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Abstract

We use Clebsch potentials and an action principle to derive a complete closed system of gauge-invariant equations for sound
superposed on a general background flow. Our system reduces to the Unruh [Phys. Rev. Lett. 46 (1981) 1351] and Pierce [J.
Acoust. Soc. Am. 87 (1990) 2292] wave equations when the flow is irrotational, or slowly varying. We illustrate our formalism
by applying it to waves propagating in a uniformly rotating fluid where the sound modes hybridize with inertial waves.
© 2003 Elsevier B.V. All rights reserved.
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1. Introduction

Studies of sound in a stationary fluid usually start from the wave equation whose derivation appears in all
elementary texts, for example sgd. When the fluid is moving, however, finding an appropriate generalization
of the wave equation is not always possible. An exception is the special circumstance that the equation of state
is barotropic and the background flow irrotational, but not necessarily steady. In this case a particularly attractive
equation was derived by UnryB,3]. Unruh’s equation was later rediscovered and further popularized by Visser
[4,5]. It coincides with the equation obeyed by a relativistic scalar field propagating in curved space-time. The
space-time geometry is governed by #doeustic metriavhich depends on the background flow velocity and on the
local fluid density and speed of sound. The curved space-time interpretation of the wave equation is rather more
than a mathematical curiosity. As well providing an attractive analogy with some aspects of general rédfivity
one can use the geometric formalism for ray tracing, and to produce a straightforward and systematic derivation of
various conservation laws associated with acoustic energy and momgh8jm
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Unfortunately most fluid motions occurring in nature are not irrotational. It is therefore desirable to explore the
possibility of extending the acoustic metric equation to a wider class of flows. A valuable step in this direction was
taken by Piercd] who, without assuming that the background flow was irrotational, derived an equation which is
in appearance equivalent to the acoustic metric equation. He did, however, assume that the background flow variec
slowly over the length and time scale of the sound wave. As a result of his approximations, his dependent variable
is not quite the velocity potential appearing in the acoustic metric equation. It gives the fluctuating velocity only up
to a correction whose magnitude depends on the space and time inhomogeneities of the background flow. Pierct
did not attempt to characterize the correction beyond estimating its size and showing that it was small in most
regimes of interest in acoustics. He did show, however, that in special cases his equation reduces to known exac
wave equations. In particular, for steady irrotational flow it reduces to Blokhintsev’s eqiafidri], which is a
special case of Unruh’s. This and other features led Pierce to conjecture that his equation is of wider applicability
than his derivation suggests. The purpose of the present paper is to show that this conjecture is correct.

We use Clebsch potentials and an action principle to derive the equations of motion for small perturbations about
a general barotropic flow. Our principal result is an exact and concise expression for the small correction to potential
flow, and a simple equation of motion obeyed by it. This, coupled with the Pierce equation, provides a closed system
for wave propagation in a general inhomogeneous and unsteady background flow. The condition that the correction
to potential flow be ignorable, and thus the acoustic metric equation accurate, is that the frequency of the sound be
appreciably higher than the local vorticity. Therensrequirement that the spatial inhomogeneity be small. Even
if the frequency condition is violated, we can still study the wave motion, but with a more complicated system of
partial differential equations.

The paper is organized as follows: 8ection 2we provide a very brief four-equation outline of key results.
Section Jeviews the action principle for the Clebsch formulation of barotropic fluid mechanics. (The straightforward
but messy derivation of the Euler equations is presentefipipendix A) In Section 4we consider first-order
perturbations to a background flow, and identify two “gauge-invariant” combinations of the potentials which have
physical significance. (Technical discussion of the infinite family of conserved quantities that generate global gauge
transformations on the Clebsch potentials is deferred éptilendix B) In Section 5we derive a closed system
of equations for these combinations, andigction Gpresent a physical interpretation for one of the perturbations
in terms of the displacement field. FinalBection 7illustrates our formalism by applying it to a well-understood
situation: waves in a uniformly rotating fluid.

