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11 Abstract

12 We consider quasiparticle propagation in constant-speed-of-sound (iso-tachic) and almost

13 incompressible (iso-pycnal) hydrodynamic flows, using the technical machinery of general rel-

14 ativity to investigate the ‘‘effective space-time geometry’’ that is probed by the quasiparticles.

15 This effective geometry, described for the quasiparticles of condensed matter systems by the

16 Painlev�ee–Gullstrand metric, generally exhibits curvature (in the sense of Riemann) and many
17 features of quasiparticle propagation can be re-phrased in terms of null geodesics, Killing vec-

18 tors, and Jacobi fields. As particular examples of hydrodynamic flow we consider shear flow, a

19 constant-circulation vortex, flow past an impenetrable cylinder, and rigid rotation.

20 � 2003 Published by Elsevier Science (USA).

21

22 1. Introduction

23 The description of many natural phenomena is most vividly carried out in terms of

24 hydrodynamics, because the concept of a streaming liquid elucidates and helps to un-

25 derstand the physical significance and structure of an underlying theory [1]. In its clas-

26 sical sense [2,3], hydrodynamics describes the motion of a continuum, characterized

Annals of Physics xxx (2003) xxx–xxx

www.elsevier.com/locate/aop

*Corresponding author. Present address: Institut fuer Theoretische Physik, Universitaet Innsbruck,

Technikerstrasse 25, A6020 Innsbruck, Austria. Fax: +43-512-507-2919.

E-mail address: Uwe.Fischer@uibk.ac.at (U.R. Fischer).

0003-4916/03/$ - see front matter � 2003 Published by Elsevier Science (USA).

doi:10.1016/S0003-4916(03)00011-3

YAPHY 6335

DISK / 27/1/03

No. of pages: 18

DTD 4.3.1/SPS
ARTICLE IN PRESS

mail to: Uwe.Fischer@uibk.ac.at


UNCORRECTED
PROOF

27 by a velocity and density distribution, which for a perfect fluid and in the non-relativ-

28 istic limit is described by the Euler and continuity equations. It has been recognized

29 about 20 years ago by Unruh [4], that the propagation of small perturbations on such

30 a hydrodynamic background, which is itself governed by a continuum version of

31 Newtonian physics, may be cast into the form of a ‘‘relativistic’’ scalar wave equation

�U � 1ffiffiffiffiffiffiffi�gp ol
ffiffiffiffiffiffiffi�gp
glmomU

� �
¼ 0 ð1Þ

33 for the velocity potential U of the perturbations. The disturbances propagate in an
34 effective space-time with metric glm, which is in general curved. The metric glm was

35 later on shown to be of the Painlev�ee–Gullstrand form [5], originally invented as an
36 alternative to the Schwarzschild form of the solution of the Einstein equations for a

37 point mass source. With the advent of effective curved space-time theories, it became

38 apparent that the Painlev�ee–Gullstrand representation of the metric appears in a host
39 of such theories. They comprise, besides the conventional Euler fluid [4,6], superfluid

40 3He–A [7,8], atomic Bose-condensed vapors [9,10], and general dielectric (quantum)

41 matter [11–13].

42 An interesting and important feature of the Painlev�ee–Gullstrand metric is that it
43 continues to give an appropriate physical description for quasiparticle propagation
44 even when the effective space-time possesses a horizon [14]. This occurs because

45 the condensed matter origin of the metric in the Painlev�ee–Gullstrand form is the

46 spectrum of elementary excitations (quasiparticles) [15], which is primary. This phys-

47 ical energy spectrum, from which the metric is obtained using the fact that for mass-

48 less quasiparticles the energy spectrum is

glmplpm ¼ 0; ð2Þ
50 must be well-defined and, in particular, real everywhere in the system. In contrast,

51 for the Schwarzschild form of the metric the spectrum reads

E2 ¼ c2 1
�

� rS
r

�2
p2r þ c2 1

�
� rS
r

�
p2?; ð3Þ

53 where rS is the usual Schwarzschild radius and pr; p? are radial and transverse
54 quasiparticle components of the quasiparticle momentum, respectively. The velocity
55 c plays the role of the speed of light and is equal to the sound speed for phonons.
56 This ‘‘Schwarzschild form’’ of the spectrum exhibits imaginary mode frequencies and

57 consequently leads to instability of the condensed matter system if a horizon is

58 present, because it has sections of the transverse momentum p? which result in
59 E2 < 0 inside the horizon. The Painlev�ee–Gullstrand metric, on the other hand, gives
60 real frequencies throughout a condensed matter system possessing a quasiparticle

61 horizon, which can thus be stable.

