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Zeta funtions and the Casimir Energy 21 IntrodutionThe study of vauum utuations, as embodied in the Casimir e�et [1℄, has been a sub-jet of extensive researh [2℄. The Casimir energy may be thought of as the energy dueto the distortion of the vauum. This distortion may be aused either by some bak-ground �eld (e.g. gravity), or by the presene of boundaries in the spae{time manifold(e.g. ondutors). Early investigations of the e�ets of a gravitational bakground wereperformed by Utiyama and De Witt [3℄, and work has ontinued on this important sub-jet [4, 5, 6, 7, 8, 9℄. Early work on the e�et of boundaries was performed by Casimir [1℄,and was later extended by Fierz, Boyer, deRaad, and Milton [10, 11, 12, 13℄. More re-ently boundary e�ets have been entral to the alulation of the Casimir energy in bagmodels of QCD [14, 15, 16℄.We feel that interesting things remain to be said. In this paper heat kernel and zetafuntion tehniques will be utilized to investigate these topis [4, 17℄. The uni�ed treat-ment presented here is appliable to a very wide lass of models and physial situations.We start by developing a de�nition of the Casimir energy whih is �nite and appliesto arbitrary stati manifolds with or without boundariesECasimir = 12�h� � PP [�3(�12 + �)℄: (1.1)Here � is a normalization sale of dimension (length)�1, and the PP symbol indiatesthat we are to extrat the \prinipal part". This de�nition yields a �nite quantity in bothat and urved spae{times, with or without boundaries, for both massive and masslesspartiles. The normalization sale � appearing in the above is required to keep the zetafuntion dimensionless for all values of s. The introdution of this sale leads generially tonon-trivial saling behaviour for the Casimir energy. It is pointed out how this de�nitionrelates in speial ases to well{known results.Our de�nition of the Casimir energy allows us to investigate its dependene on the\radius" of the manifold. We �nd that for massless �eldsECasimir(R) = �hR � f�0 � �1 � ln(�R)g; (1.2)where the �-independent oeÆients �0 and �1 are dimensionless numbers depending onthe geometry of the manifold. This result has some very interesting onsequenes whenapplied to the bag models of hadrons in QCD.Further, we may relate the Casimir energy to the one{loop e�etive ation (i.e. thedeterminant of a suitable four dimensional di�erential operator). This is done by relatingthe zeta funtion of D4 = ��02 +D3 to the zeta funtion of D3�4(s) = �Tp4� � �(s� 12)�(s) � �3(s� 12): (1.3)Thus we obtain a non-trivial relationship between the Casimir energy and the one-loope�etive energy Ee� = ECasimir + 12�h� h (1)�  (�12)i C2(4�)2 : (1.4)



Zeta funtions and the Casimir Energy 3To help understand the signi�ane of this relationship we inlude a disussion of thevarious di�erent onepts ommonly lumped together as \vauum energy".We next apply our analysis to the one{loop orretions to the e�etive osmologialonstant and Newton onstant in Kaluza{Klein theories. These one-loop orretions maybe interpreted as a Casimir-like e�et. We derive the following �nite expressions for theone-loop four-dimensional e�etive osmologial and Newton onstants.�e� = � � vol(
) +G�1 � Z
pg Rd � �42(4�)2 n 12� 0d(�2)� 34�d(�2)o ;G�1e� = G�1 � vol(
)� k �22(4�)2 f� 0d(�1)� �d(�1)g : (1.5)In partiular, this allows us to study the dependene of these onstants on the \radius"of the ompat dimensions, without having to resort to expliit alulations.



