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Wave equation for sound in fluids with vorticity
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Abstract

We use Clebsch potentials and an action principle to derive a complete closed system of gauge-invariant equations for sound
superposed on a general background flow. Our system reduces to the Unruh [Phys. Rev. Lett. 46 (1981) 1351] and Pierce [J.
Acoust. Soc. Am. 87 (1990) 2292] wave equations when the flow is irrotational, or slowly varying. We illustrate our formalism
by applying it to waves propagating in a uniformly rotating fluid where the sound modes hybridize with inertial waves.
© 2003 Elsevier B.V. All rights reserved.
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1. Introduction

Studies of sound in a stationary fluid usually start from the wave equation whose derivation appears in all
elementary texts, for example see[1]. When the fluid is moving, however, finding an appropriate generalization
of the wave equation is not always possible. An exception is the special circumstance that the equation of state
is barotropic and the background flow irrotational, but not necessarily steady. In this case a particularly attractive
equation was derived by Unruh[2,3]. Unruh’s equation was later rediscovered and further popularized by Visser
[4,5]. It coincides with the equation obeyed by a relativistic scalar field propagating in curved space-time. The
space-time geometry is governed by theacoustic metricwhich depends on the background flow velocity and on the
local fluid density and speed of sound. The curved space-time interpretation of the wave equation is rather more
than a mathematical curiosity. As well providing an attractive analogy with some aspects of general relativity[6],
one can use the geometric formalism for ray tracing, and to produce a straightforward and systematic derivation of
various conservation laws associated with acoustic energy and momentum[7,8].
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Unfortunately most fluid motions occurring in nature are not irrotational. It is therefore desirable to explore the
possibility of extending the acoustic metric equation to a wider class of flows. A valuable step in this direction was
taken by Pierce[9] who, without assuming that the background flow was irrotational, derived an equation which is
in appearance equivalent to the acoustic metric equation. He did, however, assume that the background flow varied
slowly over the length and time scale of the sound wave. As a result of his approximations, his dependent variable
is not quite the velocity potential appearing in the acoustic metric equation. It gives the fluctuating velocity only up
to a correction whose magnitude depends on the space and time inhomogeneities of the background flow. Pierce
did not attempt to characterize the correction beyond estimating its size and showing that it was small in most
regimes of interest in acoustics. He did show, however, that in special cases his equation reduces to known exact
wave equations. In particular, for steady irrotational flow it reduces to Blokhintsev’s equation[10,11], which is a
special case of Unruh’s. This and other features led Pierce to conjecture that his equation is of wider applicability
than his derivation suggests. The purpose of the present paper is to show that this conjecture is correct.

We use Clebsch potentials and an action principle to derive the equations of motion for small perturbations about
a general barotropic flow. Our principal result is an exact and concise expression for the small correction to potential
flow, and a simple equation of motion obeyed by it. This, coupled with the Pierce equation, provides a closed system
for wave propagation in a general inhomogeneous and unsteady background flow. The condition that the correction
to potential flow be ignorable, and thus the acoustic metric equation accurate, is that the frequency of the sound be
appreciably higher than the local vorticity. There isno requirement that the spatial inhomogeneity be small. Even
if the frequency condition is violated, we can still study the wave motion, but with a more complicated system of
partial differential equations.

The paper is organized as follows: inSection 2we provide a very brief four-equation outline of key results.
Section 3reviews the action principle for the Clebsch formulation of barotropic fluid mechanics. (The straightforward
but messy derivation of the Euler equations is presented inAppendix A.) In Section 4we consider first-order
perturbations to a background flow, and identify two “gauge-invariant” combinations of the potentials which have
physical significance. (Technical discussion of the infinite family of conserved quantities that generate global gauge
transformations on the Clebsch potentials is deferred untilAppendix B.) In Section 5we derive a closed system
of equations for these combinations, and inSection 6present a physical interpretation for one of the perturbations
in terms of the displacement field. FinallySection 7illustrates our formalism by applying it to a well-understood
situation: waves in a uniformly rotating fluid.

2. Outline

In brief: any vector field in three dimensions can be represented in Clebsch form:

v0 = ∇φ0 + β0∇γ0. (1)

Once this is done, fluctuations around this background vector field can be represented as

v1 = ∇φ1 + β0∇γ1 + β1∇γ0 = ∇(φ1 + β0γ1)− γ1∇β0 + β1∇γ0 ≡ ∇ψ1 + ξ1. (2)

A nice feature of this representation is thatξ1 · (∇ × v0) = 0. Now interpretv as the fluid velocity, in the body of
the paper we will derive an exact closed system of coupled differential equations for the perturbation:

d

dt

(
1

c2

d

dt
ψ1

)
= 1

ρ0
∇(ρ0(∇ψ1 + ξ1)), (3)

dξ1
dt

= ∇ψ1 × ω0 − (ξ1 · ∇)v0. (4)

Deriving, interpreting, and analyzing these coupled wave equations is the central theme of this article.
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3. Clebsch representation

In this section, we will review the Clebsch potential approach to fluid dynamics. The Clebsch formalism has the
advantage that the equations of motion may be derived from an action principle[12], and with an action principle
conservation laws are related to symmetries by Noether’s theorem.