62 The non-equivalence of Schwarzschild and Painlev�ee–Gullstrand form of the met-
63 ric is related to the fact that the coordinate transformation relating the Schwarzs-

64 child solution and the Painlev�ee–Gullstrand representation becomes singular at the
65 horizon [14]. This fact has, inter alia, led to the usage of Painlev�ee–Gullstrand co-or-
66 dinates for investigations of Hawking radiation in the ‘‘conventional’’ black hole
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67 context of gravitational theory [16,17], because these co-ordinates are non-singular

68 through the horizon, making the appropriate vacuum definition there much simpler.

69 The intrinsic characteristics of a curved space-time are described in a covariant

70 way by the Riemann tensor [18,19]. Our objective in this paper is to describe the Rie-

71 mannian curvature of the effective spaces described by the Painlev�ee–Gullstrand met-
72 ric, in the underlying hydrodynamic terms appropriate to a flowing background

73 fluid. We shall focus on two physical situations: quasiparticles in flows with a con-

74 stant speed of sound (iso-tachic flows) and quasiparticles in an almost incompress-

75 ible (iso-pycnal) hydrodynamic flow. By ‘‘almost incompressible’’ we mean that we

76 take both the background density and the quasiparticle propagation speed relative

77 to the medium to be constants, and concentrate on those effects that are due to mo-

78 tion of the medium, i.e., its velocity distribution. In other words, even if a fluid has a

79 constant ‘‘refractive index,’’ focussing and defocussing effects can be engendered
80 through motion of the fluid.

81 As particularly interesting examples we demonstrate how the tracks of quasipar-

82 ticles are distorted by propagation through a shear flow, a constant-circulation vor-

83 tex flow, around an impenetrable cylinder, and how they propagate through a rigidly

84 rotating fluid. In a more general context we provide a local definition of ‘‘focal

85 length’’ in terms of the Riemann tensor, and show how the affine and ‘‘natural’’ (us-

86 ing the Newtonian background time) parameterizations of null geodesics can be re-

87 lated to each other.

88 2. Painlev–Gullstrand curvature in 3þ 1 dimensions

89 In the following discussion the quasiparticle spectrum is assumed to be linear in

90 the fluid rest frame for ‘‘small’’ quasiparticle momenta, E ¼ cjpj corresponding to
91 (2), and deviating from linearity for momenta approaching the ‘‘Planck scale’’ of

92 the system at hand. In general the ð3þ 1Þ-dimensional Painlev�ee–Gullstrand metric
93 [5] reads

gtt ¼ � q
c
½c2 � v2�; gti ¼ � q

c
vi; gij ¼

q
c
dij: ð4Þ

95 That is, the metric has space-time interval

ds2 ¼ q
c

�
� c2dt2 þ dijðdxi � vidtÞðdxj � vjdtÞ

�
: ð5Þ

97 By special convention, the indices on the 3-velocity are always raised and lowered

98 using the flat 3-dimensional Cartesian metric so that vi ¼ vi.
99 In the case of irrotational fluid flow (for instance in a superfluid outside the cores

100 of the (singular) quantized vortices), the d�Alembertian equation (1) can be derived
101 directly from a linearization procedure based on the Euler and continuity equations
102 [4,6]; the existence and relevance of the Painlev�ee–Gullstrand effective metric then
103 follows as a rigorous theorem. If distributed vorticity is present, the situation is

104 more subtle [20]: In hydrodynamics with distributed vorticity one obtains a rather

105 complicated system of coupled differential equations, one of which contains the
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106 d�Alembertian operator (and therefore also contains the effective metric) as a sub-
107 sidiary quantity [20]. Thus for hydrodynamics with distributed vorticity, the effec-

108 tive metric is not the whole story—but certainly an important part of the story.