Zeta funtions and the Casimir Energy 42 Zeta funtions on manifolds with boundary.As regularization tehnique we shall use the zeta-funtion method due to Dowker andCrithley [4℄ and Hawking [17℄. Its relation to other methods (e.g., dimensional regular-ization) has been disussed in the literature [4℄. In order to make subsequent argumentsunderstandable, we must �rst briey review the mathematial mahinery of zeta funtions.Consider the zeta funtion assoiated with a seond-order self-adjoint ellipti operator Dde�ned on a ompat manifold 
 with boundary �
�(s) = tr0f(��2D)�sg =X0(��2�n)�s; (2.1)where the �n are eigenvalues of D; while the prime on tr0 and P0 indiates that we shouldnot inlude the zero eigenvalues of D in the sum. We have introdued a \sale" �, withthe dimensions of (length)�1, in order to keep the zeta-funtion dimensionless for all s.The zeta funtion is related to the di�usion operator (heat kernel) via a Mellin trans-form: �(s) = X0 1�(s) Z 10 dt ts�1 exp(��n��2t)= 1�(s) Z 10 dt ts�1 tr0(e�tD��2): (2.2)Here t is a dimensionless parameter, not to be onfused with physial time (x0=). Fromnow on, in the interests of notational simpliity, we ignore zero modes. The trae of thedi�usion operator is given by the integral of the diagonal part of the heat kernel over themanifold: tr(e�tD��2) = Z
K(t; x; x) pg ddx: (2.3)The heat kernel K possesses an asymptoti expansion for small t:K(t; x; x) =  �24�t!d=2 � ( NX0 an(x) (��2t)n + o(tN)) : (2.4)The sum is over integer values of n. The an are funtions of the gravitational �eld, theymay be expressed as polynomials in the Riemann tensor, its ontrations, and ovariantderivatives. (See Appendix A.) The diagonal part of the heat kernel ontains exponentiallysuppressed terms (e�k(x)=t) that do not ontribute to the asymptoti expansion (2.4).These exponentially suppressed terms do however ontribute an expliit boundary termto the trae of the heat kerneltr(e�tD��2) =  �24�t!d=2 � ( NX0 �Z
 an(x) (��2t)n + Z�
 bn(y) (��2t)n� + o(tN)) : (2.5)The sum runs over half{integers, (but the an vanish for half-odd-integers). The bn are fun-tions of the seond fundamental form of the boundary (extrinsi urvature), the induedgeometry on the boundary (intrinsi urvature), and the nature of boundary onditionsimposed. These objets are tabulated in many plaes: e.g., Birrell and Davies [19℄ andAppendix A of this paper. For future referene we de�ne the dimensionless quantities:An = �d�2n R
 an(x) pg ddx, Bn = �d�2n R�
 bn(y) p~g dd�1y, and Cn = An +Bn.



Zeta funtions and the Casimir Energy 5In view of the asymptoti expansion (2.5), it is lear that the zeta funtion �(s) isa meromorphi funtion of the omplex variable s possessing only simple poles whoseresidues are determined by Cn. Observe that (2.5) implies that �(s) has a pole struturegiven by �(s) = 1�(s) (4�)d=2 � ( 1X0 Cn(s� [d2 � n℄) + f(s)) : (2.6)The funtion f(s) is an entire analyti funtion of s, but, in general, we have little ad-ditional information onerning its behaviour. However, we do know that �(s) is analytiat s = 0. It is thus possible to de�ne the determinant of D to be [17℄det0(��2D) = exp � dds�(s)�����s=0! : (2.7)Observe that many of the tehnial details assoiated with renormalization have beenhidden by these zeta funtion tehniques. We shall now utilize this mathematial ma-hinery to de�ne the Casimir energy, and relate ECasimir to the one{loop E�etive ationSe� = 12 ln detD.



Zeta funtions and the Casimir Energy 63 The Casimir energy.In order to have a well{de�ned notion of energy, it is useful to work in a stati spae-time [18℄, spei�ally let us take g4 = �(dx0)2 + g3, in whih ase we deompose thedi�erential operator D4 as D4 = �(�0)2 +D3. The eigen-frequenies assoiated with D3are !n = q�n(D3) � . We wish to onsider the zero{point energy:ECasimir = 12 Xn �h!n: (3.1)This sum is, of ourse, divergent. We regularize it by de�ningEreg(�) = 12�h� �Pn(�n��2)( 12��) = 12�h� � �3 ��12 + �� : (3.2)Where �3 is the zeta funtion assoiated with the three-dimensional operator D3. A quikglane at the previous setion shows that Ereg(�) is a meromorphi funtion with a pole at� = 0, with residue �12�h� C2(g3)=(4�)2 = �12�hfR
 a2+ R�
 b2g=(4�)2, where the integralis over three-dimensional spae and its two-dimensional boundary. Beause of the poleat � = 0, we annot, in general, remove the regulator; the geometri oeÆient C2 is anobstale to giving a �nite de�nition for the Casimir energy. Note, however, that in manyinteresting ases (e.g., at spae with at boundaries and massless partiles) C2 = 0, sothat lim�!0Ereg(�) is �nite, and independent of the normalization sale �.How is one to understand the unphysial pole and � dependene of the (zeta-funtionregulated) Casimir energy? First we note that the Casimir energy in isolation is unphys-ial. When physiists speak of the Casimir energy they usually are identifying terms inthe renormalized total energy whih they interpret as arising from boundary or gravita-tional e�ets. There is ipso fato no pole in the total energy; the pole in equation (3.2)is absorbed into the bare ation whih must ontain a term proportional to C2. Havingseen this we must admit that the way in whih the pole is removed is not unique. Thepossibility of di�erent renormalization shemes means that the Casimir energy has an am-biguity proportional to C2. Our hoie of renormalization sheme is to adopt the minimalsubtration sheme whih is equivalent to simply removing the pole from equation (3.2).We de�ne ECasimir � lim�!0 12fEreg(+�) + Ereg(��)g� 12�h� � lim�!0 12f�3(�12 + �) + �3(�12 � �)g� 12�h� � PP [�3(�12 + �)℄; (3.3)where the symbol PP stands for taking the prinipal part. (This tehnique yields the\�nite part" of any meromorphi funtion that possesses at worst simple poles.)The Casimir energy de�ned in equation (3.3) depends, in general, on the normalizationsale. We keep this sale dependene to remind us that the that the renormalizationprogramme, whih removes any � dependene from the total energy, may introdue aseond �nite ambiguity in the Casimir energy. In setion 4 we shall study how the Casimirenergy varies with this normalization sale. In setion 5 we shall relate the Casimirenergy to the one-loop e�etive energy, whih also depends on the normalization sale.