We begin with

S =
∫

dt d3x

{
−1

2
ρv2 − φ(ρ̇ + ∇ · (ρv))+ ρβ(γ̇ + (v · ∇)γ)+ u(ρ)

}
. (5)

Hereρ is the fluid mass-density,v the velocity, andu(ρ) the internal energy density. This is the customary expression
giving rise to irrotational fluid dynamics (see, for example[7])—but with an additional term containing new fields:
β andγ. The variableβ may be thought of as a Lagrange multiplier enforcing theLin constraint[13] that there be
a label (γ) painted on the particles permitting us to distinguish one from another. (Lin originally employedthree
Lagrange multipliersβ1,2,3 leading to the conservation of three Lagrange co-ordinates,γ1,2,3, which served to label
the material particles uniquely. As shown by Seligar and Whitham[14], only one of these Lagrange multipliers is
really necessary.)

Requiring thatS be stationary when we varyv gives

−ρv + ρ∇φ + ρβ∇γ = 0, (6)

or

v = ∇φ + β∇γ. (7)

This is the Clebsch representation[15,16]of the velocity field. It allows for flows with non-zero vorticity:

ω = ∇ × v = ∇β × ∇γ. (8)

We use(7) to algebraically eliminate thev in S in favor of the Clebsch potentialsφ, β, γ. This leads to a new action
[12]:

Snew =
∫

dt d3x

{
1

2
ρ(∇φ + β∇γ)2 + ρ(φ̇ + βγ̇)+ u(ρ)

}
. (9)

Varying the remaining variables in(9) gives the equations of motion:

δφ : ρ̇ + ∇ · (ρv) = 0, δβ : ρ(γ̇ + (v · ∇)γ) = 0 ⇒ γ̇ + (v · ∇)γ = 0,

δγ : ∂t(ρβ)+ ∇(vρβ) = 0 ⇒ β̇ + (v · ∇)β = 0, δρ : 1
2v

2 + φ̇ + βγ̇ + µ = 0, (10)

where, in the last line,µ = du/dρ is the specific enthalpy. We see that the values of bothβ andγ are advected with
the motion. InAppendix A, we verify that the above equations reproduce Euler’s equation.

It is important to realize that the Clebsch decomposition is radically different from the Helmholtz decomposition
(Hodge decomposition):

v = ∇Φ+ ∇ × A (11)

that is more commonly used in electrodynamics and related fields. The Clebsch representation, though less commonly
used, is more fundamental when it comes to investigations in fluid dynamics (see for example[17–19]).



124 S.E. Perez Bergliaffa et al. / Physica D 191 (2004) 121–136

4. Fluctuations

We want to study the evolution of small fluctuations superposed on a background flow. We will take the background
flow to be described by the set of variables(ρ0, φ0, β0, γ0), and take

ρ = ρ0 + ερ1, φ = φ0 + εφ1, β = β0 + εβ1, γ = γ0 + εγ1, (12)

whereε is a (small) dimensionless expansion parameter, to describe the background flow plus perturbation. We will
not assume that the background flow is steady, only that it satisfies the equations of motion. We now expand the
actionSnew out to quadratic order in the fluctuations:

Snew = S0 + S1 + S2 + · · · . (13)

The actionS1, containing terms linear in the fluctuations, vanishes because of our assumption that the zeroth order
variables obey the equation of motion. The term quadratic in the fluctuations is

S2 =
∫

dt d3x

{
1

2
ρ0v2

1 + ρ1v0 · v1 + ρ1(φ̇1 + β0γ̇1 + β1γ̇0)+ ρ0β1γ̇1 + 1

2

c2

ρ0
ρ2

1

}
, (14)

wherev1 is shorthand for∇φ1 + β1∇γ0 + β0∇γ1, and

c2 = ρ0
d2u

dρ2
(15)

is the square of the local speed of sound.
In making this expansion we have ignored the fact that the nonlinearity of the constitutive relations for the fluid,

and the nonlinearity of the equation of continuity, mean thatEq. (12)should be supplemented O(ε2) corrections,
and that these are of the same order as the terms retained in(14). This seeming inconsistency, however, is the usual
approximation of linear acoustics: any order O(ε2) term inEq. (12)contributes toS2 only linearly, through terms
that vanish because the zeroth order variables obey the equation of motion. The omitted terms can be significant
at higher order, when computing such effects as radiation stress and mass transport by the sound wave, which are
intrinsically of second-order in the wave amplitude, but are unimportant for computing the O(ε) wave amplitude.