109 In particular, if one appeals to the eikonal approximation (in this context identical

110 to the WKB approximation) one can derive Pierce�s approximate wave equation
111 [21]. In this approximation one can write down the quasiparticle spectrum directly

112 in terms of the effective metric [20].

113 Note that the constant-time hypersurfaces are conformal to ordinary flat Carte-

114 sian space. As long as we are interested in quasiparticles that propagate along the

115 null cones of this effective metric (that is, quasiparticles moving at the speed c relative
116 to the medium), it is permissible to neglect the overall conformal factor of q=c and
117 consider the simplified metric

gtt ¼ �½c2 � v2�; gti ¼ �vi; gij ¼ dij: ð6Þ
119 (This is simply the statement that conformal transformations leave null curves and,

120 in particular, null geodesics, invariant.) The inverse of this simplified metric is

gtt ¼ � 1
c2
; gti ¼ � vi

c2
; gij ¼ dij � vivj

c2
: ð7Þ

122 Note that the Newtonian time parameter t provides a preferred foliation of the
123 spacetime into space + time, and that this preferred foliation will prove very useful.
124 Suppose now that the speed of sound is iso-tachic, independent of position and

125 time. Then we can choose coordinates to set the speed c of linear quasiparticle dis-
126 persion equal to unity, a convention adopted in the formulae below. The ð3þ 1Þ-di-
127 mensional Painlev�ee–Gullstrand metric [5] then reads

gtt ¼ �1þ v2; gti ¼ �vi; gij ¼ dij: ð8Þ
129 In general relativistic language the lapse function in the ADM formulation [19] is

130 now unity and all the space-time curvature is encoded in the shift function—which

131 here describes the physical velocity of the fluid. The inverse metric is

gtt ¼ �1; gti ¼ �vi; gij ¼ dij � vivj: ð9Þ
133 Turning to the computation of curvature, the 24 independent connection coefficients

134 read (cf. [22])

Ct
ij ¼ Dij;

Ct
tt ¼ vivkDik ¼

1

2
ðv � rÞv2;

Ct
ti ¼ �vjDij;

Ci
jk ¼ viDjk;

Ci
tt ¼ �otvi � vkoivk þ vivlvkDlk ¼ �otvi �

1

2
dij
�

� vivj
�
ojv

2;

Ci
tj ¼ �vivkDjk þ Xij:

ð10Þ

136 Here we have defined the deformation rate and angular velocity tensors by
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Dij ¼
1

2
oivj
�

þ ojvi
�
¼ oðivjÞ ¼ Dji;

TrD ¼ divv;

Xij ¼
1

2
oivj
�

� ojvi
�
¼ o½ivj� ¼ �Xji:

ð11Þ

138 The deformation rate is in general relativistic language the extrinsic curvature of the
139 constant-time hypersurfaces, while the angular velocity tensor is in fluid mechanics

140 language equivalent to the vorticity vector defined via xi ¼ �ijkXjk. The above tensors

141 result in the unique decomposition of oivj ¼ ðr � vÞij ¼ Dij þ Xij into a symmetric

142 and an antisymmetric tensor.

143 The components of the Riemann curvature tensor afford the basic symmetries

144 R½lm�½qk� ¼ R½qk�½lm�, which are supplemented by R½lmqk� ¼ 0 and Rl½mqk� ¼ 0 [19]. The Rie-
145 mann components that need to be calculated are thus Rtitj, Rijkl, and Rtijk, the rest fol-
146 low by the (anti-)symmetry properties. A tedious but straightforward computation
147 (which follows a variant of the Gauss–Codazzi decomposition) yields

