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Abstract 20

I exhibit a particularly simple “physical wavelet’—it is a Lorentz covariant classical field configuration that lives in physféal
Minkowski space. The field is everywhere finite and nonsingular, and has quadratic falloff in both space and time. Thé&2otal
energy is finite, the total action is zero, and the field configuration solves the wave equation. 23
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1. Motivation 29

30

While the particle physics community has for some time made extensive use of extended field configurations

such as solitons, instantons, and sphalerons, no direct use has yet been made of the quite extensive literature ol
“localized wave” configurations developed by the engineering, optics, and mathematics communities. (For selected
references sed }-6.) These localized waves are classical solutions of the wave equation that are partially locatized
in space or time, this localization generally coming at a cost such as infinite total energy and/or instability (leasling
to dispersion or diffraction). The catalogue of known localized waves is large and gréwirignost of the known 3

examples are not in a form that would be easy to apply to particle physics problems. 37
In this Letter | will exhibit a particularly simple “physical wavelet” that is more promising from a particte
physics standpoint. It satisfies the properties that: 39
40

e Itis alocalized wave that solves the wave equation. 41
e Itis a Lorentz covariant classical field configuration that lives in physical Minkowski space. 42
e Thefield is everywhere finite and nonsingular, and has quadratic falloff in both space and time. 43
e The total energy is finite, depending on the peak field and the width of the pulse. 44

45

E-mail address: matt.visser@vuw.ac.nz (M. Visser). 46

1 Field configurations similar to the one considered in this Letter may variously be encountered under names such as: “localized Waves”,
“focus wave modes”, “pulses”, “X-waves”, “limited diffraction beams”, “wavelets”, and “physical wavelets”. 48
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e The total action is zero. 1
2

These physical wavelets can be constructed for both complex and real scalar fields. Extending these idea to the

Maxwell and Yang—Mills fields is straightforward. 4
5
6
2. Complex scalar field 7
8
Let n,p = diad+1, —1, —1, —1] be the Minkowski metric [particle physics signature], fgtbe an arbitrary o
4-vector, and let“ be arbitrary timelike 4-vector, then 10
11

(Mabt“s")
H(x) = — Po(mang“¢ Q o

Naplx? — x§ — ig)xb — xg — it?]

is a Lorentz covariant, finite energy, zero-action solution of the d’Alembertian wave equagien0. The “center”
of the pulse is ako and its “width” isa = v/n.5¢4¢". The field is everywhere finite and in fajgt (x)| < |¢o|. To  *°
see this, use the fact thatis timelike. Then, using the manifest Lorentz covariance of the field configuration, We
can without loss of generality first translatg— 0, and then go into the zero-momentum frame where 17

13
14

18

%=1(a,0,0,0). 2) 19
Then the field configuration is 22
a2 a2 22

[t —ial2—x2—y2—2z2  y2 24424 2iat’
Once written in this form it is a straightforward exercise to verify that the wave equation is satisfied. To see th§3 the

field is everywhere bounded note 26

62— |po|%a” B |pol%a’ 27
(r2—12+a?)2+4a%2  (r2+12+4a?)2 — 422 28
29
|ol?a* __ lgofat @
S 242 4a22 - (24122 dh+2a2(r2 12 O "
From the penultimate inequality we also derive 32
2 33
612 < Z1golP—2— G)
X 2 0 l"2 T [2 s

35
demonstrating the promised quadratic falloff in both space and time. Indeed for fixednagnitude of the field is 6
maximized whem? = max{r? — a2, 0}, showing that the configuration disperses to spatial infinity at bethtzoo. 37

To calculate the 4-momentum, we remind the reader that the stress—energy tensor for a massless compley scala

is 39
1 1 40

Tab = 5[ ®506 + daty] = Snan| VI, ©®) 4
Then a2
1 43

V. T = E[A¢>"‘vb¢> + ApVpo*l, (7 “

45

which vanishes by the equations of motion. But this means that 46

47

pi=fran, ®
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is a conserved quantity, the 4-momentum of the configuration, which is independent of the particular spacelike
hypersurfaceX chosen to do the integration. By simple dimensional analpsis= C|¢ol%¢¢, whereC is a 2
dimensionless number to be calculated. (Note ifahas the dimensions of a position vector—a distance.) The
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energy density is 4
1 5
p=5[10:817 + 10-617], 9 s

7

and in the zero-momentum frame is easily calculated to be 8
_ 2a%|go|(r? 4 1? + a?) )