Zeta funtions and the Casimir Energy 7The di�erene between the two is �nite, � independent, and proportional to the geometriterm C2. In partiular, the Casimir and one-loop e�etive energies agree when C2 vanishes.The total energy, in the ontext of bag models, is onsidered in setion 6, and we shallverify that it is independent of �.



Zeta funtions and the Casimir Energy 84 The role of the normalization saleThe renormalized Casimir energy de�ned by equation (3.3) generially will depend onthe normalization sale �. This should not, in fat, be surprising. As we shall soonsee, the Casimir energy is intimately related to one{loop physis, and the ourreneof anomalous sale dependene in one{loop �eld theory alulations is by now a wellunderstood phenomenon [20, 21℄. This anomalous saling behaviour manifests itself intwo ways: (i) the Casimir energy may depend on the normalization sale �; (ii) foronformally oupled �elds, the Casimir energy may fail to sale as the inverse of theradius of the system. This e�et is related to the existene of the onformal anomaly (traeanomaly). Note however, that the Casimir energy, in isolation, annot be measured. Whatis measurable is the total energy whih inludes (renormalized) zero-loop ontributionsalong with the Casimir energy. If one knew the Lagrangian for the entire system understudy (e.g., see the disussion of bag models later in this paper) then one would expressthe total energy in terms of running oupling onstant sand the normalization sale �.The total energy is independent of �. If the total Lagrangian is unknown, the Casimirenergy still gives the proper geometri dependene for the oder �h part of the total energy.In partiular, naive saling behaviour of the total energy is violated. The sale � shouldbe interpreted as a sale that summarizes the (unknown) physis assoiated with theboundaries, urvature, and masses; it must be determined experimentally.Consider the e�et of a hange in the normalization sale �! �0. From the de�nitionof the zeta funtion it is easy to see that this indues a hange �3(s; �0) = (�0=�)2s ��3(s; �),so that Ereg(�; �0) = (�0=�)2� � Ereg(�; �). Now for any analyti funtion f(s) it is easy tosee that PP [f(s)�(s)℄ = f(s) � PP [�(s)℄ + f 0(s) �Res[�(s)℄: (4.1)This has the immediate onsequene thatECasimir(�0) = ECasimir(�)� �h� � C2(�)(4�)2 � ln "�0� # : (4.2)The dependene on the normalization sale is logarithmi, with a oeÆient given bythe seond Seeley-De Witt oeÆient. (The ombination �C2 is, despite appearanes,independent of the sale �.) As is to be expeted, this dependene on normalization saleleads to a breakdown of sale ovariane. (It should be noted that C2 depends on R a2,and that a2 ontains a piee proportional to the onformal anomaly [19℄, in fat T �� / a2,and, for a onformally oupled theory, a2 is the onformal anomaly.)Now onsider the e�et of resaling the metri and masses: g3 ! �2 � g3, m! ��1 �m.This has a simple e�et on the eigenvalues of D3, namely: �n ! ��2 � �n. So for the zetafuntion �3(�2g3; ��1m; s) = �2s � �3(g3;m; s): (4.3)Using the properties of the prinipal part presription we �ndECasimir(�2 � g3; ��1 �m) = ECasimir(g3;m)� � �h� � C2(g3;m)(4�)2 � ln�� : (4.4)This is the generalization, allowing for massive partiles, of equation (1.2). It is easy tosee that if �!1 then ECasimir ! 0, thus the approah to massless partiles in Minkowskispae does in fat lead to zero Casimir energy.