Rijkl ¼ DikDjl � DilDjk; ð12Þ

Rtijk ¼ �oiXjk þ vl DklDij

�
� DjlDik

�
; ð13Þ

Rtitj ¼ �otDij þ DXð þ XDÞij � ðD2Þij � vkvk;ij þ vkvl DklDij

�
� DjkDil

�
: ð14Þ

151 Here we have defined ðDX þ XDÞij � DikXkj þ XikDkj and similarly ðD2Þij � DikDkj.

152 The appearance and interpretation of the Riemann components may be greatly

153 simplified if we consider them in an orthonormal, locally Minkowskian tetrad frame

154 fealg. Greek indices denote the usual space-time indices, Roman letters from the be-
155 ginning of the alphabet indicate tetrad indices, while Roman letters from the middle

156 of the alphabet denote space indices. Whenever there is any chance of confusion, car-

157 ets on indices are used to indicate that the components are given in the tetrad frame.

158 The tetrad frame fealg is defined by

glm ¼ gabe
a
le
b
m : ð15Þ

160 In the simplest gauge it is given by

et̂tt ¼ 1; et̂ti ¼ 0; eı̂ıt ¼ �vi; e|̂|i ¼ d|̂|
i : ð16Þ

162 The inverse basis satisfies

glm ¼ gabel
ae

m
b: ð17Þ

164 Note the use of index placement to distinguish eal from its inverse e
l
a . Hence e

a
le

l
b ¼ dab

165 as well as el
ae

m
a ¼ dl

m . In a time plus space decomposition

ett̂t ¼ 1; etı̂ı ¼ 0; eit̂t ¼ vi; ejı̂ı ¼ djı̂ı : ð18Þ

167 Thus, for any given vector with components X l the components in the various
168 frames are related by
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Xa � el
aXl � ðXt̂t;Xı̂ıÞ ¼ ðXt þ vjXj;XiÞ ð19Þ

170 and

Xa � ealX
l � ðX t̂t;X ı̂ıÞ ¼ ðX t;X i � viX tÞ: ð20Þ

172 These index conventions greatly simplify the formulae below. Calculating the Rie-

173 mann tensor in the tetrad frame gives

Rı̂ı|̂|k̂kl̂l ¼ DikDjl � DilDjk; ð21Þ

Rt̂t̂ıı|̂|k̂k ¼ �oiXjk; ð22Þ

Rt̂t̂ııt̂t|̂| ¼ � d
dt
Dij � ðD2Þij þ ðDX þ XDÞij; ð23Þ

177 where

d

dt
¼ ot þ v � r ð24Þ

179 is the usual convective derivative. The tetrad components Rabcd tell us how a La-
180 grangian observer moving with the fluid perceives the curvature of the effective

181 space-time described by the Painlev�ee–Gullstrand metric (8).
182 The components in the tetrad and co-ordinate frames are related by

Rabcd ¼ eaae
b
be
c
ce
d
dRabcd : ð25Þ

184 In the tetrad frame, the Ricci tensor

Rab ¼ Rcacb ¼ �Rt̂tat̂tb þ Rk̂kak̂kb ð26Þ
186 has the components

Rt̂tt̂t ¼ Rk̂kt̂tk̂kt̂t ¼ Rt̂tk̂kt̂tk̂k ¼ � d
dt
TrD� Tr ðD2Þ; ð27Þ

Rt̂t̂ıı ¼ �Rt̂tk̂kk̂k̂ıı ¼ okXki ¼
1

2
Dvi �

1

2
oiðTrDÞ ¼ � 1

2
ðr � xÞi; ð28Þ

Rı̂ı|̂| ¼ �Rt̂t̂ııt̂t|̂| þ Rk̂k̂ıık̂k|̂| ¼
d

dt
Dij � ðDX þ XDÞij þ DijTrD; ð29Þ

190 where we remind the reader that we have defined the vorticity vector

xi ¼ xi ¼ �ijkXjk ¼ ðrotvÞi ¼ ðr � vÞi: ð30Þ
192 The curvature scalar thus becomes

R ¼ Rabgab ¼ �Rt̂tt̂t þ Rk̂kk̂k ¼ 2
d

dt
TrDþ ðTrDÞ2 þ Tr ðD2Þ ð31Þ

194 and contains the trace of the deformation tensor and the trace of its square, but not