FromS2 we can deduce the equations of motion for the first-order fluctuating quantities. These equations are
not easy to work with, however. Because they are advected with the flow, the potentialsβ0 andγ0 which appear as
coefficients in the equations will generally be time-dependent—even if the background flow is steady. Furthermore,
there is an overall gauge ambiguity inherent in the Clebsch decomposition which obscures any physical interpreta-
tion. (The genesis and nature of this gauge ambiguity is more fully developed inAppendix B.) It is therefore fruitful
to seek combinations of the potentials that are gauge-invariant and can be expressed in terms of physical quantities.
For example the first-order velocity field:

v1 = ∇φ1 + β0∇γ1 + β1∇γ0 (16)

is gauge-invariant becausev is.
By varyingρ1 in (14)we find

ρ1 = −ρ0

c2
(φ̇1 + v0 · ∇φ1 + β0(γ̇1 + v0 · ∇γ1)+ β1(γ̇0 + v0 · ∇γ0)). (17)

Since

β̇0 + v0 · ∇β0 = 0, γ̇0 + v0 · ∇γ0 = 0, (18)
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we can write this as

ρ1 = −ρ0

c2

dψ1

dt
, (19)

where

ψ1 = φ1 + β0γ1 (20)

and

d

dt
= ∂

∂t
+ v0 · ∇ (21)

is the convective derivative.
Note that the density fluctuationρ1, being a physical variable, must be gauge-invariant in the sense ofAppendix B.

ConsequentlyEq. (19)suggests that the combinationψ1 is itself gauge-invariant. This is easily confirmed. In the
notation ofAppendix B:

δψ1 = δ(φ1 + β0γ1)

=
{
∂F

∂β
β1 + ∂F

∂γ
γ1 − β1

∂F

∂β
− β0

(
∂2F

∂β2
β1 + ∂2F

∂β∂γ
γ1

)
− ∂F

∂γ
γ1 + β0

(
∂2F

∂β2
β1 + ∂2F

∂β∂γ
γ1

)}
= 0. (22)

We can useψ1 to write

v1 = ∇ψ1 + ξ1, (23)

where

ξ1 = β1∇γ0 − γ1∇β0. (24)

This is a decomposition of the first-order velocity fluctuation into two gauge-invariant parts. Because sound in a
fluid is a scalar excitation, it is natural to identify the scalar fieldψ1 with the acoustic degree of freedom, andξ1,
the correction to potential flow induced by angular momentum conservation, with a partial hybridization of the
sound with other modes. (Note that there isno requirement that∇ · ξ1 = 0, which fundamentally distinguishes
this procedure from a Helmholtz-type decomposition.) Although the vector fieldξ1 has three components, it only
represents two degrees of freedom. This is because

ξ1 · ω0 = (β1∇γ0 − γ1∇β0) · (∇β0 × ∇γ0) ≡ 0. (25)

Sinceξ1 is gauge-invariant, it should be possible to write it in terms of physical variables. InSection 6we will show
that it is equal tox1 × ω0 whereεx1 is the particle displacement caused by the disturbance.

5. Wave equation

The first-order continuity equation:

∂ρ1

∂t
+ v0 · ∇ρ1 + ρ1∇ · v0 + ∇ · ρ0v1 = 0, (26)

together with the zeroth order continuity equation:

∂ρ0

∂t
+ ∇ · (ρ0v0) = 0, (27)
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the equation forρ1

ρ1 = −ρ0

c2

dψ1

dt
(28)

and the decompositionv1 = ∇ψ1 + ξ1, may be combined to give

d

dt

(
1

c2

d

dt
ψ1

)
= 1

ρ0
∇(ρ0(∇ψ1 + ξ1)). (29)

If we ignore theξ1, (29) is Pierce’s approximate wave equation:(
∂

∂t
+ v0 · ∇

)
1

c2

(
∂

∂t
+ v0 · ∇

)
ψ1 = 1

ρ0
∇(ρ0∇ψ1). (30)

(For other approximate wave equations see, for instance[20].) By usingEq. (27)again, this can be rewritten as(
∂

∂t
+ ∇ · v0

)
ρ0

c2

(
∂

∂t
+ v0 · ∇

)
ψ1 = ∇(ρ0∇ψ1), (31)

where each∇ is acting oneverythingto its right. Although(30) may seem more natural, the form(31) has the
advantage that it can be written as

1√−g∂µ(
√−ggµν∂νψ1) = 0, (32)

where

√−ggµν = ρ0

c2

(
1 vT

0
v0 v0vT

0 − c2I

)
. (33)

We use the convention that Greek letters run over four space-time indices 0,1,2,3 with 0 ≡ t, while Roman indices
refer to the three space components.Eq. (32)has the same form as that of a scalar wave propagating in a gravitational
field with pseudo-Riemann (Lorentzian) metricgµν. We will refer togµν as the acoustic metric. The idea of writing
the sound wave equation in this way is due to[2,3].

As is customary in general relativity, the symbolg denotes the determinant of the covariant form of the metric,
gµν, so detgµν = g−1. Taking the determinant of both sides of(33) thus shows that the 4-volume measure

√−g is
equal toρ2

0/c. Knowing this, we may then invert the matrixgµν to find the covariant components of the metric:

gµν = ρ0

c

(
c2 − v2

0 vT
0

v0 −I

)
. (34)

The associated space-time interval is therefore

ds2 = ρ0

c
{c2 dt2 − δij (dxi − vi0 dt)(dxj − vj0 dt)}. (35)

In the geometric acoustics limit, sound propagates along the null geodesics of this metric.
Metrics of the form(35), although without the overall conformal factorρ0/c, appear in the Arnowitt–Deser–Misner

