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Zeta fun
tions and the Casimir Energy 21 Introdu
tionThe study of va
uum 
u
tuations, as embodied in the Casimir e�e
t [1℄, has been a sub-je
t of extensive resear
h [2℄. The Casimir energy may be thought of as the energy dueto the distortion of the va
uum. This distortion may be 
aused either by some ba
k-ground �eld (e.g. gravity), or by the presen
e of boundaries in the spa
e{time manifold(e.g. 
ondu
tors). Early investigations of the e�e
ts of a gravitational ba
kground wereperformed by Utiyama and De Witt [3℄, and work has 
ontinued on this important sub-je
t [4, 5, 6, 7, 8, 9℄. Early work on the e�e
t of boundaries was performed by Casimir [1℄,and was later extended by Fierz, Boyer, deRaad, and Milton [10, 11, 12, 13℄. More re-
ently boundary e�e
ts have been 
entral to the 
al
ulation of the Casimir energy in bagmodels of QCD [14, 15, 16℄.We feel that interesting things remain to be said. In this paper heat kernel and zetafun
tion te
hniques will be utilized to investigate these topi
s [4, 17℄. The uni�ed treat-ment presented here is appli
able to a very wide 
lass of models and physi
al situations.We start by developing a de�nition of the Casimir energy whi
h is �nite and appliesto arbitrary stati
 manifolds with or without boundariesECasimir = 12�h
� � PP [�3(�12 + �)℄: (1.1)Here � is a normalization s
ale of dimension (length)�1, and the PP symbol indi
atesthat we are to extra
t the \prin
ipal part". This de�nition yields a �nite quantity in both
at and 
urved spa
e{times, with or without boundaries, for both massive and masslessparti
les. The normalization s
ale � appearing in the above is required to keep the zetafun
tion dimensionless for all values of s. The introdu
tion of this s
ale leads generi
ally tonon-trivial s
aling behaviour for the Casimir energy. It is pointed out how this de�nitionrelates in spe
ial 
ases to well{known results.Our de�nition of the Casimir energy allows us to investigate its dependen
e on the\radius" of the manifold. We �nd that for massless �eldsECasimir(R) = �h
R � f�0 � �1 � ln(�R)g; (1.2)where the �-independent 
oeÆ
ients �0 and �1 are dimensionless numbers depending onthe geometry of the manifold. This result has some very interesting 
onsequen
es whenapplied to the bag models of hadrons in QCD.Further, we may relate the Casimir energy to the one{loop e�e
tive a
tion (i.e. thedeterminant of a suitable four dimensional di�erential operator). This is done by relatingthe zeta fun
tion of D4 = ��02 +D3 to the zeta fun
tion of D3�4(s) = �
Tp4� � �(s� 12)�(s) � �3(s� 12): (1.3)Thus we obtain a non-trivial relationship between the Casimir energy and the one-loope�e
tive energy Ee� = ECasimir + 12�h
� h (1)�  (�12)i C2(4�)2 : (1.4)



Zeta fun
tions and the Casimir Energy 3To help understand the signi�
an
e of this relationship we in
lude a dis
ussion of thevarious di�erent 
on
epts 
ommonly lumped together as \va
uum energy".We next apply our analysis to the one{loop 
orre
tions to the e�e
tive 
osmologi
al
onstant and Newton 
onstant in Kaluza{Klein theories. These one-loop 
orre
tions maybe interpreted as a Casimir-like e�e
t. We derive the following �nite expressions for theone-loop four-dimensional e�e
tive 
osmologi
al and Newton 
onstants.�e� = � � vol(
) +G�1 � Z
pg Rd � �42(4�)2 n 12� 0d(�2)� 34�d(�2)o ;G�1e� = G�1 � vol(
)� k �22(4�)2 f� 0d(�1)� �d(�1)g : (1.5)In parti
ular, this allows us to study the dependen
e of these 
onstants on the \radius"of the 
ompa
t dimensions, without having to resort to expli
it 
al
ulations.