Zeta funtions and the Casimir Energy 9To derive equation (1.2) of the introdution, we note that the radius of the manifold�2 g3 is given by R(�2g3) = � R(g3). Then equation (4.4) may be written asECasimir(R) = �hR � f�0 � �1 � ln(�R)g; (4.5)where �1 = C2(g3; � = R(g3)�1)(4�)2�h ;�0 = "ECasimir(g3; �) �R(g3)�h # + [�1 ln(�R(g3))℄: (4.6)Note that �0 and �1 are independent of the normalization sale �. A little thought willshow one that �1 depends only on the shape of the manifold, and are in fat independent ofthe radius of the manifold. The total energy must ontain a term with the same geometristruture as the Casimir energyEtot = �hR f�0(�)� �1 ln(�R)g+ : : : ; (4.7)where now �0(�) depends on � logarithmially so that Etot is independent of the normal-ization sale. One might set the sale � arbitrarily, and determine the \running ouplingonstant" �0 as a funtion of �. In the ontext of Casimir energy alulations it is nat-ural to use an alternative proedure: �x �0(�) to have the value determined by equation(4.6), and determine � experimentally. (This is ompletely analogous to the experimentaldetermination of �QCD.)From (4.5) we see that if C2(g3) > 0, then the Casimir energy has an absolute minimumat Rmin = ��1 �exp(1+ j�0=�1j), with Emin = ��hj�1j=Rmin. If C2(g3) < 0 then the Casimirenergy is unbounded from below, approahing E ! �1 as R ! 0. (There is now anabsolute maximum at Rmax = ��1 � exp(1 + j�0=�1j) and Emax = +�hj�1j=Rmax. The signof C2 is thus the determining fator in deiding whether the Casimir e�et is repulsive orattrative for small sizes. If C2(g3) = 0 then an absolute extremum ours at R =1 andE = 0.The appearane of the logarithmi dependene on the radius in (1.2), (4.4), and (4.5)is very striking. One may quite justi�ably ask, would this term not have been seen insome of the many Casimir energy alulations in the literature? The answer is that invery many situations enountered in the literature C2 vanishes. Spei�ally, in at 3-spae, with massless partiles, and any olletion of in�nitely thin boundaries one hasC2 = 0 (for either Dirihlet or Neumann boundary onditions). In partiular, onsideringthe ase of the eletromagneti �eld, any olletion of in�nitely thin perfet ondutorshas C2 = 0. To see this, reall C2 = A2 + B2. Now A2 = 0 sine we are in at spae.Further b2(y) ontains only odd powers of the seond fundamental form. In�nitely thinboundaries means that all boundaries onsist of two oppositely oriented faes separatedby an in�nitesimal distane. Thus the seond fundamental forms are equal and oppositeon the two faes of eah boundary, and onsequently the net value of b2 summed over thetwo faes of eah boundary vanishes. Thus B2 = 0, as required.The ase of Robin boundary onditions requires extra are. For Robin boundaryonditions ��=��(y)+ (y)�(y) = 0 on the boundary. In this ase one still has C2 = 0 for



Zeta funtions and the Casimir Energy 10thin boundaries, provided one makes the additional assumption that  (y+) = � (y�).That is, provided  is equal and opposite on the two faes of eah thin boundary layer.Some ases where C2 does not vanish have also been disussed in the literature. Thesesituations have oasioned some rather puzzled omments whih we shall disuss morefully below.