(ADM) formalism of general relativity[22]. There,c and−vi0 are referred to as thelapse functionandshift vector,
respectively. They serve to glue successive three-dimensional time slices together to form a four-dimensional
space-time; for a picture see[23]. In our present case, providedρ0/c can be regarded as a constant, each 3-space
is ordinary flatR3 equipped with the rectangular Cartesian metricg

(space)
ij = δij —but the resultant space-time is in

general curved, the curvature depending on the degree of inhomogeneity of the mean flowv0.
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This formalism is very pretty, but(30) is exact only when the background flow is potential.Eq. (29), on the other
hand, is valid for a general barotropic flow—but to be of use it must be complemented by an equation determining the
time evolution ofξ1. We now derive such an equation. We start with the observation that, sinceβ, γ are convectively
conserved, we have

∂β0

∂t
+ (v0 · ∇)β0 = 0 (36)

and

∂β1

∂t
+ (v0 · ∇)β1 + (v1 · ∇)β0 = 0. (37)

Taking the gradient of(36)gives(
∂

∂t
+ v0 · ∇

)
∇iβ0 = −(∇iv0j)∇jβ0. (38)

Thus, using the definition(24):(
∂

∂t
+ v0 · ∇

)
ξ1i = −[(v1 · ∇)β0]∇iγ0 + [(v1 · ∇)γ0]∇iβ0 − β1(∇iv0j)∇jγ0 + γ1(∇iv0j)∇jβ0

= −v1j(∇jβ0∇iγ0 − ∇jγ0∇iβ0)− (∇iv0j)ξ1j = −v1j(∇jv0i − ∇iv0j)− (∇iv0j)ξ1j

= (−∇jψ1 − ξ1j)(∇jv0i − ∇iv0j)− (∇iv0j)ξ1j = −∇jψ1(∇jv0i − ∇iv0j)− ξ1j(∇jv0i)

(39)

which can be written as

dξ1
dt

= ∇ψ1 × ω0 − (ξ1 · ∇)v0. (40)

In summary: the two coupled equations:

d

dt

(
1

c2

d

dt
ψ1

)
= 1

ρ0
∇(ρ0(∇ψ1 + ξ1)) (41)

and

dξ1
dt

= ∇ψ1 × ω0 − (ξ1 · ∇)v0 (42)

form a complete exact closed system of equations, containing only gauge-invariant quantities, describing the
first-order fluctuations about the background mean flow.

6. Displacement field

It is not yet clear that, under most circumstances of interest in acoustics, the quantityξ1 is a small correction to
∇ψ1. It becomes so, however, once we establish the result

ξ1 = x1 × ω0, (43)

whereεx1 is the displacement of a material particle due to the sound wave. By “displacement” we mean that the
material point which in the unperturbed reference flow was at timet located atx is, as a result of the perturbation,
now to be found at positionx + εx1. Given(43), we see that the order of magnitude ofξ1 is that of the product of
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the displacement amplitude with the background flow rotation frequency. The fluctuating velocity associated with
the acoustic field is, on the other hand, of the order of the displacement amplitude times the frequency,Ω, of the
sound wave. Thusξ1 is smaller than∇ψ1 by a factor of|ω0|/Ω.

Observe that this argument tacitly assumes thatx1 remains small and oscillating. This is certainly what we expect
for a sound wave, but, in the absence of viscous damping, many flows with vorticity will be unstable to the onset of
turbulence, and if the sound triggers such an instabilityx1 will grow without bound. In this case, the entire notion
of sound propagating in an unperturbed background flow becomes meaningless. Our equations will continue to be
valid in the initial stages of this growth, however, and so they may be of value in investigating the stability of flows
against the onset of turbulence.

To establish(43) we recall thatx1(x, t) was defined by taking the material point that was at timet located at
x, is, as a result of the perturbation, now to be found atx + εx1. We also remember that the numerical values
of the potentialsβ, γ, are painted on the material particles, and so move with the flow under both time evolution
and the creation of an initial perturbation by means of an external potential body force. Interpreting this statement
mathematically leads to

x1 · ∇β0 + β1 = 0, x1 · ∇γ0 + γ1 = 0. (44)

From this we may write

β1∇γ0 − γ1∇β0 = (x1 · ∇γ0)∇β0 − (x1 · ∇β0)∇γ0,= x1 × (∇β0 × ∇γ0),= x1 × ω0. (45)

We can use(43) to re-derive the equation of motion forξ1 and so provide a derivation of the wave equation that
is independent of the use of Clebsch potentials. In their absence, though, the origin of the decomposition of the
velocity field into the sum ofξ1 = x1 × ω0 and the gradient of the velocity potential,ψ1, is more than a trifle
obscure.

To verify that(43) leads to the equation of motion(39) for ξ1 we must first establish a connection betweenv1

and the time derivative ofx1. This requires us to describe the perturbation with a little more formality. Consider
a family v(x, t, λ) of adjacent solutions of the full equations of motion. The velocity fieldv(x, t,0) is that of the
unperturbed reference flow, and increasing values ofλ correspond to flows evolving from a one-parameter family
of initial perturbations. By definition the operations of time evolution and variation ofλ commute.