Zeta fun
tions and the Casimir Energy 42 Zeta fun
tions on manifolds with boundary.As regularization te
hnique we shall use the zeta-fun
tion method due to Dowker andCrit
hley [4℄ and Hawking [17℄. Its relation to other methods (e.g., dimensional regular-ization) has been dis
ussed in the literature [4℄. In order to make subsequent argumentsunderstandable, we must �rst brie
y review the mathemati
al ma
hinery of zeta fun
tions.Consider the zeta fun
tion asso
iated with a se
ond-order self-adjoint ellipti
 operator Dde�ned on a 
ompa
t manifold 
 with boundary �
�(s) = tr0f(��2D)�sg =X0(��2�n)�s; (2.1)where the �n are eigenvalues of D; while the prime on tr0 and P0 indi
ates that we shouldnot in
lude the zero eigenvalues of D in the sum. We have introdu
ed a \s
ale" �, withthe dimensions of (length)�1, in order to keep the zeta-fun
tion dimensionless for all s.The zeta fun
tion is related to the di�usion operator (heat kernel) via a Mellin trans-form: �(s) = X0 1�(s) Z 10 dt ts�1 exp(��n��2t)= 1�(s) Z 10 dt ts�1 tr0(e�tD��2): (2.2)Here t is a dimensionless parameter, not to be 
onfused with physi
al time (x0=
). Fromnow on, in the interests of notational simpli
ity, we ignore zero modes. The tra
e of thedi�usion operator is given by the integral of the diagonal part of the heat kernel over themanifold: tr(e�tD��2) = Z
K(t; x; x) pg ddx: (2.3)The heat kernel K possesses an asymptoti
 expansion for small t:K(t; x; x) =  �24�t!d=2 � ( NX0 an(x) (��2t)n + o(tN)) : (2.4)The sum is over integer values of n. The an are fun
tions of the gravitational �eld, theymay be expressed as polynomials in the Riemann tensor, its 
ontra
tions, and 
ovariantderivatives. (See Appendix A.) The diagonal part of the heat kernel 
ontains exponentiallysuppressed terms (e�k(x)=t) that do not 
ontribute to the asymptoti
 expansion (2.4).These exponentially suppressed terms do however 
ontribute an expli
it boundary termto the tra
e of the heat kerneltr(e�tD��2) =  �24�t!d=2 � ( NX0 �Z
 an(x) (��2t)n + Z�
 bn(y) (��2t)n� + o(tN)) : (2.5)The sum runs over half{integers, (but the an vanish for half-odd-integers). The bn are fun
-tions of the se
ond fundamental form of the boundary (extrinsi
 
urvature), the indu
edgeometry on the boundary (intrinsi
 
urvature), and the nature of boundary 
onditionsimposed. These obje
ts are tabulated in many pla
es: e.g., Birrell and Davies [19℄ andAppendix A of this paper. For future referen
e we de�ne the dimensionless quantities:An = �d�2n R
 an(x) pg ddx, Bn = �d�2n R�
 bn(y) p~g dd�1y, and Cn = An +Bn.



Zeta fun
tions and the Casimir Energy 5In view of the asymptoti
 expansion (2.5), it is 
lear that the zeta fun
tion �(s) isa meromorphi
 fun
tion of the 
omplex variable s possessing only simple poles whoseresidues are determined by Cn. Observe that (2.5) implies that �(s) has a pole stru
turegiven by �(s) = 1�(s) (4�)d=2 � ( 1X0 Cn(s� [d2 � n℄) + f(s)) : (2.6)The fun
tion f(s) is an entire analyti
 fun
tion of s, but, in general, we have little ad-ditional information 
on
erning its behaviour. However, we do know that �(s) is analyti
at s = 0. It is thus possible to de�ne the determinant of D to be [17℄det0(��2D) = exp � dds�(s)�����s=0! : (2.7)Observe that many of the te
hni
al details asso
iated with renormalization have beenhidden by these zeta fun
tion te
hniques. We shall now utilize this mathemati
al ma-
hinery to de�ne the Casimir energy, and relate ECasimir to the one{loop E�e
tive a
tionSe� = 12 ln detD.



Zeta fun
tions and the Casimir Energy 63 The Casimir energy.In order to have a well{de�ned notion of energy, it is useful to work in a stati
 spa
e-time [18℄, spe
i�
ally let us take g4 = �(dx0)2 + g3, in whi
h 
ase we de
ompose thedi�erential operator D4 as D4 = �(�0)2 +D3. The eigen-frequen
ies asso
iated with D3are !n = q�n(D3) � 
. We wish to 
onsider the zero{point energy:ECasimir = 12 Xn �h!n: (3.1)This sum is, of 
ourse, divergent. We regularize it by de�ningEreg(�) = 12�h
� �Pn(�n��2)( 12��) = 12�h
� � �3 ��12 + �� : (3.2)Where �3 is the zeta fun
tion asso
iated with the three-dimensional operator D3. A qui
kglan
e at the previous se
tion shows that Ereg(�) is a meromorphi
 fun
tion with a pole at� = 0, with residue �12�h
� C2(g3)=(4�)2 = �12�h
fR
 a2+ R�
 b2g=(4�)2, where the integralis over three-dimensional spa
e and its two-dimensional boundary. Be
ause of the poleat � = 0, we 
annot, in general, remove the regulator; the geometri
 