Zeta funtions and the Casimir Energy 115 The one{loop e�etive ation.We now onsider the relationship between the Casimir energy de�ned by (3.3) and theone{loop e�etive energy. As in the previous setion, we onsider an ultrastati spaetimewith g4 = �(dx0)2 + g3. To proeed we Wik rotate to imaginary time so that theEulidean Laplaian is D4 = +�02 + D3. The heat kernel then fatorizes, e�D4��2t =e��02��2t � e�D3��2t, so that for the diagonal part of the heat kernel one has:K4(x; x; t) = 1p4���2 t �K3(x; x; t): (5.1)Now, de�ning T = R dx0= = \age of the universe", and applying the Mellin transform(2.2) one sees �4(s) = �Tp4� � �(s� 12)�(s) � �3(s� 12): (5.2)Using Ee� � T = Se� = +12 ln detD = �12� 04(0), and the known analytiity properties ofthe zeta funtion yields:Ee� = ECasimir + 12�h� � [ (1)�  (�12)℄ � C2(4�)2 : (5.3)Where  (s) = d ln�(s)=ds is the digamma funtion. The e�etive energy and Casimirenergy di�er, but the di�erene reets the inherent renormalization-sheme ambiguityintrodued in the Casimir energy by removing the pole in equation (3.2). The unam-biguous parts of the e�etive and Casimir energies agree, illustrating a remarkably loseonnetion between zero-point energies and one-loop quantum e�ets. Note that whenC2 = 0, so that the zeta-funtion regulated Casimir energy is unambiguous and �nite,Ee� = ECasimir.There are several variations on the onept of \vauum energy" in ommon irulation.One of these is the vauum{expetation{value of the integral of the 00 omponent of stressenergy: EVauum = R < 0jT00j0 >. This version of the vauum energy is, in general, notequal to either one of ECasimir or Ee� . However, if one were to swith o� all interations, sothat T00 ! T Free00 , then an argument, (Presented, e.g., in the review artile [2℄), shows thatunder rather general onditions ECasimir = R < 0jT Free00 j0 >. Yet another version of vauumenergy is obtained by onsidering the full e�etive ation in plae of the one{loop e�etiveation and its orresponding e�etive energy E1e� = �e�=T . Again this e�etive energyis quite distint from the other versions of the vauum energy disussed above. These atleast four subtly di�erent versions of the vauum energy has unfortunate onsequenesinsofar as many papers in the literature do not take the appropriate are to make thesedistintions.



Zeta funtions and the Casimir Energy 126 Comparison with standard results.In this setion we shall make onnetions between our formalism and some of the expliitalulations already available in the literature. While agreeing with many of those alu-lations, we report some subtle di�erenes when onsidering solid ondutors and loselyrelated aspet of bag models.6.1 Parallel Plates:Consider a massless salar �eld satisfying Dirihlet boundary onditions on�ned betweentwo parallel plates of surfae area S held a distane L apart. The three dimensional heatkernel is easily seen to be K3(x; x; t) = K1(x; x; t)=(4���2t), whih upon integration overthe volume between the plates yieldsK3(t) = �2S4�t �K1(t): (6.1)But K1(t) is expliitly known in terms of the eigenvalues of the redued one dimensionalproblem �n = n2=L2. Evaluation of the three-dimensional zeta funtion proeeds in astraightforward manner�3(s) = �2S�(s) Z 10 dt � ts�1 � 14�t � 1X0 exp(�tn2=�2L2)= �2S4� � (�L)2s�2 � 1s� 1 � �R(2s� 2): (6.2)Here �R is the ordinary Riemann zeta funtion. In taking the limit s! �12 one does notenounter a pole, so the Casimir energy is simplyECasimir(L; S) = � 112� � 12 � �h2�SL3 � �R(�3): (6.3)It is a standard zeta funtion result that zR(�3) = 1120 , whih �nally leads to the well-known standard result [2℄. This alulation, though trivial, has expressed some importantideas. The absene of a pole in the s! �12 limit an be traed bak to the fat that theplates are at. Beause the plates are at the seond fundamental form vanishes ( = 0),onsequently b2 = 0, and �nally C2 = 0. This has the additional interesting e�et thatthe at{plate Casimir energy is insensitive to the thikness of the plates.6.2 Cylindrial Shells and Spherial Shells:For ylindrial and spherial shells b2(outside) = �b2(inside), thus C2(net) = 0, and wemay safely use simple dimensional arguments to dedueEylinder / LR2 ;Esphere / 1R: (6.4)