2. Outline

In brief: any vector field in three dimensions can be represented in Clebsch form:

Vo = Vo + BoVyo. 1)
Once this is done, fluctuations around this background vector field can be represented as
V1= V1 + BoVyr+ B1Vyo = V(#1 + Borr) — v1VBo + B1Vyo = VY + &1. 2)

A nice feature of this representation is tfat (V x vg) = 0. Now interpretv as the fluid velocity, in the body of
the paper we will derive an exact closed system of coupled differential equations for the perturbation:

d(1d \_ 1. o 3
3 (2&"’0 = o V(Po(Vy1F ). (3)
d

% — Vi x 0o — (61 V)Vo. 4

Deriving, interpreting, and analyzing these coupled wave equations is the central theme of this article.
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3. Clebsch representation

In this section, we will review the Clebsch potential approach to fluid dynamics. The Clebsch formalism has the
advantage that the equations of motion may be derived from an action prificplend with an action principle
conservation laws are related to symmetries by Noether’s theorem.

We begin with

1
S= /drd?’x {—épv2 — @b+ V- (pV) + pB + (V- V)p) + u(p)} : (5)

Herep is the fluid mass-density,the velocity, and: (p) the internal energy density. This is the customary expression
giving rise to irrotational fluid dynamics (see, for examplB—nbut with an additional term containing new fields:
B andy. The variabled may be thought of as a Lagrange multiplier enforcinglthreconstraint[13] that there be
a label §) painted on the particles permitting us to distinguish one from another. (Lin originally emptiosesd
Lagrange multipliergs » 3 leading to the conservation of three Lagrange co-ordingigss, which served to label
the material particles uniquely. As shown by Seligar and Whitfiedh only one of these Lagrange multipliers is
really necessary.)

Requiring thatS be stationary when we varygives

—pV+ pVé + pBVy =0, (6)
or

V="V¢+BVy. (7)
This is the Clebsch representatifdb,16] of the velocity field. It allows for flows with non-zero vorticity:

w=VxV=VgxVy. (8)
We use(7) to algebraically eliminate thein S in favor of the Clebsch potentiads 8, y. This leads to a new action
[12]:

1 . )

Snew = / dr d®x {Emv@s +BVY + (& + 1) + u(p)} : ©)
Varying the remaining variables {{9) gives the equations of motion:

ép: p+V-(pv) =0, B: py+(-V)=0 = y+(-V)y=0,

Sy: (P +VWVpB) =0 = B+(V-V)B=0, dp: 3°+¢+pr+u=0, (10)

where, in the last lingy = du/dp is the specific enthalpy. We see that the values of pahdy are advected with
the motion. InAppendix A we verify that the above equations reproduce Euler’'s equation.

It is important to realize that the Clebsch decomposition is radically different from the Helmholtz decomposition
(Hodge decomposition):

V=VO+V x A (11)

thatis more commonly usedin electrodynamics andrelated fields. The Clebsch representation, though less commonly
used, is more fundamental when it comes to investigations in fluid dynamics (see for exarml@).
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4. Fluctuations

We want to study the evolution of small fluctuations superposed on a background flow. We will take the background
flow to be described by the set of variablgs, ¢o, fo, y0), and take

p = po+ €p1, ¢ = ¢o + €1, B = Bo+ €P1, Y =0+ ey, (12)

wheree is a (small) dimensionless expansion parameter, to describe the background flow plus perturbation. We will
not assume that the background flow is steady, only that it satisfies the equations of motion. We now expand the
action Spew 0out to quadratic order in the fluctuations:

Snew= S0+ S1+ S2+ . (13)

The actionS$y, containing terms linear in the fluctuations, vanishes because of our assumption that the zeroth order
variables obey the equation of motion. The term quadratic in the fluctuations is

1 . . . . 1c?
So = / dr dx {Epovf + p1Vo - V1 + p1(p1 + Boy1 + B1yo) + poB1y1 + E%pi} , (14)

wherevs is shorthand foW¢1 + B1Vyo + BoVy1, and

2 d?u
¢ = pod_pz (15)
is the square of the local speed of sound.

In making this expansion we have ignored the fact that the nonlinearity of the constitutive relations for the fluid,
and the nonlinearity of the equation of continuity, mean @t (12)should be supplemented&) corrections,
and that these are of the same order as the terms retai(bg).iiThis seeming inconsistency, however, is the usual
approximation of linear acoustics: any ordef®) term inEq. (12)contributes tas, only linearly, through terms
that vanish because the zeroth order variables obey the equation of motion. The omitted terms can be significan
at higher order, when computing such effects as radiation stress and mass transport by the sound wave, which ar
intrinsically of second-order in the wave amplitude, but are unimportant for computing(éhevave amplitude.