oeÆ
ient C2 is anobsta
le to giving a �nite de�nition for the Casimir energy. Note, however, that in manyinteresting 
ases (e.g., 
at spa
e with 
at boundaries and massless parti
les) C2 = 0, sothat lim�!0Ereg(�) is �nite, and independent of the normalization s
ale �.How is one to understand the unphysi
al pole and � dependen
e of the (zeta-fun
tionregulated) Casimir energy? First we note that the Casimir energy in isolation is unphys-i
al. When physi
ists speak of the Casimir energy they usually are identifying terms inthe renormalized total energy whi
h they interpret as arising from boundary or gravita-tional e�e
ts. There is ipso fa
to no pole in the total energy; the pole in equation (3.2)is absorbed into the bare a
tion whi
h must 
ontain a term proportional to C2. Havingseen this we must admit that the way in whi
h the pole is removed is not unique. Thepossibility of di�erent renormalization s
hemes means that the Casimir energy has an am-biguity proportional to C2. Our 
hoi
e of renormalization s
heme is to adopt the minimalsubtra
tion s
heme whi
h is equivalent to simply removing the pole from equation (3.2).We de�ne ECasimir � lim�!0 12fEreg(+�) + Ereg(��)g� 12�h
� � lim�!0 12f�3(�12 + �) + �3(�12 � �)g� 12�h
� � PP [�3(�12 + �)℄; (3.3)where the symbol PP stands for taking the prin
ipal part. (This te
hnique yields the\�nite part" of any meromorphi
 fun
tion that possesses at worst simple poles.)The Casimir energy de�ned in equation (3.3) depends, in general, on the normalizations
ale. We keep this s
ale dependen
e to remind us that the that the renormalizationprogramme, whi
h removes any � dependen
e from the total energy, may introdu
e ase
ond �nite ambiguity in the Casimir energy. In se
tion 4 we shall study how the Casimirenergy varies with this normalization s
ale. In se
tion 5 we shall relate the Casimirenergy to the one-loop e�e
tive energy, whi
h also depends on the normalization s
ale.



Zeta fun
tions and the Casimir Energy 7The di�eren
e between the two is �nite, � independent, and proportional to the geometri
term C2. In parti
ular, the Casimir and one-loop e�e
tive energies agree when C2 vanishes.The total energy, in the 
ontext of bag models, is 
onsidered in se
tion 6, and we shallverify that it is independent of �.



Zeta fun
tions and the Casimir Energy 84 The role of the normalization s
aleThe renormalized Casimir energy de�ned by equation (3.3) generi
ally will depend onthe normalization s
ale �. This should not, in fa
t, be surprising. As we shall soonsee, the Casimir energy is intimately related to one{loop physi
s, and the o

urren
eof anomalous s
ale dependen
e in one{loop �eld theory 
al
ulations is by now a wellunderstood phenomenon [20, 21℄. This anomalous s
aling behaviour manifests itself intwo ways: (i) the Casimir energy may depend on the normalization s
ale �; (ii) for
onformally 
oupled �elds, the Casimir energy may fail to s
ale as the inverse of theradius of the system. This e�e
t is related to the existen
e of the 
onformal anomaly (tra
eanomaly). Note however, that the Casimir energy, in isolation, 
annot be measured. Whatis measurable is the total energy whi
h in
ludes (renormalized) zero-loop 
ontributionsalong with the Casimir energy. If one knew the Lagrangian for the entire system understudy (e.g., see the dis
ussion of bag models later in this paper) then one would expressthe total energy in terms of running 
oupling 
onstant sand the normalization s
ale �.The total energy is independent of �. If the total Lagrangian is unknown, the Casimirenergy still gives the proper geometri
 dependen
e for the oder �h part of the total energy.In parti
ular, naive s
aling behaviour of the total energy is violated. The s
ale � shouldbe interpreted as a s
ale that summarizes the (unknown) physi
s asso
iated with theboundaries, 
urvature, and masses; it must be determined experimentally.Consider the e�e
t of a 
hange in the normalization s
ale �! �0. From the de�nitionof the zeta fun
tion it is easy to see that this indu
es a 
hange �3(s; �0) = (�0=�)2s ��3(s; �),so that Ereg(�; �0) = (�0=�)2� � Ereg(�; �). Now for any analyti
 fun
tion f(s) it is easy tosee that PP [f(s)�(s)℄ = f(s) � PP [�(s)℄ + f 0(s) �Res[�(s)℄: (4.1)This has the immediate 
onsequen
e thatECasimir(�0) = ECasimir(�)� �h
� � C2(�)(4�)2 � ln "�0� # : (4.2)The dependen
e on the normalization s
ale is logarithmi
, with a 
oeÆ
ient given bythe se
ond Seeley-De Witt 
oeÆ
ient. (The 
ombination �C2 is, despite appearan
es,independent of the s
ale �.) As is to be expe
ted, this dependen
e on normalization s
aleleads to a breakdown of s
ale 
ovarian
e. (It should be noted that C2 depends on R a2,and that a2 
ontains a pie
e proportional to the 
onformal anomaly [19℄, in fa
t T �� / a2,and, for a 
onformally 
oupled theory, a2 is the 
onformal anomaly.)Now 
onsider the e�e
t of res
aling the metri
 and masses: g3 ! �2 � g3, m! ��1 �m.This has a simple e�e
t on the eigenvalues of D3, namely: �n ! ��2 � �n. So for the zetafun
tion �3(�2g3; ��1m; s) = �2s � �3(g3;m; s): (4.3)Using the properties of the prin
ipal part pres
ription we �ndECasimir(�2 � g3; ��1 �m) = ECasimir(g3;m)� � �h
� � C2(g3;m)(4�)2 � ln�� : (4.4)This is the generalization, allowing for massive parti
les, of equation (1.2). It is easy tosee that if �!1 then ECasimir ! 0, thus the approa
h to massless parti
les in Minkowskispa
e does in fa
t lead to zero Casimir energy.