Zeta funtions and the Casimir Energy 13Note that these dimensional analysis results are merely assumed, not proved, in the stan-dard analyses of these problems [11, 12, 13℄. It was by no means lear, in the days beforeonformal anomalies beame a well understood part of �eld theory, that there is anythingto prove in deriving (6.4). Fortunately, the naive result works for thin shells, but as weshall soon see, leads to onfusion when applied to solid ondutors. It should be em-phasized that the anellation of b2 between the inner and outer faes is the underlyingause of the \deliate anellations between internal and external modes" noted by manyauthors [2℄.6.3 Solid Cylinders and Solid Spheres:For solid ondutors the \deliate anellations" alluded to previously no longer our.Indeed it is easy to see that C2(�; L;R)solid ylinder / L�R2C2(�;R)solid sphere / 1�R (6.5)Consequently the Casimir energy possesses a logarithmi dependene on the radius of thesesystems. The Casimir energy also depends on the normalization sale. In regularizationshemes suh as proper-time regularization or a mode-sum ut-o� the pole assoiatedwith C2 manifests itself as an divergent term that depends logarithmially on the ut{o� [8, 22℄. Suh logarithmi divergenes have in fat been enountered in some expliitalulations [15℄. Any term of the form ln(R�) may be re{ast as ln(R�) + ln(�=�); theln(�=�) may then be absorbed into a renormalization of some appropriate piee of theenergy, but a term of form ln(R�) always remains in the renormalized energy (with the� dependene ompensated by some other term).6.4 Membranes:We now turn to a very di�erent physial system, that of a membrane. Membrane theory,as a generalization of string theory, has enjoyed some reent popularity [23, 24, 25℄.Consider a physial �eld that is onstrained to propagate on the surfae of a losed statimembrane. As far as the Casimir e�et is onerned, this is equivalent to onsideringa 2+1 dimensional spaetime. The analysis of this paper ontinue to hold, with thesole exeption that the pole of the zeta funtion at s = �12 is now proportional to C 32 .Sine a 32 is automatially zero, this means that a losed (i.e., boundary-less) membraneautomatially has C2 = 0. Consequently, zeta-funtion alulations of the Casimir e�eton any losed membrane are always guaranteed to not enounter a pole. This explainsthe otherwise quite miraulous anellation of poles enountered in expliit omputationsperformed by Sawhill [26℄. Open membranes, on the other hand, may possess poles in thezeta funtion as s! �12 . The residues of suh poles are, however, tightly onstrained.These above omments are also relevant to other physial systems: onsider any �eldtheory that gives rise to domain walls. It is very easy in suh theories to arrange formassless partiles to beome trapped on the domain wall. This suggests the interestingpossibility that for suitable hoies of parameters and partile ontent, one may use the



Zeta funtions and the Casimir Energy 14Casimir energy to stabilize small spherial domain walls against ollapse. Preliminaryalulations seem enouraging.At a more general level, the omments of this setion imply that the behaviour of theCasimir e�et depends ruially on whether the total number of spaetime dimensionsis even or odd. This will be disussed more fully when we make some omments onKaluza{Klein models.6.5 Bag Models:Another physial situation where the Casimir e�et has been of great importane is in thebag models of QCD [14, 15, 16℄. As a �rst approximation, the idea is to treat quarks andgluons as massless partiles on�ned to the interior of some (3+1)-dimensional boundedregion of spaetime alled the bag. The free quark-gluon Lagrangian is then augmentedby a \bag Lagrangian" responsible for on�ning the quarks and gluons.The points we wish to make are twofold. First, generially C2 6= 0 for these bagmodels (barring fortuitous anellations between the e�ets of quark and gluon boundaryonditions). In ut-o� regularizations of the mode sum this would orrespond to theappearane of a logarithmi divergene, as has indeed been reported by Milton [15℄. Inour zeta-funtion approah the Casimir energy of the bag inludes a ln(�R)=R term. Sinewe are working with a model that is supposed to be an approximation to QCD, and sinewe have argued that the Casimir energy is related to one{loop e�ets, it is natural for thebag models to expet � to be related to �QCD (�h� � �QCD).The seond point we wish to make onerns the (renormalized) bag energy. The totalbag energy depends on the zero-loop bag energy, plus the Casimir energy (i.e., one{loopphysis), plus higher loop e�ets (presumably small). One of the great virtues of thezeta funtion approah is that it yields an e�etive way of alulating the Casimir energywithout requiring a detailed analysis of the renormalization properties of the bag energy.To extrat the struture of the (renormalizable) Bag Lagrangian the proper time uto�is more appropriate. In the proper time formalismEreg(�) = �h�p4� Z 1� dt t�3=2 tr0(e�tD3��2): (6.6)The resulting divergenes in the Casimir energy are desribed byEreg(�) � C0�2 + C 12�3=2 + C1� + C3=2�1=2 + C2 ln �+ �nite piees: (6.7)Thus the requirement of renormalizability of the energy implies that the zero-loop bagenergy ontains (at a minimum) the following termsE0 = Z
 2X0 gn an + Z�
 2X0 hn bn: (6.8)In at spaetime this simpli�es onsiderablyE0 = p � V + � � S + Z�
 �h1 b1 + h3=2 b3=2 + h2b2� : (6.9)