From S> we can deduce the equations of motion for the first-order fluctuating quantities. These equations are
not easy to work with, however. Because they are advected with the flow, the potgp@aldyo which appear as
coefficients in the equations will generally be time-dependent—even if the background flow is steady. Furthermore,
there is an overall gauge ambiguity inherent in the Clebsch decomposition which obscures any physical interpreta-
tion. (The genesis and nature of this gauge ambiguity is more fully developgapendix B) It is therefore fruitful
to seek combinations of the potentials that are gauge-invariant and can be expressed in terms of physical quantities
For example the first-order velocity field:

Vi = Vo1 + foVy1+ B1Vyo (16)

is gauge-invariant becausas.
By varying p; in (14) we find

00, . .
p1 = —C—S(qsl +Vo - Vo1 + Bo(1 + Vo - Vy1) + 1o + Vo - Vo). 17)
Since

Bo+Vo-VBo=0, Y +Vo-Vy =0, (18)
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we can write this as
po dyry

pPL= —C—zw, (19)
where

V1= ¢1+ forn1 (20)
and

d_2o +Vvo-V (21)

dr o O

is the convective derivative.

Note that the density fluctuatign, being a physical variable, must be gauge-invariant in the serggpeindix B
ConsequentlfEq. (19)suggests that the combinatign is itself gauge-invariant. This is easily confirmed. In the
notation ofAppendix B

8yr1=48(¢1 + Boy1)
F  AF AF PF PF OF PF PF
{ ,31+—J/1—ﬂ1— ﬁo( P+ Vl) ——7/1+ﬂo< bty )/1)} =0. (22)

9B 9B op oIy dy B 9By
We can usa); to write
= Vi1 + &, (23)
where
&1 = B1Vyo — r1Vho. (24)

This is a decomposition of the first-order velocity fluctuation into two gauge-invariant parts. Because sound in a
fluid is a scalar excitation, it is natural to identify the scalar figldwith the acoustic degree of freedom, and

the correction to potential flow induced by angular momentum conservation, with a partial hybridization of the
sound with other modes. (Note that theranesrequirement thaV - & = 0, which fundamentally distinguishes

this procedure from a Helmholtz-type decomposition.) Although the vectordidhdis three components, it only
represents two degrees of freedom. This is because

& -wo = (B1Vyo — ¥1VPo) - (VBo x Vyp) = 0. (25)

Sinceg is gauge-invariant, it should be possible to write it in terms of physical variabl&gdtion 8xe will show
that it is equal toxy x wg whereex is the particle displacement caused by the disturbance.

5. Wave equation

The first-order continuity equation:

0,
%+V0-VP1+/)1V-V0+V~/>0V1=0» (26)

together with the zeroth order continuity equation:

900
T2+ V- (pov0) = 0. (27)
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the equation fop1

po dyry
_ _podyn 28
p1 2 (28)

and the decompositiony = V1 + &1, may be combined to give

d 1d1ﬁ = 1V( (V1 +§1)) (29)
a\=2a’) = % Po 1+ 81)).
If we ignore they, (29)is Pierce’s approximate wave equation:
d 1/9 1
— V)5S (= -V = =V (poVV1). 30
(at+vo )cz (at+vo )l/fl p (poVyr1) (30)
(For other approximate wave equations see, for instf2@e) By usingEg. (27)again, this can be rewritten as
d po (0
(E)t + Vo) =2 <8t + Vo > Y11= V(poVY1), (31)

where eaclV is acting oneverythingto its right. Although(30) may seem more natural, the forf®1) has the
advantage that it can be written as

1

\/_—gau(«/ —gg""9,y1) =0, (32)
where
-
g _ PO (1 Vo
88 = c? (Vo VoV-Or - ) (33)

We use the convention that Greek letters run over four space-time indite2 @ with 0 = ¢, while Roman indices
refer to the three space componefts. (32)has the same form as that of a scalar wave propagating in a gravitational
field with pseudo-Riemann (Lorentzian) metgig,. We will refer tog,,, as the acoustic metric. The idea of writing
the sound wave equation in this way is dug¢za].

As is customary in general relativity, the symigotlenotes the determinant of the covariant form of the metric,
guv, SO defg"’ = g~1. Taking the determinant of both sides(88) thus shows that the 4-volume measyfeg is
equal to,og/c. Knowing this, we may then invert the matgk” to find the covariant components of the metric:

2_ .2 T
L B ) 4
gMV_ c < VO _|> (3 )

The associated space-time interval is therefore
0 i i j j
ds? = %{cz dr? — & (dx’ — vfydy(dx/ — v] )} (35)

In the geometric acoustics limit, sound propagates along the null geodesics of this metric.