Zeta fun
tions and the Casimir Energy 9To derive equation (1.2) of the introdu
tion, we note that the radius of the manifold�2 g3 is given by R(�2g3) = � R(g3). Then equation (4.4) may be written asECasimir(R) = �h
R � f�0 � �1 � ln(�R)g; (4.5)where �1 = C2(g3; � = R(g3)�1)(4�)2�h
 ;�0 = "ECasimir(g3; �) �R(g3)�h
 # + [�1 ln(�R(g3))℄: (4.6)Note that �0 and �1 are independent of the normalization s
ale �. A little thought willshow one that �1 depends only on the shape of the manifold, and are in fa
t independent ofthe radius of the manifold. The total energy must 
ontain a term with the same geometri
stru
ture as the Casimir energyEtot = �h
R f�0(�)� �1 ln(�R)g+ : : : ; (4.7)where now �0(�) depends on � logarithmi
ally so that Etot is independent of the normal-ization s
ale. One might set the s
ale � arbitrarily, and determine the \running 
oupling
onstant" �0 as a fun
tion of �. In the 
ontext of Casimir energy 
al
ulations it is nat-ural to use an alternative pro
edure: �x �0(�) to have the value determined by equation(4.6), and determine � experimentally. (This is 
ompletely analogous to the experimentaldetermination of �QCD.)From (4.5) we see that if C2(g3) > 0, then the Casimir energy has an absolute minimumat Rmin = ��1 �exp(1+ j�0=�1j), with Emin = ��h
j�1j=Rmin. If C2(g3) < 0 then the Casimirenergy is unbounded from below, approa
hing E ! �1 as R ! 0. (There is now anabsolute maximum at Rmax = ��1 � exp(1 + j�0=�1j) and Emax = +�h
j�1j=Rmax. The signof C2 is thus the determining fa
tor in de
iding whether the Casimir e�e
t is repulsive orattra
tive for small sizes. If C2(g3) = 0 then an absolute extremum o

urs at R =1 andE = 0.The appearan
e of the logarithmi
 dependen
e on the radius in (1.2), (4.4), and (4.5)is very striking. One may quite justi�ably ask, would this term not have been seen insome of the many Casimir energy 
al
ulations in the literature? The answer is that invery many situations en
ountered in the literature C2 vanishes. Spe
i�
ally, in 
at 3-spa
e, with massless parti
les, and any 
olle
tion of in�nitely thin boundaries one hasC2 = 0 (for either Diri
hlet or Neumann boundary 
onditions). In parti
ular, 
onsideringthe 
ase of the ele
tromagneti
 �eld, any 
olle
tion of in�nitely thin perfe
t 
ondu
torshas C2 = 0. To see this, re
all C2 = A2 + B2. Now A2 = 0 sin
e we are in 
at spa
e.Further b2(y) 
ontains only odd powers of the se
ond fundamental form. In�nitely thinboundaries means that all boundaries 
onsist of two oppositely oriented fa
es separatedby an in�nitesimal distan
e. Thus the se
ond fundamental forms are equal and oppositeon the two fa
es of ea
h boundary, and 
onsequently the net value of b2 summed over thetwo fa
es of ea
h boundary vanishes. Thus B2 = 0, as required.The 
ase of Robin boundary 
onditions requires extra 
are. For Robin boundary
onditions ��=��(y)+ (y)�(y) = 0 on the boundary. In this 
ase one still has C2 = 0 for



Zeta fun
tions and the Casimir Energy 10thin boundaries, provided one makes the additional assumption that  (y+) = � (y�).That is, provided  is equal and opposite on the two fa
es of ea
h thin boundary layer.Some 
ases where C2 does not vanish have also been dis
ussed in the literature. Thesesituations have o

asioned some rather puzzled 
omments whi
h we shall dis
uss morefully below.