P 2= 124 a2+ 2ian2(r2— 12+ a2 — 2ia1)?’ 10

For arbitrary: this integrates to i
o0 1 13

E= 5£ dr p =/47'rr2,0 = §n2|¢o|2a. (1) 14

(This is independent of as it should be.) This is the invariant mass of the field configuration. By spherici;jal

0

symmetry, the total momentum is zero. Thus, for any timefike

18
19

1

Pt = Sn?|golc. (12)
20
Furthermore the Lagrangian is 21
1 ) ) 22
L= E[Iazd)l — 19,¢1%], (13) =3
24
which evaluates (in the zero-momentum frame) to -
_ 2a%|gol*(1? +a® — r?) ) =
(2 =124 a2+ 2iat)2(r2 — 12 + a? — 2iat)?’ z
It is easy to check that z:
5£ d*x £ =0, (15) 30
31

so that the configuration is zero action.

In summary, what we have is a Lorentz covariant, singularity-free, finite energy, zero action, exact localfzed
solution to the d’Alembertian equation. In many ways this configuration has more right to be called an “instariton”
than do the instantons of QFT; those instantons live in Euclidean signature. This field configuration lives irfreal

physical time.

Now the fact that there are finite energy solutions to the wave equation is not a surprise; that these finite énergy
solutions can coalesce, bounce, and disperse without producing field singularities is more interesting. One Way of

32

36

guessing that the field configurationkia. (1)is worth investigating is the following: it is easy to convince onesef®

that in 4 Euclidean dimensions the solution to Laplace’s equation with a delta function source at the origirtfqthe

Green function) is

1
¢ (x) T -y (16) :j
Thus in(3+ 1) Lorentzian dimensions the (singular) solution to the wave equation with a delta function sourae at
the origin is 46
1 47
@ (x) x (A7) 4

x2+y2+12—12'

41
42
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If the source is now moved to a real positigfiwe have 1
1 2
¢ (x) (18) 3
(x —x0)2 + (y — y0)? + (z — 20)? — (1 — 10)? s
which is still a singular field configuration. Finally, move the source away from physical Minkowski space tosthe
complex positioncg —i¢“, then 6
1 7
¢ (x) x (19) s

(r—x0+itH2+(y —yo+i¢?H?+ (2 —z0+i¢3H2— (t —t0+i¢9)?’ o
which is essentialljeqg. (1) above. This style of approach has been particularly advocated by Kajsaijs 1,
approach is also reminiscent of the “complex tubes” used for other purposes in axiomatic quantum field'theogy [
Further afield, in spirit (though not in detail) it has limited parallels with Feynmanfgrescription for quantum
Green functions. As we have just seerg, i timelike the resulting field configuration is singularity free. However,g

for null and spacelike“, while the field is still a solution of the wave equation, the field is not bounded. Becayse

of the singularities the energy and action integrals then diverge. Details are deferred for now and will be presented

in Sections 4 and.5 16
One should also note that in the optics and engineering literature the most commonly used notations ake not

manifestly Lorentz covariant. Thus it is common to see expressions such as (see, for inéfance, [ 18

1 19

¢ (20) 5

X N .
x24y2+[b1—i(z+D)]b2+i(z —1)]
. . . \ N , Lo !
whose Lorentz transformation properties are less than obvious—in fact this field configuration is equivalent to
Eq. (1)with the identification

b1+ b2 b1 — b2
“ _( 70v 07 )7 ||§|| =b1b2' (21)

23

2 2

3. Real scalar field 28
29
By taking real and imaginary parts of the complex solution above we can write down two solutions for thesteal

scalar field: 31
b1 $0(Mabt ¢t naplx® — x§1[xP = x{1 —napt®c®y 22) zz
(Mablx® — x§11x> — x81 = 1apg¢2)2 + A(nap[x® — x§1¢2)2 w
by 200(napt“&") (naplx” — x51¢") . 23 *
(Map[x® — x§1[x? — x5 — 0apt2P)2 + A(ap[x@ — x§1¢0)2 3
We can without loss of generality translaig— 0 and go to the zero-momentum fragte= (a, 0, 0, 0), then z;
boa’{t?2 — r? — a?) poa®2at 39
$1= (12— 12— 422 1 4a2s2’ $2 = (12— 12— a?)2 f 4a22’ @4) 4,
The stress—energy tensor and divergence for a real scalar field simplify j;
Tab = Pahp — %nabwmz, VaT* = ApVig. (25)

with the divergence vanishing by the equations of motion. The calculation for the energy—momentum 4-vectofnow
yields: 46
a_1 2. 2.4 pa v
Pl =—nm%|¢pol°¢" = P5. (26) 48

"4
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The action integral for both of these field configurations is still zero.