Metrics of the forn(35), although without the overall conformal faciay/c, appearin the Arnowitt—Deser—Misner
(ADM) formalism of general relativity22]. Therec and—vg are referred to as tHapse functiorandshift vector
respectively. They serve to glue successive three-dimensional time slices together to form a four-dimensional
space-time; for a picture s¢23]. In our present case, provided/c can be regarded as a constant, each 3-space
is ordinary flatR3 equipped with the rectangular Cartesian m%ﬁfgace = §jj—™but the resultant space-time is in
general curved, the curvature depending on the degree of inhomogeneity of the mean flow
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This formalism is very pretty, byB0)is exact only when the background flow is potenttd. (29) on the other
hand, is valid for a general barotropic flom—but to be of use it must be complemented by an equation determining the
time evolution oft1. We now derive such an equation. We start with the observation that,&ipae convectively
conserved, we have

9

T2 4 o V)po=0 (36)
and

9B1

=, T o VIBit(va- V)fo =0. (37)
Taking the gradient of36) gives

0
(5 +Vo - V) ViBo = —(Vivo;)V;Bo. (38)

Thus, using the definitio(24).

0
(— +Vo - V) &1 = —[(v1- V)Bo] Vivo + [(V1- V)y0] ViBo — B1(Vivo;) Vvo + y1(Vivoj) Vo

ot
= —v1;(V;BoVivo — V;»oViBo) — (Vivoj)é1j = —v1;(Vjvoi — Vivo;) — (Vivoj)éa;
= (=V;¥1 — &) (Vjvo — Vivgj) — (Vivoj)é1j = — V1 (Vjvo — Vivgy) — §1(Vjvo)

(39)
which can be written as
% = Vi1 x wo — (§1- V)Vo. (40)
In summary: the two coupled equations:
% (;2%1#1) = p—lov(po(vm +&1) (41)
and
% = V{1 x wo — (£1- V)Vo (42)

form a complete exact closed system of equations, containing only gauge-invariant quantities, describing the
first-order fluctuations about the background mean flow.

6. Displacement field
It is not yet clear that, under most circumstances of interest in acoustics, the ggaigitysmall correction to
V1. It becomes so, however, once we establish the result
§1 = X1 X wo, (43)

whereex; is the displacement of a material particle due to the sound wave. By “displacement” we mean that the
material point which in the unperturbed reference flow was at tifneated ak is, as a result of the perturbation,
now to be found at positior + €x1. Given(43), we see that the order of magnitudetgfis that of the product of
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the displacement amplitude with the background flow rotation frequency. The fluctuating velocity associated with
the acoustic field is, on the other hand, of the order of the displacement amplitude times the freq@uerfichie
sound wave. Thug, is smaller tharvyr, by a factor of|wg|/ £2.

Observe that this argument tacitly assumessthaemains small and oscillating. This is certainly what we expect
for a sound wave, but, in the absence of viscous damping, many flows with vorticity will be unstable to the onset of
turbulence, and if the sound triggers such an instabilityill grow without bound. In this case, the entire notion
of sound propagating in an unperturbed background flow becomes meaningless. Our equations will continue to be
valid in the initial stages of this growth, however, and so they may be of value in investigating the stability of flows
against the onset of turbulence.

To establish(43) we recall thatx; (x, r) was defined by taking the material point that was at tinhecated at
X, is, as a result of the perturbation, now to be found at ex;. We also remember that the numerical values
of the potentialg, y, are painted on the material particles, and so move with the flow under both time evolution
and the creation of an initial perturbation by means of an external potential body force. Interpreting this statement
mathematically leads to

X1-VBo+ p1=0, X1-Vyo+y1=0. (44)
From this we may write
B1Vyo — v1VBo = (X1- Vyo)VBo — (X1 - VBo) Vyo, = X1 X (Vo X Vyp), = X1 X wo. (45)

We can us€43) to re-derive the equation of motion f6¢ and so provide a derivation of the wave equation that
is independent of the use of Clebsch potentials. In their absence, though, the origin of the decomposition of the
velocity field into the sum of; = X3 x wp and the gradient of the velocity potentigly, is more than a trifle
obscure.

