)

and
G(x, p) = 2n

√
Q(x, p) = [Q(z, p)]1/(2n), (41)

then

• Q(x, p) is homogeneous of degree 2n.

• G(x, p) is homogeneous of degree 1, and hence is a co–Finsler function.

• We can now Legendre transform G → F , providing a chain

Q(x, p) → G(x, p) → F (x, t). (42)

Can this route be reversed?

Step 1: We can always reverse F (x, t) → G(x, p) by Legendre transformation.
Step 2: We can always define

gab(x, p) =
1

2

∂

∂pa

∂

∂pb
[G(x, p)2], (43)

this is homogeneous of degree 0, but is generically not smooth at p = 0.
In fact, if gab(x, p) is smooth at p = 0 then there exits a limit

gab(x, p → 0) = ḡab(x), (44)

but since gab(x, p) is homogeneous of degree 0 this implies

gab(x, p) = ḡab(x) [∀p], (45)

and so the geometry simplifies Finsler → Riemann.
This observation suggests the following definition.

Definition: A co–Finsler function G(x, p) is 2n-smooth iff the limit

1

(2n)!
lim
p→0

(
∂

∂p

)2n

G(x, p)2n = Q̄abcd... (46)
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Define:

Finsler 
spacetime:

Physical model:    Birefringent crystal

Maxwell ==> 

• F 2 is homogeneous of degree 2.

• gij is homogeneous of degree 0.

• ∂[F 2]/∂t is homogeneous of degree 1.

• Therefore p(t) is homogeneous of degree 1
and t(p) is homogeneous of degree 1.

• Therefore t(p)p− F 2(t(p)) is homogeneous of degree 2.

• Therefore G(p) is homogeneous of degree 1.

Thus from a Finsler function F (x, t) we can always construct a co–Finsler function
G(x, p) which is homogeneous of degree 1 on the cotangent bundle.

From the way the proof is set up it is clearly reversible — if you are given a
co–Finsler function G(x, p) on the cotangent bundle this provides a natural way of
extracting the corresponding Finsler function:

F 2(x, t) = t p(t)−G2(x, p(t)). (34)

3.2 Connection with the quasi-particle PDE analysis

From the PDE-based analysis we obtain the second-order system of PDEs

∂a

(
fab

AB ∂bθ
B
)

+ lower order terms = 0. (35)

or the equivalent

∂a

(
fab ∂b

#θ
)

+ lower order terms = 0. (36)

We are now generalizing in the obvious manner to any arbitrary number n of
interacting BECs, but the analysis is even more general than that — it applies to
any field-theory normal-mode analysis that arises from a wide class of Lagrangian
based systems [2, 3].

Going to the eikonal approximation this becomes

fab
AB papb εB + lower-order terms = 0, (37)

which leads (neglecting lower order terms for now) to the Fresnel-like equation [2, 3]

det[fab
AB papb] = 0. (38)
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PDE analysis:

For a second-order system of PDEs:

Equivalently:

Eikonal approximation:

(OK, technically co-Finsler rather than Finsler)

[Born+Wolf]



3.3 Lorentzian signature Finsler geometries

The distinction between Finsler and pseudo–Finsler geometries has to do with the
distinction between elliptic and hyperbolic PDEs. Elliptic PDEs lead to ordinary
Finsler geometries, hyperbolic PDEs lead to pseudo–Finsler geometries.

Remember that in special relativity we typically define

dγ(x, y) =

∫ y

x

√
gab(dxa/dτ)(dxb/dτ)dτ, (58)

then

• dγ(x, y) ∈ IR+ for spacelike paths;

• dγ(x, y) = 0 for null paths;

• dγ(x, y) ∈ II+ for timelike paths;

The point is that even in special relativity (and by implication in general relativity)
“distances” do not have to be real numbers. This is why physicists deal with pseudo–
Riemannian [Lorentzian] geometries, not (strictly speaking) Riemannian geometries.

Reminder: The physicists’ spacetime metric of general relativity (or even special
relativity) is not a “metric” in the technical sense most commonly used by mathe-
maticians, the physicists’ metric should really be called a “pseudo-metric”, though
even that phrase has unwanted technical connotations — it is probably best to just
refer to the physicists’ metric as a “Lorentzian metric”.

To see how this generalizes in a Finsler situation let us first consider a co–Finsler
structure that is multi-metric, that is:

Q(x, p) = Πn
i=1(g

ab
i papb), (59)

where each one of these n factors contains a Lorentzian signature matrix and so can
pass through zero. Then

G(x, p) = 2n

√
Πn

i=1(g
ab
i papb), (60)

and

G(x, p) ∈ exp

(
iπ#

2n

)
IR+, (61)

where

• # = 0→ G(x, p) ∈ IR+ → outside all n signal cones;
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Lorentzian
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Generalize this to a Finsler structure:

Start with the simple multi-metric case:
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then

• dγ(x, y) ∈ IR+ for spacelike paths;

• dγ(x, y) = 0 for null paths;

• dγ(x, y) ∈ II+ for timelike paths;

The point is that even in special relativity (and by implication in general relativity)
“distances” do not have to be real numbers. This is why physicists deal with pseudo–
Riemannian [Lorentzian] geometries, not (strictly speaking) Riemannian geometries.