Zeta funtions and the Casimir Energy 15Here p is the bag pressure, � is its surfae tension, the parameters h1, h3=2 and h2 do notappear to have standard names.If we approximate the bag as spherial, we an easily extrat the dependene of theseterms on bag radius h1 Z b1 = FR; (6.10)h3=2 Z b3=2 = k; (6.11)h2 Z b2 = h=R: (6.12)Whih allows us to write the zero-loop renormalized bag energy asE0 = p � V + � � S + FR + k + h=R (6.13)It is to be emphasized that these parameters are to be determined by experiment; theyannot be alulated within the on�nes of the bag model. In priniple they would bealulable from the full theory of QCD. Adding the one-loop e�ets (Casimir energy) andde�ning Z = h+ �0 �nally yieldsEbag = p � V + � � S + FR + k + Z=R� �1 ln(�R)=R: (6.14)The only one of these parameters that is alulable using Casimir energy tehniques is�1. In partiular, the parameter Z is not alulable, but rather is to be experimentallydetermined. The terms involving p and � are standard. The term involving F haspreviously been disussed in the work of Milton [15℄. The o�set term k has (to the bestof our knowledge) not previously been disussed. We note in passing that the o�set pieek ontains a purely topologial piee proportional to the Euler harateristi of the bag.



Zeta funtions and the Casimir Energy 167 Appliations to Kaluza{Klein theories.In this setion we seek to extrat some information onerning the one-loop ontributionsto the e�etive four-dimensional osmologial and Newton onstants within the frame-work of Kaluza{Klein theory. Calulations along these lines have been arried out, forsome spei� simple hoies of the internal geometry, in referenes [27, 28, 29, 30℄. Weshall proeed with a bare minimum of assumptions. Consider a 4 + d dimensional uni-verse with d ompati�ed dimensions, M4+d = M4 
 
. Assume the theory to possessmultidimensional osmologial (�) and Newton (G) onstants. That isS4+d = � � Z pg4+d d4+dx +G�1 � Z R4+dpg4+d d4+dx+ � � � (7.1)Using the produt deomposition of spaetime one infers R4+d = R4+Rd, so that for thetree{level four dimensional e�etive Cosmologial and Newton onstants one dedues:�e� = � � vol(
) +G�1 � Z
pgdRd;G�1e� = G�1 � vol(
): (7.2)To evaluate the one{loop ontributions to �e� and Ge� one uses the produt deom-position of spaetime to dedue a produt deomposition for the diagonal part of the heatkernel K(t) = K4(t) �Kd(t): (7.3)The asymptoti expansion of the four-dimensional heat kernel may now be used to obtainan expansion for the zeta funtion�4+d(s) = 1X0 Cn(g4)(4�)2 � �(s� 2 + n)�(s) � �d(s� 2 + n): (7.4)This expansion is a formal one in the \size" of the ompati�ed dimensions. To justify theabove expansion onsider a \long wavelength" approximation implemented by resalingthe external dimensions: g4+d;� = g4;�� gd = (�2g4)� gd. In this situation the heat kernelenjoys the property that K4+d;�(t) = K4;�(t) � Kd(t) = K4(��2t) � Kd(t). Thus the limit� ! 1 allows one to employ the asymptoti expansion of the heat kernel to obtain anasymptoti expansion for the multi-dimensional zeta funtion�4+d;�(s) = NX0 Cn(g4)(4�)2 �4�2n �(s� 2 + n)�(s) �d(s� 2 + n) + o(�4�2n): (7.5)By abuse of notation we have rewritten this asymptoti expansion as the physially morereasonable (7.4). Now, reall that C0 = �4 R pg4 d4x and C1 = k � R R4pg4 d4x, (k is aonstant depending on the statistis and spins of the elementary partiles present in thetheory). This may be used to extrat the one-loop orretions to �e� and Ge��e� = � � vol(
) +G�1 � Z
pgRd � �42(4�)2 n12� 0d(�2)� 34�d(�2)o :G�1e� = G�1 � vol(
)� k � �22(4�)2 f� 0d(�1)� �d(�1)g : (7.6)