To verify that(43) leads to the equation of motiqB9) for £ we must first establish a connection betwegn
and the time derivative of;. This requires us to describe the perturbation with a little more formality. Consider
a family v(x, 7, 1) of adjacent solutions of the full equations of motion. The velocity figld ¢z, O) is that of the
unperturbed reference flow, and increasing values ajrrespond to flows evolving from a one-parameter family
of initial perturbations. By definition the operations of time evolution and variationa@fmmute.

The positionx(z, 1), of a material particle is given by the solution to the differential equation:

X() = V(X(t, L), t, A) (46)
with suitable initial conditions. Our first-order perturbed fields are, in this language:

X1 = j—: . vy = S—Z . 47)
Differentiating(46) with respect to\, and interpreting the time derivative as a convective derivative, gives

Vi = % + (Vo - V)x1 — (X1 - V)Vo. (48)
Now, starting from

§1=X1 X wo (49)
and the convective derivatives

% =V1+ (X1 V)vo, (50)

dwo

—— = (w0 - V)Vo — (V - Vo)wo, (51)

dr
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we may find an equation for the time evolutiontgf Using the fact the convective derivative is a derivation, we find

d
% = (V1 + (X1 - V)Vo) X wp + X1 X ((wo - V)Vo — (V - Vo)wo)

=V1 x wo + (V- X1) (Vo X wo) + (V - w) (X1 X Vo) + (V - Vo) (wo X X1). (52)

In the second line the ordering of the symbols is meant only to indicate how the indices are wired &pmLise
be understood to act to the right only on the velocity fiejd
We now use the vector identity:

xX-a)bxc)+ x-b)(cxa) + (x-c)y(axb)=x[a-(bxc) (53)
with x replaced by (still acting only onvg) to find that

d

% =V1 X wo+ V(X1 - (Vo X wp)) = V1 X wp — V(Vg - (X1 X wp))

=V1 X wp— V(Vo - £1) = (VY1) x wg — (61 V)Vo (54)

which is the same a@0). (Again, in the first three linesy must be understood to act only wp, even though it
may be written to the left of other variables.)
We can also check the consistency of the time evolution of the first-order vorticity. @®ywe find that

w1 =V X (X1 X wg), (55)

dw1 0X1 dwg
— =V — \Y X1 X — |. 56
e X(Bt xa)o>+ x(lx 8t> (56)

It is not immediately obvious thd66) is compatible with the equation:

SO

dw1

WZVX(VQXa)l)—i-VX(lewo) (57)
which comes from applyingAix to the vorticity evolution equation:

88—6:=Vx(v><w). (58)
The right-hand sides ¢b6) and (57)are equal only if

X a

—1xw0+X1Xﬂ—VQXa)1—V1Xa)0 (59)

ot ot

is the gradient of something. Now by usi(4B), (55) and (57)we can writg(59) as
wo X (V x (X1 xVg)) +X1 X (V x (Vg X wg)) + Vo x (V x (wg X X1))
— (w0 x X1)(V - Vo) — (X1 X Vo)(V - wp) — (Vo X w0)(V - X1). (60)
Here we have added in a terixy x vo)(V - wgp), Which is of course identically zero, in order to preserve manifest
cyclic symmetry of the terms.
Now for any three vector fields, b, ¢, we may verify that
ax(Vxbxc)+bx(Vx(cxa)+cx (Vx(axh))
—(@xb)yv-co—(bxcy(vV-a—(cxavV-b)=vV@- (b xo), (61)

whereV is acting on everything to its right. Applying this {60) shows that it is a total derivative, and so the
evolution equations are consistent.
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7. Ilustrative examples

As illustrative examples of the formalism consider waves propagating in the background flow

-y
Vo=%(x). (62)
0

This corresponds to the fluid rotating as a rigid body with angular frequept®. The perverse notation for the
frequency arises because we have been using the synibbdenote vorticity, an& x vo = wg2. (A more traditional
discussion of this example my be found, for instancg2#].) To reduce notational clutter, in this section we will
drop the suffix 1 from the fieldg andé. It should still be borne in mind that they are first-order quantities.