Zeta fun
tions and the Casimir Energy 115 The one{loop e�e
tive a
tion.We now 
onsider the relationship between the Casimir energy de�ned by (3.3) and theone{loop e�e
tive energy. As in the previous se
tion, we 
onsider an ultrastati
 spa
etimewith g4 = �(dx0)2 + g3. To pro
eed we Wi
k rotate to imaginary time so that theEu
lidean Lapla
ian is D4 = +�02 + D3. The heat kernel then fa
torizes, e�D4��2t =e��02��2t � e�D3��2t, so that for the diagonal part of the heat kernel one has:K4(x; x; t) = 1p4���2 t �K3(x; x; t): (5.1)Now, de�ning T = R dx0=
 = \age of the universe", and applying the Mellin transform(2.2) one sees �4(s) = �
Tp4� � �(s� 12)�(s) � �3(s� 12): (5.2)Using Ee� � T = Se� = +12 ln detD = �12� 04(0), and the known analyti
ity properties ofthe zeta fun
tion yields:Ee� = ECasimir + 12�h
� � [ (1)�  (�12)℄ � C2(4�)2 : (5.3)Where  (s) = d ln�(s)=ds is the digamma fun
tion. The e�e
tive energy and Casimirenergy di�er, but the di�eren
e re
e
ts the inherent renormalization-s
heme ambiguityintrodu
ed in the Casimir energy by removing the pole in equation (3.2). The unam-biguous parts of the e�e
tive and Casimir energies agree, illustrating a remarkably 
lose
onne
tion between zero-point energies and one-loop quantum e�e
ts. Note that whenC2 = 0, so that the zeta-fun
tion regulated Casimir energy is unambiguous and �nite,Ee� = ECasimir.There are several variations on the 
on
ept of \va
uum energy" in 
ommon 
ir
ulation.One of these is the va
uum{expe
tation{value of the integral of the 00 
omponent of stressenergy: EVa
uum = R < 0jT00j0 >. This version of the va
uum energy is, in general, notequal to either one of ECasimir or Ee� . However, if one were to swit
h o� all intera
tions, sothat T00 ! T Free00 , then an argument, (Presented, e.g., in the review arti
le [2℄), shows thatunder rather general 
onditions ECasimir = R < 0jT Free00 j0 >. Yet another version of va
uumenergy is obtained by 
onsidering the full e�e
tive a
tion in pla
e of the one{loop e�e
tivea
tion and its 
orresponding e�e
tive energy E1e� = �e�=T . Again this e�e
tive energyis quite distin
t from the other versions of the va
uum energy dis
ussed above. These atleast four subtly di�erent versions of the va
uum energy has unfortunate 
onsequen
esinsofar as many papers in the literature do not take the appropriate 
are to make thesedistin
tions.



Zeta fun
tions and the Casimir Energy 126 Comparison with standard results.In this se
tion we shall make 
onne
tions between our formalism and some of the expli
it
al
ulations already available in the literature. While agreeing with many of those 
al
u-lations, we report some subtle di�eren
es when 
onsidering solid 
ondu
tors and 
loselyrelated aspe
t of bag models.6.1 Parallel Plates:Consider a massless s
alar �eld satisfying Diri
hlet boundary 
onditions 
on�ned betweentwo parallel plates of surfa
e area S held a distan
e L apart. The three dimensional heatkernel is easily seen to be K3(x; x; t) = K1(x; x; t)=(4���2t), whi
h upon integration overthe volume between the plates yieldsK3(t) = �2S4�t �K1(t): (6.1)But K1(t) is expli
itly known in terms of the eigenvalues of the redu
ed one dimensionalproblem �n = n2=L2. Evaluation of the three-dimensional zeta fun
tion pro
eeds in astraightforward manner�3(s) = �2S�(s) Z 10 dt � ts�1 � 14�t � 1X0 exp(�tn2=�2L2)= �2S4� � (�L)2s�2 � 1s� 1 � �R(2s� 2): (6.2)Here �R is the ordinary Riemann zeta fun
tion. In taking the limit s! �12 one does noten
ounter a pole, so the Casimir energy is simplyECasimir(L; S) = � 112� � 12 � �h
2�SL3 � �R(�3): (6.3)It is a standard zeta fun
tion result that zR(�3) = 1120 , whi
h �nally leads to the well-known standard result [2℄. This 
al
ulation, though trivial, has expressed some importantideas. The absen
e of a pole in the s! �12 limit 
an be tra
ed ba
k to the fa
t that theplates are 
at. Be
ause the plates are 
at the se
ond fundamental form vanishes (
 = 0),
onsequently b2 = 0, and �nally C2 = 0. This has the additional interesting e�e
t thatthe 
at{plate Casimir energy is insensitive to the thi
kness of the plates.6.2 Cylindri
al Shells and Spheri
al Shells:For 
ylindri
al and spheri
al shells b2(outside) = �b2(inside), thus C2(net) = 0, and wemay safely use simple dimensional arguments to dedu
eE
ylinder / LR2 ;Esphere / 1R: (6.4)