The position,x(t, λ), of a material particle is given by the solution to the differential equation:

ẋ(t) = v(x(t, λ), t, λ) (46)

with suitable initial conditions. Our first-order perturbed fields are, in this language:

x1 = dx
dλ

∣∣∣∣
λ=0

, v1 = dv
dλ

∣∣∣∣
λ=0

. (47)

Differentiating(46)with respect toλ, and interpreting the time derivative as a convective derivative, gives

v1 = ∂x1

∂t
+ (v0 · ∇)x1 − (x1 · ∇)v0. (48)

Now, starting from

ξ1 = x1 × ω0 (49)

and the convective derivatives
dx1

dt
= v1 + (x1 · ∇)v0, (50)

dω0

dt
= (ω0 · ∇)v0 − (∇ · v0)ω0, (51)



S.E. Perez Bergliaffa et al. / Physica D 191 (2004) 121–136 129

we may find an equation for the time evolution ofξ1. Using the fact the convective derivative is a derivation, we find

dξ1
dt

= (v1 + (x1 · ∇)v0)× ω0 + x1 × ((ω0 · ∇)v0 − (∇ · v0)ω0)

= v1 × ω0 + (∇ · x1)(v0 × ω0)+ (∇ · ω0)(x1 × v0)+ (∇ · v0)(ω0 × x1). (52)

In the second line the ordering of the symbols is meant only to indicate how the indices are wired up. The∇ must
be understood to act to the right only on the velocity fieldv0.

We now use the vector identity:

(x · a)(b × c)+ (x · b)(c × a)+ (x · c)(a × b) = x[a · (b × c)] (53)

with x replaced by∇ (still acting only onv0) to find that

dξ1
dt

= v1 × ω0 + ∇(x1 · (v0 × ω0)) = v1 × ω0 − ∇(v0 · (x1 × ω0))

= v1 × ω0 − ∇(v0 · ξ1) = (∇ψ1)× ω0 − (ξ1 · ∇)v0 (54)

which is the same as(40). (Again, in the first three lines,∇ must be understood to act only onv0, even though it
may be written to the left of other variables.)

We can also check the consistency of the time evolution of the first-order vorticity. From(45)we find that

ω1 = ∇ × (x1 × ω0), (55)

so
∂ω1

∂t
= ∇ ×

(
∂x1

∂t
× ω0

)
+ ∇ ×

(
x1 × ∂ω0

∂t

)
. (56)

It is not immediately obvious that(56) is compatible with the equation:

∂ω1

∂t
= ∇ × (v0 × ω1)+ ∇ × (v1 × ω0) (57)

which comes from applying d/dλ to the vorticity evolution equation:

∂ω

∂t
= ∇ × (v × ω). (58)

The right-hand sides of(56) and (57)are equal only if

∂x1

∂t
× ω0 + x1 × ∂ω0

∂t
− v0 × ω1 − v1 × ω0 (59)

is the gradient of something. Now by using(48), (55) and (57), we can write(59)as

ω0 × (∇ × (x1 × v0))+ x1 × (∇ × (v0 × ω0))+ v0 × (∇ × (ω0 × x1))

− (ω0 × x1)(∇ · v0)− (x1 × v0)(∇ · ω0)− (v0 × ω0)(∇ · x1). (60)

Here we have added in a term(x1 × v0)(∇ · ω0), which is of course identically zero, in order to preserve manifest
cyclic symmetry of the terms.

Now for any three vector fieldsa, b, c, we may verify that

a × (∇ × (b × c))+ b × (∇ × (c × a))+ c × (∇ × (a × b))

− (a × b)(∇ · c)− (b × c)(∇ · a)− (c × a)(∇ · b) = ∇(a · (b × c)), (61)

where∇ is acting on everything to its right. Applying this to(60) shows that it is a total derivative, and so the
evolution equations are consistent.
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7. Illustrative examples

As illustrative examples of the formalism consider waves propagating in the background flow

v0 = ω0

2


−y
x

0


 . (62)

This corresponds to the fluid rotating as a rigid body with angular frequencyω0/2. The perverse notation for the
frequency arises because we have been using the symbolω to denote vorticity, and∇×v0 = ω0ẑ. (A more traditional
discussion of this example my be found, for instance, in[24].) To reduce notational clutter, in this section we will
drop the suffix 1 from the fieldsψ andξ. It should still be borne in mind that they are first-order quantities.

7.1. Sound/inertial-wave hybridization

Our equations of motion are

− d

dt

(
1

c2

dψ

dt

)
+ 1

ρ0
∇(ρ0(∇ψ + ξ)) = 0,

dξ

dt
− (∇ψ × ω0)+ (ξ · ∇)v0 = 0. (63)

They need to be supplemented with an initial condition that setsξ ·ω0 = 0. This orthogonality is then preserved by
the subsequent motion. We will ignore any effects due to gradients inρ0 andc2.