7.1. Sound/inertial-wave hybridization

Our equations of motion are
d /1dy 1 dg
—— | S== | + =V(po(V = = —(V - V)vp = 0.
ar <c2 ar ) + 0 (po(VY +§)) =0, 4 (VY x wo) + (6 - V)vo =0 (63)
They need to be supplemented with an initial condition that&setg = 0. This orthogonality is then preserved by

the subsequent motion. We will ignore any effects due to gradienigamdc?.
Take asansatza plane wave in the frame rotating with the fluid:

/ ! / H / / /
£ = (%.X/X/ + Ey’y/) — (EX/X/ + Ey’y,) el(kx/x +kyy'tkoz 791)7 " el(kx/x tkyy'+kz 7_Qt)' (64)

Here 5, ,» and¥ are constant amplitudes. The primed unit vectors are

%' = %X cos [(Zwo)t] + ¥ sin[(Fwo)], ' = —&sin[(3wo)1] + ¥ cos [(Swo)1], 7 =2 (65)
and the primed co-ordinates
x' = xcos[(Fwo)t] + ysin[(Fwo)]. Yy = —xsin[(Fwo)t] + y cos [(Fwo)1]., 7=z (66)
The convective derivatives of and on the components 8become
dyr oy . déy Y 08 Y .
— (= = —i2y, 2 = : = —iQ&y . 67
dt ( ot )x,,y, 2y dr o )y "2y (67)
For¢ itself we need to take note of the time dependence of the unit vetgr's so we have
dg _ déx’ 0)0 Al déy’ U)O A/
dz_< dr _<2)S)’/)X +( dr +<2)§x/ y
—  —1 ;) — @ ’ ‘4 —i / @ / 4
- (s - () 80) % + (-ioy + (D)) e
Also we need
(€ V)Vo = =&y (3wo)X + &y (300)Y - (69)
The two off-diagonalvg/2 terms add to get rid of the/2. The coupled equations therefore become
—i2 —wo —ikywo -
two -2 tike _
«o @0 gy | =0 (70)

. _ 2?2
+|kx’ |ky’ (7 — k2> lI/
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For a solution to exist, the determinant of the matriX40) must vanish. This gives the dispersion relation:
2 oo (2 2 2,2 . 2.2

which for fixedk is a quadratic equation fa22.
Some insight into this dispersion relation can be obtained by letfing oco. In this limit the quadratic reduces
to

k|?2? — wik? =0 (72)

and so gives
2,2
“)Okz’

=2 2 2"
ks +ky, + k%

2 (73)

This is the well-known dispersion relation for inertial waves in an incompressible[f6id For these modes the
restoring force comes entirely from angular momentum conservation. They are Iowfreqaéngwg, oscillations
and have a number of unusual features. In particular the frequency is independent of the magritustetbe
group velocity is perpendicular to the phase velocity—i.e. parallel to the wavecrests. At any particular frequency
the disturbance spreads out from its source along a diabolic cone.

The second root of the quadratic equati?, ~ ¢2k2 corresponds to conventional sound, and is lost to infinity
asc? becomes large.

Now let us consider general values & From the eigenmode equation we can solve&dn terms of the
amplitude ofy to get

o wo —ky 2+ ikx/a)o)
=— . 4 74
<Ey’) 22 — wf ( ky §2 + Tky wo (7
This appears to be singular wherf approaches%, but, as we will see, this occurs only néar = k,, = 0 and
the limit is smooth, the fluid rotating in circles in they plane.
Fromé& we can find the velocity fieldy1, and hence, by integration, the first-order displacement figldn the

frame rotating with the background fluid. @f = x1v X' 4+ x1/ ', andvy = v X' 4 v1,/ ¥, then(48) reduces to
viv,y = (0x1¢,y /30y, y.) We therefore find

—ky —kywo —iky $2
' . H ’ v ’_
Xi = <_) k| + 2a)o | koo +ike2 gl k' +kyyy/+he 2 =20) (75)
Q 22 — 2
—ky 0

It is now straightforward to verify that we recoverfrom & = (X3 x wg). We also verify that the correction to
potential flow is Qwo/$2) when$2 > wo.