4, Null ¢

P.5 (1-6)
by:Vita p. 5

5

A W N P

5

Let us now return to the original scalar complex wavelet. Suppose the 4-vedgonull. Then because the 6
numerator vanishes identically the original definition above gives0. We should at a minimum change our field”

definition to read
Yo

Nap[x® — x§ —i¢[xb — x§ —i¢

$ () =—

b]'

Then without loss of generality we go into the frame

9= (a,0,0,a),
and then
- Yo B Yo
o) = [t —ial?—x2—y2 —[z—ial> r2—1242ia(t—z2)
Note
6| = Vo

V(2 =122 4 4a2(1 — 2)2

(27)

(28)

(29)

(30)

8

9

10
11
12
13
14
15
16
17
18
19
20
21
22

The denominator now vanishes when 1 andx = y = 0, so that the field is divergent on the beam axis. Suppo$

we write R = /x2 4+ y2 then

Yo
R24+72—t242ia(t—2)°

¢(x) =

28
So we see that the field drops off gsRE as we move away from the beam axis. (And more critically, the field blows
up as ¥R? as we approach the beam axis.) Attempts at calculating the energy and action now lead to diveggent

(31)

24
25
26
27

integrals. In other words, despite the fact that it still solves the wave equation, far thil is not a particularly ;

useful field configuration.

5. Spacdike ¢

32
33
34
35
36

For the complex scalar wavelet, suppose the 4-vecttsispacelike. Then without loss of generality we go intq,

the infinite velocity frame where

¢“=1(0,0,0,qa),
and then
p) = 5—— ¢0202 ”~ a— ¢poa’ .
12 —x2—y?2—[z—ial> r?—1?>—a?-2iaz
Note
(0| = dots

V2 =12 Za2)2 1 4422

(32)

(33)

(34)

38
39
40
2
42
43
44
45
46
47
48
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The denominator now vanishes whes: 0 andx?+ y2 = a?+12. Thatis, the field is divergent on a time-dependent
circle orthogonal to the beam axis. There is a short distance singularity as one approaches this circle, and thezenergy
and action integrals diverge. Despite the fact that it still solves the wave equation, for spadbliis not a useful 3
field configuration. 4

~N o O

6. Discussion
8
A similar construction can be performed for the Maxwell field. However, because the optics and enginegring
literature generally does not use manifestly Lorentz covariant notation, it can be very time consuming to calculate
the 4-momentum of a specific pulse. Indeed only very rece®yhis Lekner provided specific and explicitia
computations of both energy and momentum (as well as the angular momentum) for a pulse similar tozthat
considered above. As expected (once one has the covariant perspective advocated in this article) fotimedike
the momentum is less than the energy, indicating the existence of a zero-momentum frame for the pulses wf this
type [6]. Similarly, constructing a Yang—Mills wavelet is straightforward:Aebe any constant matrix in the centeris
of the gauge group and sa&f = A A%, whereA?(x) is a pulse-like solution of the Maxwell field. 16
The physical wavelet discussed in this Letter is important because it represents a very simple extended field
configuration of a type not commonly encountered. The wavelet is neither a soliton, nor an instanton, mor a
sphaleron; though it shares properties with all three of these extended objects: 19
20
o Like the soliton it lives in physical time (Minkowski space, not Euclidean space), and possesses a well-defined

4-velocity. 22
e Like the instanton it “dies away” in the infinite past and future. 23
o Like the instanton it possesses a continuously adjustable scale parameter. 24
e Like the sphaleron it is unstable to dispersal. 25

26
Because the wavelet fields are bounded and finite energy, wavelet configuvetidres classically excited at any 27
finite temperature. Because the wavelet configuration has zero action, arbitrarily complicated combinations otthese
physical wavelets can be added to the field configurations appearing in Feynman’s path integral without modifying
the phase—quantum mechanically there is no “cost” in adding these configurations to the Lorentzian path irdegral

and theywill contribute. 31
Other “localized waves” might be interesting in specific applications but the particular example discussed igethis
Letter is important because of its extreme simplicity and pleasant behaviour. 33

34
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