Take asansatza plane wave in the frame rotating with the fluid:

ξ = (ξx′ x̂
′ + ξy′ ŷ′) = (Ξx′ x̂

′ +Ξy′ ŷ′)ei(kx′x′+ky′y′+kz′z′−Ωt), ψ = Ψ ei(kx′x′+ky′y′+kz′z′−Ωt). (64)

HereΞx′,y′ andΨ are constant amplitudes. The primed unit vectors are

x̂′ = x̂ cos [(1
2ω0)t] + ŷ sin [(1

2ω0)t], ŷ′ = −x̂ sin [(1
2ω0)t] + ŷ cos [(1

2ω0)t], ẑ′ = ẑ (65)

and the primed co-ordinates

x′ = x cos [(1
2ω0)t] + y sin [(1

2ω0)t], y′ = −x sin [(1
2ω0)t] + y cos [(1

2ω0)t], z′ = z. (66)

The convective derivatives onψ and on the components ofξ become

dψ

dt
=
(
∂ψ

∂t

)
x′,y′

= −iΩψ,
dξx′,y′

dt
=
(
∂ξx′,y′

∂t

)
x′,y′

= −iΩξx′,y′ . (67)

For ξ itself we need to take note of the time dependence of the unit vectorsx̂′, ŷ′, so we have

dξ

dt
=
(

dξx′

dt
−
(ω0

2

)
ξy′

)
x̂′ +

(
dξy′

dt
+
(ω0

2

)
ξx′

)
ŷ′

=
(
−iΩξx′ −

(ω0

2

)
ξy′
)

x̂′ +
(
−iΩξy′ +

(ω0

2

)
ξx′
)

ŷ′. (68)

Also we need

(ξ · ∇)v0 = −ξy′(1
2ω0)x̂′ + ξy′(1

2ω0)ŷ′. (69)

The two off-diagonalω0/2 terms add to get rid of the 1/2. The coupled equations therefore become


−iΩ −ω0 −iky′ω0

+ω0 −iΩ +ikx′ω0

+ikx′ iky′
(
Ω2

c2
− k2

)




Ξx′

Ξy′

Ψ


 = 0. (70)
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For a solution to exist, the determinant of the matrix in(70)must vanish. This gives the dispersion relation:

(ω2
0 −Ω2)

(
Ω2

c2
− |k|2

)
+ ω2

0k
2
x′ + ω2

0k
2
y′ = 0 (71)

which for fixedk is a quadratic equation forΩ2.
Some insight into this dispersion relation can be obtained by lettingc2 → ∞. In this limit the quadratic reduces

to

|k|2Ω2 − ω2
0k

2
z′ = 0 (72)

and so gives

Ω2 = ω2
0k

2
z′

k2
x′ + k2

y′ + k2
z′
. (73)

This is the well-known dispersion relation for inertial waves in an incompressible fluid[25]. For these modes the
restoring force comes entirely from angular momentum conservation. They are low frequency,Ω2 ≤ ω2

0, oscillations
and have a number of unusual features. In particular the frequency is independent of the magnitude ofk, so the
group velocity is perpendicular to the phase velocity—i.e. parallel to the wavecrests. At any particular frequency
the disturbance spreads out from its source along a diabolic cone.

The second root of the quadratic equation,Ω2 ≈ c2k2 corresponds to conventional sound, and is lost to infinity
asc2 becomes large.

Now let us consider general values ofc2. From the eigenmode equation we can solve forξ in terms of the
amplitude ofψ to get(

Ξx′

Ξy′

)
= ω0

Ω2 − ω2
0

(−ky′Ω+ ikx′ω0

kx′Ω+ iky′ω0

)
Ψ. (74)

This appears to be singular whenΩ2 approachesω2
0, but, as we will see, this occurs only nearkx′ = ky′ = 0 and

the limit is smooth, the fluid rotating in circles in thex–y plane.
Fromξ we can find the velocity field,v1, and hence, by integration, the first-order displacement field,x1, in the

frame rotating with the background fluid. (Ifx1 = x1x′ x̂′ + x1y′ ŷ′, andv1 = v1x′ x̂′ + v1y′ ŷ′, then(48) reduces to
v1x′,y′ = (∂x1x′,y′/∂t)x′,y′ .) We therefore find

x1 =
(
Ψ

Ω

)



−kx′
−ky′
−kz′


+ ω0

Ω2 − ω2
0




−kx′ω0 − iky′Ω

−ky′ω0 + ikx′Ω

0




 ei(kx′x′+ky′y′+kz′z′−Ωt). (75)

It is now straightforward to verify that we recoverξ from ξ = (x1 × ω0). We also verify that the correction to
potential flow is O(ω0/Ω) whenΩ � ω0.

7.2. Poincaré waves

If we restrict ourselves waves withkz = 0, then setting the determinant to zero gives

Ω2

c2
(ω2

0 + c2k2 −Ω2) = 0. (76)
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We therefore have two classes of modes: those with zero frequency, and those with a gapped dispersion relation:

Ω2 = ω2
0 + c2(k2

x′ + k2
y′). (77)

The former arez-independent geostrophic flows (Taylor-column flows[26,27]) where pressure gradients are bal-
anced against a Coriolis force. The gapped modes are the Poincaré waves[28].