7.2. Poincaré waves
If we restrict ourselves waves with = 0, then setting the determinant to zero gives

92
=i (wg +P2— Q% =0. (76)
c
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We therefore have two classes of modes: those with zero frequency, and those with a gapped dispersion relation:
2 2, 22 g2
£2° = wy+ “(ky + k). 77)

The former are-independent geostrophic flows (Taylor-column fld&8,27]) where pressure gradients are bal-
anced against a Coriolis force. The gapped modes are the Poincaré[2&jves

We can obtain the Poincaré modes by considering the motion directly i, thieframe. The effect of the frame
rotation produces a Coriolis force, and so the equation of motion is

31;;,(/ — twouyy — szjgpl’ 31:9?’ — oy — czzz/Pl. (78)
To solve we need to combine this with the continuity equation:

% + po(Vyvie + Vyvyy) = 0. (79)
For waves travelling in th&' direction we find

v = A cos(kX — £21), vy = A (%) sin(kX — £21), p1=A <%k> cos(kX — 1), (80)
together with the dispersion relati¢n7). We also find the displacements of the particles to be

Xy = —A (é) sinké — Q1) xy=A (%) cos(kx — 1), (81)

Whenk = 0, we have2 = wo, and the particles move in circles in they plane. This limiting motion is solenoidal
and coincides with thé,, = k,» = 0 limit of the incompressible fluid inertial waves.
We may now make contact with o, & formalism by writing

__pody _ po (3%
pL= C2 dt - C2 ( 3[ )X’ y/ ’ (82)
where
2k .
Yy=A (@) sin(kX — £21). (83)

The relationé = X3 x wg, which was derived in the, y inertial frame, continues to hold in the rotating frame
without modification. So we have

£ =X1 X wo = woz (x1y X — x1¢ ¥). (84)

We can combine this with our expression fbto get

CZkZ (,!)2 Wi .
o7 + 5% cos(kX — 21), viy =0+&y = A (50) sin(kX — £21). (85)

oLy = Vol + &y = A(

Since the factor in parenthesis in the first line is seen to be unity by use of the dispersion relation, we recover the
earlier expression fov1, and confirm that the gauge-invariant decomposition works as advertised. Again we see
that the velocity fields, which arises from angular momentum conservation, is smaller than the pressure induced
flow, Vi, by a factor ofwg/ 2.
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8. Discussion

The central idea in this paper is the decompositipae= Vs + £ of a general velocity perturbation into a potential
flow and a correction required by angular momentum conservation. This decomposition is motivated by the Clebsch
formalism, but does not depend on it. From the decomposition we see that corrections to the acoustic metric equation
depend only on the ratio of the frequency of the sound wave to the frequayi@y,of the background fluid rotation.

This rotation frequency is determined by the antisymmetric gant, — 0,v;)/2, of the velocity inhomogeneity.

The symmetric part, the rate of straip = (3;v; + 9;v;)/2, can be large and the correction remain small. This is

not unreasonable because the acoustic metric equation is exact for any potential background flow—no matter how
inhomogeneous.

At low frequencies the correctidn= x1 x wg ceases to be negligible. In this regime, the sound waves hybridize
with whichever of the many other modes available to a fluid with vorticity happen to have comparable frequency.
The hybridization may lead to a spectral gap, as with the Poincaré waves, to birefringence, and to other phenomena
which show that the acoustic metric is no longer all that is needed to describe sound propagation.
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Appendix A. Euler equation

We now demonstrate that the equations of motion for the Clebsch potentials imply the Euler equation for the
fluid. Apply V; to the last line in(10) and add and subtrag;y, so that the second term is the time derivative of
the velocity:

uVive + 8 (Vig + BViy) — BViy + 7Vif = —Vip. (A1)
In other words

dvi + uVive — BViy + yViB = —Vip. (A2)
The second, third, and fourth terms on the left-hand side now need to be taken care of. Write

W Vivg = v Vevi + v (Vivg — Vivy), = (V- VI 4+ v (ViBVky — ViBViy), = (V- Vv, — ¥ViB + BV,
(A3)

where, in the last line, we have used the convective constangyofinserting(A.3) into (A.2) we find
V+(V-VIV=—Vu (A.4)

which is Euler’s equation.
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Appendix B. Gauge transfor mations

In three dimensions any vector field may be locally represented in the[fdih6}
V=V¢+ BVy. (B.1)

Given a velocity fieldv, however, the potentiaks, 8 andy, are not uniquely determined. This indeterminacy is
usually described as being due to a gauge invariance, but it is more analogous to the residual freedom to make
time-independergauge transformations that survives after we fixAfge= 0 gauge in Maxwell electrodynamics.
As in that example, once we have a made a choice of the potertighs,andy, at any particular time, their
subsequent evolution is uniquely determined by the equations of madwn