Zeta fun
tions and the Casimir Energy 13Note that these dimensional analysis results are merely assumed, not proved, in the stan-dard analyses of these problems [11, 12, 13℄. It was by no means 
lear, in the days before
onformal anomalies be
ame a well understood part of �eld theory, that there is anythingto prove in deriving (6.4). Fortunately, the naive result works for thin shells, but as weshall soon see, leads to 
onfusion when applied to solid 
ondu
tors. It should be em-phasized that the 
an
ellation of b2 between the inner and outer fa
es is the underlying
ause of the \deli
ate 
an
ellations between internal and external modes" noted by manyauthors [2℄.6.3 Solid Cylinders and Solid Spheres:For solid 
ondu
tors the \deli
ate 
an
ellations" alluded to previously no longer o

ur.Indeed it is easy to see that C2(�; L;R)solid 
ylinder / L�R2C2(�;R)solid sphere / 1�R (6.5)Consequently the Casimir energy possesses a logarithmi
 dependen
e on the radius of thesesystems. The Casimir energy also depends on the normalization s
ale. In regularizations
hemes su
h as proper-time regularization or a mode-sum 
ut-o� the pole asso
iatedwith C2 manifests itself as an divergent term that depends logarithmi
ally on the 
ut{o� [8, 22℄. Su
h logarithmi
 divergen
es have in fa
t been en
ountered in some expli
it
al
ulations [15℄. Any term of the form ln(R�) may be re{
ast as ln(R�) + ln(�=�); theln(�=�) may then be absorbed into a renormalization of some appropriate pie
e of theenergy, but a term of form ln(R�) always remains in the renormalized energy (with the� dependen
e 
ompensated by some other term).6.4 Membranes:We now turn to a very di�erent physi
al system, that of a membrane. Membrane theory,as a generalization of string theory, has enjoyed some re
ent popularity [23, 24, 25℄.Consider a physi
al �eld that is 
onstrained to propagate on the surfa
e of a 
losed stati
membrane. As far as the Casimir e�e
t is 
on
erned, this is equivalent to 
onsideringa 2+1 dimensional spa
etime. The analysis of this paper 
ontinue to hold, with thesole ex
eption that the pole of the zeta fun
tion at s = �12 is now proportional to C 32 .Sin
e a 32 is automati
ally zero, this means that a 
losed (i.e., boundary-less) membraneautomati
ally has C2 = 0. Consequently, zeta-fun
tion 
al
ulations of the Casimir e�e
ton any 
losed membrane are always guaranteed to not en
ounter a pole. This explainsthe otherwise quite mira
ulous 
an
ellation of poles en
ountered in expli
it 
omputationsperformed by Sawhill [26℄. Open membranes, on the other hand, may possess poles in thezeta fun
tion as s! �12 . The residues of su
h poles are, however, tightly 
onstrained.These above 
omments are also relevant to other physi
al systems: 
onsider any �eldtheory that gives rise to domain walls. It is very easy in su
h theories to arrange formassless parti
les to be
ome trapped on the domain wall. This suggests the interestingpossibility that for suitable 
hoi
es of parameters and parti
le 
ontent, one may use the
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tions and the Casimir Energy 14Casimir energy to stabilize small spheri
al domain walls against 
ollapse. Preliminary
al
ulations seem en
ouraging.At a more general level, the 
omments of this se
tion imply that the behaviour of theCasimir e�e
t depends 
ru
ially on whether the total number of spa
etime dimensionsis even or odd. This will be dis
ussed more fully when we make some 
omments onKaluza{Klein models.6.5 Bag Models:Another physi
al situation where the Casimir e�e
t has been of great importan
e is in thebag models of QCD [14, 15, 16℄. As a �rst approximation, the idea is to treat quarks andgluons as massless parti
les 
on�ned to the interior of some (3+1)-dimensional boundedregion of spa
etime 
alled the bag. The free quark-gluon Lagrangian is then augmentedby a \bag Lagrangian" responsible for 
on�ning the quarks and gluons.The points we wish to make are twofold. First, generi
ally C2 6= 0 for these bagmodels (barring fortuitous 
an
ellations between the e�e
ts of quark and gluon boundary
onditions). In 
ut-o� regularizations of the mode sum this would 
orrespond to theappearan
e of a logarithmi
 divergen
e, as has indeed been reported by Milton [15℄. Inour zeta-fun
tion approa
h the Casimir energy of the bag in
ludes a ln(�R)=R term. Sin
ewe are working with a model that is supposed to be an approximation to QCD, and sin
ewe have argued that the Casimir energy is related to one{loop e�e
ts, it is natural for thebag models to expe
t � to be related to �QCD (�h
� � �QCD).The se
ond point we wish to make 
on
erns the (renormalized) bag energy. The totalbag energy depends on the zero-loop bag energy, plus the Casimir energy (i.e., one{loopphysi
s), plus higher loop e�e
ts (presumably small). One of the great virtues of thezeta fun
tion approa
h is that it yields an e�e
tive way of 
al
ulating the Casimir energywithout requiring a detailed analysis of the renormalization properties of the bag energy.To extra
t the stru
ture of the (renormalizable) Bag Lagrangian the proper time 
uto�is more appropriate. In the proper time formalismEreg(�) = �h
�p4� Z 1� dt t�3=2 tr0(e�tD3��2): (6.6)The resulting divergen
es in the Casimir energy are des
ribed byEreg(�) � C0�2 + C 12�3=2 + C1� + C3=2�1=2 + C2 ln �+ �nite pie
es: (6.7)Thus the requirement of renormalizability of the energy implies that the zero-loop bagenergy 
ontains (at a minimum) the following termsE0 = Z
 2X0 gn an + Z�
 2X0 hn bn: (6.8)In 
at spa
etime this simpli�es 
onsiderablyE0 = p � V + � � S + Z�
 �h1 b1 + h3=2 b3=2 + h2b2� : (6.9)
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tions and the Casimir Energy 15Here p is the bag pressure, � is its surfa
e tension, the parameters h1, h3=2 and h2 do notappear to have standard names.If we approximate the bag as spheri
al, we 
an easily extra
t the dependen
e of theseterms on bag radius h1 Z b1 = FR; (6.10)h3=2 Z b3=2 = k; (6.11)h2 Z b2 = h=R: (6.12)Whi
h allows us to write the zero-loop renormalized bag energy asE0 = p � V + � � S + FR + k + h=R (6.13)It is to be emphasized that these parameters are to be determined by experiment; they
annot be 
al
ulated within the 
on�nes of the bag model. In prin
iple they would be
al
ulable from the full theory of QCD. Adding the one-loop e�e
ts (Casimir energy) andde�ning Z = h+ �0 �nally yieldsEbag = p � V + � � S + FR + k + Z=R� �1 ln(�R)=R: (6.14)The only one of these parameters that is 
al
ulable using Casimir energy te
hniques is�1. In parti
ular, the parameter Z is not 
al
ulable, but rather is to be experimentallydetermined. The terms involving p and � are standard. The term involving F haspreviously been dis
ussed in the work of Milton [15℄. The o�set term k has (to the bestof our knowledge) not previously been dis
ussed. We note in passing that the o�set pie
ek 
ontains a purely topologi
al pie
e proportional to the Euler 
hara
teristi
 of the bag.
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tions and the Casimir Energy 167 Appli
ations to Kaluza{Klein theories.In this se
tion we seek to extra
t some information 
on
erning the one-loop 
ontributionsto the e�e
tive four-dimensional 
osmologi
al and Newton 
onstants within the frame-work of Kaluza{Klein theory. Cal
ulations along these lines have been 
arried out, forsome spe
i�
 simple 
hoi
es of the internal geometry, in referen
es [27, 28, 29, 30℄. Weshall pro
eed with a bare minimum of assumptions. Consider a 4 + d dimensional uni-verse with d 
ompa
ti�ed dimensions, M4+d = M4 
 