We can obtain the Poincaré modes by considering the motion directly in thex′, y′ frame. The effect of the frame
rotation produces a Coriolis force, and so the equation of motion is

∂v1x′

∂t
= +ω0v1y′ − c2∇x′ρ1

ρ0
,

∂v1y′

∂t
= −ω0v1x′ − c2∇y′ρ1

ρ0
. (78)

To solve we need to combine this with the continuity equation:

∂ρ1

∂t
+ ρ0(∇x′v1x′ + ∇y′v1y′) = 0. (79)

For waves travelling in thêx′ direction we find

v1x′ = A cos(kx′ −Ωt), v1y′ = A
(ω0

Ω

)
sin(kx′ −Ωt), ρ1 = A

(
ρ0k

Ω

)
cos(kx′ −Ωt), (80)

together with the dispersion relation(77). We also find the displacements of the particles to be

x1x′ = −A
(

1

Ω

)
sin(kx′ −Ωt), x1y′ = A

( ω0

Ω2

)
cos(kx′ −Ωt). (81)

Whenk = 0, we haveΩ = ω0, and the particles move in circles in thex, y plane. This limiting motion is solenoidal
and coincides with thekx′ = ky′ = 0 limit of the incompressible fluid inertial waves.

We may now make contact with ourψ, ξ formalism by writing

ρ1 = −ρ0

c2

dψ

dt
= ρ0

c2

(
∂ψ

∂t

)
x′,y′

, (82)

where

ψ = A

(
c2k

Ω2

)
sin(kx′ −Ωt). (83)

The relationξ = x1 × ω0, which was derived in thex, y inertial frame, continues to hold in the rotating frame
without modification. So we have

ξ = x1 × ω0 = ω0z(x1y′ x̂
′ − x1x′ ŷ′). (84)

We can combine this with our expression forψ to get

v1x′ = ∇x′ψ + ξx′ = A

(
c2k2

Ω2
+ ω2

0

Ω2

)
cos(kx′ −Ωt), v1y′ = 0 + ξy′ = A

(ω0

Ω

)
sin(kx′ −Ωt). (85)

Since the factor in parenthesis in the first line is seen to be unity by use of the dispersion relation, we recover the
earlier expression forv1, and confirm that the gauge-invariant decomposition works as advertised. Again we see
that the velocity fieldξ, which arises from angular momentum conservation, is smaller than the pressure induced
flow, ∇ψ, by a factor ofω0/Ω.
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8. Discussion

The central idea in this paper is the decompositionv1 = ∇ψ+ξ of a general velocity perturbation into a potential
flow and a correction required by angular momentum conservation. This decomposition is motivated by the Clebsch
formalism, but does not depend on it. From the decomposition we see that corrections to the acoustic metric equation
depend only on the ratio of the frequency of the sound wave to the frequency,ω0/2, of the background fluid rotation.
This rotation frequency is determined by the antisymmetric part,(∂ivj − ∂jvi)/2, of the velocity inhomogeneity.
The symmetric part, the rate of straineij = (∂ivj + ∂jvi)/2, can be large and the correction remain small. This is
not unreasonable because the acoustic metric equation is exact for any potential background flow—no matter how
inhomogeneous.

At low frequencies the correctionξ = x1 ×ω0 ceases to be negligible. In this regime, the sound waves hybridize
with whichever of the many other modes available to a fluid with vorticity happen to have comparable frequency.
The hybridization may lead to a spectral gap, as with the Poincaré waves, to birefringence, and to other phenomena
which show that the acoustic metric is no longer all that is needed to describe sound propagation.
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Appendix A. Euler equation

We now demonstrate that the equations of motion for the Clebsch potentials imply the Euler equation for the
fluid. Apply ∇i to the last line in(10) and add and subtractβ̇∇iγ, so that the second term is the time derivative of
the velocity:

vk∇ivk + ∂t(∇iφ + β∇iγ)− β̇∇iγ + γ̇∇iβ = −∇iµ. (A.1)

In other words

∂tvi + vk∇ivk − β̇∇iγ + γ̇∇iβ = −∇iµ. (A.2)

The second, third, and fourth terms on the left-hand side now need to be taken care of. Write

vk∇ivk = vk∇kvi + vk(∇ivk − ∇kvi),= (v · ∇)vi + vk(∇iβ∇kγ − ∇kβ∇iγ),= (v · ∇)vi − γ̇∇iβ + β̇∇iγ,
(A.3)

where, in the last line, we have used the convective constancy ofβ, γ. Inserting(A.3) into (A.2) we find

v̇ + (v · ∇)v = −∇µ (A.4)

which is Euler’s equation.
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Appendix B. Gauge transformations

In three dimensions any vector field may be locally represented in the form[15,16]:

v = ∇φ + β∇γ. (B.1)

Given a velocity fieldv, however, the potentialsφ, β andγ, are not uniquely determined. This indeterminacy is
usually described as being due to a gauge invariance, but it is more analogous to the residual freedom to make
time-independentgauge transformations that survives after we fix theA0 = 0 gauge in Maxwell electrodynamics.
As in that example, once we have a made a choice of the potentials,φ, β, andγ, at any particular time, their
subsequent evolution is uniquely determined by the equations of motion(10).

We can relate the gauge invariance to conservation laws. From

ρ̇ + ∇ · ρv = 0, β̇ + (v · ∇)β = 0, γ̇ + (v · ∇)γ = 0, (B.2)

we deduce that

F =
∫
ρF(β, γ)d3x (B.3)

is independent of time. HereF is an arbitrary function of the variablesβ andγ with position-independent coefficients.
Now any action that contains only first-order time derivatives defines a Poisson bracket and canonical structure.