We can relate the gauge invariance to conservation laws. From

p+V.pv=0, B+ (v-V)B=0, v+ (-V)y=0, (B.2)
we deduce that

F= f pF(B, y) dx (B.3)

isindependent of time. HerEis an arbitrary function of the variablgsandy with position-independent coefficients.
Now any action that contains only first-order time derivatives defines a Poisson bracket and canonical structure.
For two functionalsFy » of the fieldsp, ¢, 8, y, at timer we define the Poisson bracKet, F»} as
dF>

{F1, F2} = —

0 , (B.4)

F1

where the subscriptt, on the derivative indicates that time evolution of the variahles, 8, y is derived by
varying the action:

STF1] = / p(§+ B) dr P — / Fi(p. . B. y) dh (8.5)

Such a Poisson bracket automatically satisfies all the usual properties, including skew symmetry and the Jacob
identity:

{F1, {F2, F3}} + {F2, {F3, F1}} + {F3, {F1, F2}} = 0. (B.6)
In the present case the bracket becomes
1 §F1 SF; 0F, §F; 0F1 §F;
{F1,F2}=/d3x<— Lo 0RO PR OF —(Fler)) (B.7)
p 8(X) 8y(X) 8o (X) Sp(X)  p dp(X) 5B(X)
and (o, ¢), and o8, y) constitute two canonically conjugate pairs, i.e.
(o), 90N} = 83X =x),  {pB00, yX)} = 83 (x = X). (B.8)
We now consider the conserved chafgas the generator of an infinitesimal symmetry by setting
aF
5¢={E¢}=7’—ﬂ3—- (B.9)
B
Similarly
aF aF
8B =—— Sy = —. B.10
B v =8 (B.10)

The fieldp is unaltered. This is becaugedoes not contaigp.
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These variations generate an infinite-dimensiaglabal (rigid, non-gauged) symmetry group. It is a global
symmetry because the parameterstirare required to be independentyofand:. The transformations are the
extension to Clebsch potentials of the globdll) phase symmetryp — ¢ + constant which appears in potential
flow, v = V¢, where it is generated by the conserved chaige [ o d3x.

The symmetry transformations leave the Hamiltonian

H = / { (Ve + BV + u(p)} o (B.11)
invariant becauséF, H} = —{H, F} = dF/dr = 0. In addition to Poisson-commuting with the Hamiltonian, the
conserved chargE generates variations that presewiself:

v =Vép+58Vy + BVéy,=V <]—‘— ﬁﬂ:) - a}— + BV (8}-) =0. (B.12)

ay 8)/ aB

They also preserve the kinetic term:

e AF IF AF PF, PF . PF
5[,0(¢+,3V)]=,0! ,3'3+_ +<§> —,3—’3_:3< ﬂzﬂ 8/38)/ +m)
IF . P F . 82]-' I IF
o TP (W’“ gy’ T aﬂat) } =7 (E)W (B.13)

which vanishes providefl does not explicitly depend on time.

It is easy to show that the symmetry group is that of orientation and area preserving diffeomorphisms of the
2-plane. It is equivalently the group of nonlinear canonical transformations on a two-dimensional phase space
with Darboux co-ordinateg, y. Because of this we can obtain the finite form of the transformations—as well as
confirming that that they exhaust all transformations that presergy exploiting the familiar generating function
methods from classical mechanj@4]. Suppose that

dg + Bdy = dp + Bdy. (B.14)
Then

d(@ —¢) = pdy — Bdy (B.15)
and there must exist&(y, y), thegenerating functionsuch that

p—¢p=W, % =B, %V: B. (B.16)

Conversely, given a generating function, we can obtain a finite canonical transformation. To make contact with the
infinitesimal transformations we considered earlier, we let

B=B+BAl,  §=y+pAr (B.17)
where ¥’ is a notional time parameterizing the change. Thus

dW = Bdy — (B+ BANd(y + yAN, = —At(Bdy + Bdy). (B.18)
Similarly letW = UAt¢, so that

dU = —Bdy — gdy, (B.19)
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or, making a Legendre transformatiéh= U + By:

d(U + By) = —Bdy + ydB = dF(B. y). (B.20)
In other words

. oF oF

- _ g B.21

B oy’ s (B.21)
leading to

- oF ~ oF oF

¢ =¢+ UAt ¢+< ﬂa,s) t, B=28 oy t Y J/+8ﬂ t, (B.22)
as before.
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