. Assume the theory to possessmultidimensional 
osmologi
al (�) and Newton (G) 
onstants. That isS4+d = � � Z pg4+d d4+dx +G�1 � Z R4+dpg4+d d4+dx+ � � � (7.1)Using the produ
t de
omposition of spa
etime one infers R4+d = R4+Rd, so that for thetree{level four dimensional e�e
tive Cosmologi
al and Newton 
onstants one dedu
es:�e� = � � vol(
) +G�1 � Z
pgdRd;G�1e� = G�1 � vol(
): (7.2)To evaluate the one{loop 
ontributions to �e� and Ge� one uses the produ
t de
om-position of spa
etime to dedu
e a produ
t de
omposition for the diagonal part of the heatkernel K(t) = K4(t) �Kd(t): (7.3)The asymptoti
 expansion of the four-dimensional heat kernel may now be used to obtainan expansion for the zeta fun
tion�4+d(s) = 1X0 Cn(g4)(4�)2 � �(s� 2 + n)�(s) � �d(s� 2 + n): (7.4)This expansion is a formal one in the \size" of the 
ompa
ti�ed dimensions. To justify theabove expansion 
onsider a \long wavelength" approximation implemented by res
alingthe external dimensions: g4+d;� = g4;�� gd = (�2g4)� gd. In this situation the heat kernelenjoys the property that K4+d;�(t) = K4;�(t) � Kd(t) = K4(��2t) � Kd(t). Thus the limit� ! 1 allows one to employ the asymptoti
 expansion of the heat kernel to obtain anasymptoti
 expansion for the multi-dimensional zeta fun
tion�4+d;�(s) = NX0 Cn(g4)(4�)2 �4�2n �(s� 2 + n)�(s) �d(s� 2 + n) + o(�4�2n): (7.5)By abuse of notation we have rewritten this asymptoti
 expansion as the physi
ally morereasonable (7.4). Now, re
all that C0 = �4 R pg4 d4x and C1 = k � R R4pg4 d4x, (k is a
onstant depending on the statisti
s and spins of the elementary parti
les present in thetheory). This may be used to extra
t the one-loop 
orre
tions to �e� and Ge��e� = � � vol(
) +G�1 � Z
pgRd � �42(4�)2 n12� 0d(�2)� 34�d(�2)o :G�1e� = G�1 � vol(
)� k � �22(4�)2 f� 0d(�1)� �d(�1)g : (7.6)
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tions and the Casimir Energy 17Observe that the zeta fun
tions appearing in the above are guaranteed to be analyti
 atall non-positive integers, so that these expressions are �nite as they stand. Further, thevalue of the zeta fun
tion at non-positive integers is (in prin
iple) known; for example�d(�2) = 2C2+(d=2)=(4�)d=2, and �d(�1) = �C1+(d=2)=(4�)d=2.Without evaluating equation (7.6) in full detail, we may pro�tably inquire as to thedependen
e of �e� and Ge� on the \radius" of the internal dimensions. The major point tobe made is that the 
ase of an odd number of internal dimensions behaves in a qualitativelydi�erent manner form an even number of internal dimensions. Introdu
ing appropriate
onstants permits us to write�e� = ard + brd�2 + f�0 � �1 ln(�r)g r�4;G�1e� = a0rd + f�00 � �01 ln(�r)g r�2: (7.7)The dimensionless 
onstants �1 and �01 are proportional to �d(�2) and �d(�1) respe
tively.In any odd number of dimensions (provided the internal manifold has no boundary) theseare guaranteed to vanish. Thus in an odd number of dimensions, �e� and Ge� havea simple power-law dependen
e on the radius of the 
ompa
t dimensions. This breaksdown however, for any even number of dimensions where one observes the appearan
e oflogarithmi
 dependen
es on the radius. We expe
t these logarithms to have signi�
ante�e
ts, but shall postpone further 
omments to another paper.
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lusionThe Casimir energy is a very useful 
on
ept, it may be viewed as the \zero point energy"of the va
uum, and, from a slightly di�erent viewpoint, is also intimately related to one{loop physi
s in the form of the one{loop E�e
tive energy. In this paper we have exhibiteda uni�ed framework that allows us to regularize and renormalize the zero point mode sumin a way that is extremely general. Our de�nition yields a well behaved �nite quantity inmany interesting physi
al situations: e.g. in the presen
e of a ba
kground gravitational�eld, with massive or massless parti
les, and in the presen
e or absen
e of boundaries ofthe spa
e{time manifold. It is hoped that with this framework in pla
e, it will be possibleto perform extensive expli
it 
al
ulations.Note added in proofAfter submittal of this paper we were made aware of additional work by the Man
hestergroup [32, 33, 34℄. For additional work on the relevan
e of the Casimir e�e
t to thestability of Kaluza{Klein models see referen
es [35, 36, 37, 38℄. In addition we wish tothank Emil Mottola for useful dis
ussions.
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tions and the Casimir Energy 19Appendix A The Seeley{de Witt 
oeÆ
ients.The Seeley{de Witt 
oeÆ
ients an(x) are independent of the applied boundary 
onditions,but the 
oeÆ
ients do depend on the spin of the �eld in question.a0(x) = 1: (A.1)a1(x) = k �R: (A.2)a2(x) = A(Weyl)2 + B[(Ri