For two functionalsF1,2 of the fieldsρ, φ, β, γ, at timet we define the Poisson bracket{F1, F2} as

{F1, F2} = dF2

dt

∣∣∣∣
F1

, (B.4)

where the subscript,F1, on the derivative indicates that time evolution of the variablesρ, φ, β, γ is derived by
varying the action:

S[F1] =
∫
ρ(φ̇ + βγ̇)dt d3x−

∫
F1(ρ, φ, β, γ)dt. (B.5)

Such a Poisson bracket automatically satisfies all the usual properties, including skew symmetry and the Jacobi
identity:

{F1, {F2, F3}} + {F2, {F3, F1}} + {F3, {F1, F2}} = 0. (B.6)

In the present case the bracket becomes

{F1, F2} =
∫

d3x

(
1

ρ

δF1

δβ(x)
δF2

δγ(x)
− δF1

δφ(x)
δF2

δρ(x)
− β

ρ

δF1

δφ(x)
δF2

δβ(x)
− (F1 ↔ F2)

)
(B.7)

and (ρ, φ), and (ρβ, γ) constitute two canonically conjugate pairs, i.e.

{ρ(x), φ(x′)} = δ3(x − x′), {ρβ(x), γ(x′)} = δ3(x − x′). (B.8)

We now consider the conserved chargeF as the generator of an infinitesimal symmetry by setting

δφ = {F, φ} = F− β∂F
∂β
. (B.9)

Similarly

δβ = −∂F
∂γ
, δγ = ∂F

∂β
. (B.10)

The fieldρ is unaltered. This is becauseF does not containφ.
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These variations generate an infinite-dimensionalglobal (rigid, non-gauged) symmetry group. It is a global
symmetry because the parameters inF are required to be independent ofx and t. The transformations are the
extension to Clebsch potentials of the globalU(1) phase symmetryφ → φ + constant which appears in potential
flow, v = ∇φ, where it is generated by the conserved chargeQ = ∫

ρ d3x.
The symmetry transformations leave the Hamiltonian

H =
∫ {

1

2
ρ(∇φ + β∇γ)2 + u(ρ)

}
d3x (B.11)

invariant because{F,H} = −{H,F } = dF/dt = 0. In addition to Poisson-commuting with the Hamiltonian, the
conserved chargeF generates variations that preservev itself:

δv = ∇δφ + δβ∇γ + β∇δγ,= ∇
(
F− β∂F

∂γ

)
− ∂F

∂γ
∇γ + β∇

(
∂F

∂β

)
,= 0. (B.12)

They also preserve the kinetic term:

δ[ρ(φ̇ + βγ̇)] = ρ
{
∂F

∂β
β̇ + ∂F

∂γ
γ̇ +

(
∂F

∂t

)
β,γ

− β̇ ∂F
∂β

− β
(
∂2F

∂β2
β̇ + ∂2F

∂β∂γ
γ̇ + ∂2F

∂t∂β

)

− ∂F

∂γ
γ̇ + β

(
∂2F

∂β2
β̇ + ∂2F

∂β∂γ
γ̇ + ∂2F

∂β∂t

)}
= ρ

(
∂F

∂t

)
βγ

(B.13)

which vanishes providedF does not explicitly depend on time.
It is easy to show that the symmetry group is that of orientation and area preserving diffeomorphisms of the

2-plane. It is equivalently the group of nonlinear canonical transformations on a two-dimensional phase space
with Darboux co-ordinatesβ, γ. Because of this we can obtain the finite form of the transformations—as well as
confirming that that they exhaust all transformations that preservev—by exploiting the familiar generating function
methods from classical mechanics[21]. Suppose that

dφ̃ + β̃ dγ̃ = dφ + β dγ. (B.14)

Then

d(φ̃ − φ) = β dγ − β̃ dγ̃ (B.15)

and there must exist aW(γ, γ̃), thegenerating function, such that

φ̃ − φ = W,
∂W

∂γ
= β,

∂W

∂γ̃
= β̃. (B.16)

Conversely, given a generating function, we can obtain a finite canonical transformation. To make contact with the
infinitesimal transformations we considered earlier, we let

β̃ = β + β̇+t, γ̃ = γ + γ̇+t, (B.17)

where ‘t’ is a notional time parameterizing the change. Thus

dW = β dγ − (β + β̇+t)d(γ + γ̇+t),= −+t(β̇ dγ + β dγ̇). (B.18)

Similarly letW = U+t, so that

dU = −β̇ dγ − β dγ̇, (B.19)
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or, making a Legendre transformationF = U + βγ̇:

d(U + βγ̇) = −β̇ dγ + γ̇ dβ = dF(β, γ). (B.20)

In other words

β̇ = −∂F
∂γ
, γ̇ = ∂F

∂β
, (B.21)

leading to

φ̃ = φ + U+t = φ +
(
F − β∂F

∂β

)
+t, β̃ = β − ∂F

∂γ
+t, γ̃ = γ + ∂F

∂β
+t, (B.22)

as before.
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