Reminder: The physicists’ spacetime metric of general relativity (or even special
relativity) is not a “metric” in the technical sense most commonly used by mathe-
maticians, the physicists’ metric should really be called a “pseudo-metric”, though
even that phrase has unwanted technical connotations — it is probably best to just
refer to the physicists’ metric as a “Lorentzian metric”.

To see how this generalizes in a Finsler situation let us first consider a co–Finsler
structure that is multi-metric, that is:

Q(x, p) = Πn
i=1(g

ab
i papb), (59)

where each one of these n factors contains a Lorentzian signature matrix and so can
pass through zero. Then

G(x, p) = 2n

√
Πn

i=1(g
ab
i papb), (60)

and

G(x, p) ∈ exp

(
iπ#

2n

)
IR+, (61)

where

• # = 0→ G(x, p) ∈ IR+ → outside all n signal cones;
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• ! = n→ G(x, p) ∈ II+ → inside all n signal cones.

So we can now define

• Spacelike ↔ outside all n signal cones ↔ G real;

• Null ↔ on any one of the n signal cones ↔ G zero;

• Timelike ↔ inside all n signal cones ↔ G imaginary;

• plus the various “intermediate” cases:

“intermediate”↔ inside ! of n signal cones↔ G ∈ i!/n × IR+. (62)

Now this basic idea survives even if we do not have a multi-metric theory. The
condition Q(x, p) = 0 defines a polynomial of degree 2n, and so defines n nested
sheets (possibly crossing in places). Compare with Courant and Hilbert’s discussion
of the Monge cone [13].

That is:

Q(x, p) = 0 ⇔ Q(x, (E, "p)) = 0;

⇔ polynomial of degree 2n in E for any fixed "p;

⇔ in each direction ∃ 2n roots in E;

⇔ corresponds to n [topological] cones.

(These are topological cones, not geometrical cones, and the roots might happen to
be degenerate.)
Question: Should we be worried by the fact that the co-metric gab is singular on the
signal cone? (In fact on all n of the signal cones.) Not really. We have

G(x, p) = 2n
√

Q̄abcd... papbpcpd . . ., (63)

so

gab(x, p) =
1

2

∂2

∂pa ∂pb

(
n
√

Q(x, p)
)

=
1

2n

∂

∂pb

{
Q

1
n−1 Qabcd... pbpcpd . . .

}
, (64)

whence

gab(x, p) =
1

2n
Q

1
n−1 Qabcd... pcpd . . . (65)

+
1

2n

(
1

n
− 1

)
Q

1
n−2

[
Qacde... pcpdpe . . .

] [
Qbfgh... pfpgph . . .

]
,
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That is:

This basic idea survives even if we go beyond 
the multi-metric special case...
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defines a polynomial of degree “2n”...

... and therefore defines “n” nested “conoids”...

This is Courant-Hilbert’s    “Monge cone”...
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Question: Should we be worried by the fact that the co-metric gab is singular on the
signal cone? (In fact on all n of the signal cones.) Not really. We have

G(x, p) = 2n
√

Q̄abcd... papbpcpd . . ., (66)

so

gab(x, p) =
1

2

∂2

∂pa ∂pb

(
n
√

Q(x, p)
)

=
1

2n

∂

∂pb

{
Q

1
n−1 Qabcd... pbpcpd . . .

}
, (67)

whence

gab(x, p) =
1

2n
Q

1
n−1 Qabcd... pcpd . . . (68)

+
1

2n

(
1

n
− 1

)
Q

1
n−2

[
Qacde... pcpdpe . . .

] [
Qbfgh... pfpgph . . .

]
,

which we can write as

gab(x, p) =
1

2n
Q−(n−1)/n Qabcd... pcpd . . . (69)

− 1

2n

n− 1

n
Q−(2n−1)/n

[
Qacde... pcpdpe . . .

] [
Qbfgh... pfpgph . . .

]
.

Yes, this naively looks like it’s singular on the signal cone where Q(x, p) = 0. But
no, this is not a problem: Consider

gabpapb =
1

2n
Q−(2n−1)/nQ− 1

2n

n− 1

n
Q−(2n−1)/nQ2, (70)

then

gabpapb =
1

2n

(
1− n− 1

n

)
Q1/n =

1

2n2
Q1/n = 0, (71)

and this quantity is definitely non-singular.

3.4 Summary

In short:

• pseudo-co–Finsler functions arise naturally from the leading symbol of hyper-
bolic systems of PDEs;

• pseudo-co–Finsler geometries provide the natural “geometric” interpretation of
a multi-component PDE before fine tuning;

• In particular the natural geometric interpretation of 2-BEC models (in the
hydrodynamic limit, and before fine tuning) is as a 4-smooth pseudo-co–Finsler
geometry.
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Lorentzian
signature:

In short:

Despite their somewhat abstract mathematical 
character,   Finsler spacetimes are of direct 

physical interest...

Finsler 
spacetime:

[Liberati et al]
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Conclusion:

Many interesting  extensions and modifications of the  
general relativity notion of spacetime have 
concrete and well controlled models within 

the “analogue spacetime” framework.

This tells us which rocks to start looking under...
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   “It is important to keep an 
open mind;  just not so open 

that your brains fall out”
 

                         --- Albert Einstein