Zeta funtions and the Casimir Energy 17Observe that the zeta funtions appearing in the above are guaranteed to be analyti atall non-positive integers, so that these expressions are �nite as they stand. Further, thevalue of the zeta funtion at non-positive integers is (in priniple) known; for example�d(�2) = 2C2+(d=2)=(4�)d=2, and �d(�1) = �C1+(d=2)=(4�)d=2.Without evaluating equation (7.6) in full detail, we may pro�tably inquire as to thedependene of �e� and Ge� on the \radius" of the internal dimensions. The major point tobe made is that the ase of an odd number of internal dimensions behaves in a qualitativelydi�erent manner form an even number of internal dimensions. Introduing appropriateonstants permits us to write�e� = ard + brd�2 + f�0 � �1 ln(�r)g r�4;G�1e� = a0rd + f�00 � �01 ln(�r)g r�2: (7.7)The dimensionless onstants �1 and �01 are proportional to �d(�2) and �d(�1) respetively.In any odd number of dimensions (provided the internal manifold has no boundary) theseare guaranteed to vanish. Thus in an odd number of dimensions, �e� and Ge� havea simple power-law dependene on the radius of the ompat dimensions. This breaksdown however, for any even number of dimensions where one observes the appearane oflogarithmi dependenes on the radius. We expet these logarithms to have signi�ante�ets, but shall postpone further omments to another paper.



Zeta funtions and the Casimir Energy 188 ConlusionThe Casimir energy is a very useful onept, it may be viewed as the \zero point energy"of the vauum, and, from a slightly di�erent viewpoint, is also intimately related to one{loop physis in the form of the one{loop E�etive energy. In this paper we have exhibiteda uni�ed framework that allows us to regularize and renormalize the zero point mode sumin a way that is extremely general. Our de�nition yields a well behaved �nite quantity inmany interesting physial situations: e.g. in the presene of a bakground gravitational�eld, with massive or massless partiles, and in the presene or absene of boundaries ofthe spae{time manifold. It is hoped that with this framework in plae, it will be possibleto perform extensive expliit alulations.Note added in proofAfter submittal of this paper we were made aware of additional work by the Manhestergroup [32, 33, 34℄. For additional work on the relevane of the Casimir e�et to thestability of Kaluza{Klein models see referenes [35, 36, 37, 38℄. In addition we wish tothank Emil Mottola for useful disussions.



Zeta funtions and the Casimir Energy 19Appendix A The Seeley{de Witt oeÆients.The Seeley{de Witt oeÆients an(x) are independent of the applied boundary onditions,but the oeÆients do depend on the spin of the �eld in question.a0(x) = 1: (A.1)a1(x) = k �R: (A.2)a2(x) = A(Weyl)2 + B[(Rii)2 � 13R2℄ + Cr2R + DR2: (A.3)The boundary oeÆients bn(y) depend on the nature of the boundary onditionsimposed. For Dirihlet or Neumann boundary onditionsb0(y) = 0: (A.4)b1=2(y) = �p�2 : (A.5)b1(y) = 13tr: (A.6)b3=2(y) = a(tr)2 + btr(2) + R (A.7)b2(y) = ~a(tr)3 + ~b(tr2)(tr) + ~(tr3) + ~d(tr)R + ~eijRij + ~fr2(tr): (A.8)Where  is the seond fundamental form of �
, the boundary of 
. The urvatures ap-pearing in bn are intrinsi urvatures omputed from the indued metri on the boundary.If one adopts Robin boundary onditions ���� + (y)�(y) = 0, then additional terms appearin bn for n � 1. Sine  has the same dimensions as , these extra terms are of the typeexhibited above with  7!  .



Zeta funtions and the Casimir Energy 20Appendix B Gamma Funtion Identities.We ollet some useful Gamma Funtion identities, see for instane [31℄. Take n 2f0; 1; 2; � � �g: Res[�(�n + �)℄ = (�)nn! : (B.1)PP [�(�n+ �)℄ = (�)n �  (n+ 1)�(n+ 1) =  (n+ 1) �Res[�(�n + �)℄: (B.2)�(12) = p� (B.3)�(�12) = �p4�: (B.4) (1) = �: (B.5) (n) = � + n�1Xk=1 1k : (B.6) (12) = � � 2 ln 2: (B.7) (12 � n) = � � 2 ln 2 + 2Pnk=1 1(2k�1) : (B.8) (�12) = � � 2 ln 2 + 2: (B.9)
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