i)2 � 13R2℄ + Cr2R + DR2: (A.3)The boundary 
oeÆ
ients bn(y) depend on the nature of the boundary 
onditionsimposed. For Diri
hlet or Neumann boundary 
onditionsb0(y) = 0: (A.4)b1=2(y) = �p�2 : (A.5)b1(y) = 13tr
: (A.6)b3=2(y) = a(tr
)2 + btr(
2) + 
R (A.7)b2(y) = ~a(tr
)3 + ~b(tr
2)(tr
) + ~
(tr
3) + ~d(tr
)R + ~e
ijRij + ~fr2(tr
): (A.8)Where 
 is the se
ond fundamental form of �
, the boundary of 
. The 
urvatures ap-pearing in bn are intrinsi
 
urvatures 
omputed from the indu
ed metri
 on the boundary.If one adopts Robin boundary 
onditions ���� + (y)�(y) = 0, then additional terms appearin bn for n � 1. Sin
e  has the same dimensions as 
, these extra terms are of the typeexhibited above with 
 7!  .
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tion Identities.We 
olle
t some useful Gamma Fun
tion identities, see for instan
e [31℄. Take n 2f0; 1; 2; � � �g: Res[�(�n + �)℄ = (�)nn! : (B.1)PP [�(�n+ �)℄ = (�)n �  (n+ 1)�(n+ 1) =  (n+ 1) �Res[�(�n + �)℄: (B.2)�(12) = p� (B.3)�(�12) = �p4�: (B.4) (1) = �
: (B.5) (n) = �
 + n�1Xk=1 1k : (B.6) (12) = �
 � 2 ln 2: (B.7) (12 � n) = �
 � 2 ln 2 + 2Pnk=1 1(2k�1) : (B.8) (�12) = �
 � 2 ln 2 + 2: (B.9)
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