195 the vorticity. Finally, the Einstein tensor takes the form
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Gt̂tt̂t ¼ Rt̂tt̂t þ
1

2
R ¼ 1

2
ðTrDÞ2 � 1

2
TrðD2Þ; ð32Þ

Gt̂t̂ıı ¼ Rt̂t̂ıı ¼ � 1
2
ðr � xÞi; ð33Þ

Gı̂ı|̂| ¼ Rı̂ı|̂| �
1

2
dı̂ı|̂|R ¼ d

dt
Dij

�
� dijTrD

�
þ TrD Dij

�
� 1
2
dijTrD

	

� 1
2
dijTrðD2Þ � ðDX þ XDÞij: ð34Þ

199 We emphasise that although the Ricci and Einstein tensors are non-trivial, and cer-

200 tainly objects of physical interest, there is at this level no need for or justification for

201 imposing Einstein equations—though these Ricci and Einstein tensors are properties

202 of the flow, they are not directly related to the stress-energy tensor generating that
203 flow and thus the effective space-time curvature experienced by the quasiparticles. In

204 superfluids, for example, the ‘‘Einstein action’’ proportional to the curvature scalar

205 (31) is smaller than the simple kinetic energy of the superflow by the factor a2=l2,
206 where a is the atomic scale and l the scale on which the velocity field varies [7], so that
207 the ‘‘Einstein action’’ is subdominant in determining the velocity field.

208 It is sometimes convenient to work with the conformally invariant, traceless part

209 of curvature. This is given by the Weyl tensor [23]

Cabcd ¼ Rabcd þ ga½dRc�b þ gb½cRd�a þ
1

3
Rga½cgd�b; ð35Þ

211 where the brackets indicate anti-symmetrization on the indices they enclose. This

212 gives

Cı̂ı|̂|k̂kl̂l ¼ Rı̂ı|̂|k̂kl̂l þ d̂ıı½l̂lRk̂k�|̂| þ d|̂|½k̂kRl̂l�̂ıı þ
1

3
Rdı̂ı½k̂kdl̂l�|̂|; ð36Þ

Ct̂t̂ıı|̂|k̂k ¼ �oiXjk �
1

2
di½jðr � xÞk�; ð37Þ

Ct̂t̂ııt̂t|̂| ¼ � 1
2

d

dt
Dij

�
� 1
3
dijTrðDÞ

	
� ðD2Þij þ

1

3
dijTrðD2Þ

þ 1
2
TrðDÞ Dij

�
� 1
3
dijðTrDÞ

	
þ 1
2
ðDX þ XDÞij: ð38Þ

217 3. Examples

218 3.1. General iso-pycnal flows

219 Suppose now that the flow is not only iso-tachic (constant speed of sound) but

220 also iso-pycnal (constant background density). This corresponds to an ‘‘almost in-

221 compressible’’ fluid such as water. The major change from the previous section is

222 the simplification that comes from the continuity equation:
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dq
dt

¼ 0 ) r � v ¼ 0 ) TrD ¼ 0: ð39Þ

224 The form of the Riemann tensor is not affected, though for the Ricci tensor we now

225 have

Rt̂tt̂t ¼ �TrðD2Þ; ð40Þ

Rt̂t̂ıı ¼
1

2
Dvi; ð41Þ

Rı̂ı|̂| ¼
d

dt
Dij � ðDX þ XDÞij: ð42Þ

229 The Ricci scalar simplifies to

R ¼ TrðD2Þ: ð43Þ

231 Thus the Ricci curvature scalar is positive semidefinite for iso-pycnal flows, and

232 vanishes if and only if the deformation D is zero.
233 The Einstein tensor is now

Gt̂tt̂t ¼ � 1
2
TrðD2Þ; ð44Þ

Gt̂t̂ıı ¼
1

2
Dvi; ð45Þ

Gı̂ı|̂| ¼
d

dt
Dij �

1

2
dijTrðD2Þ � DXð þ XDÞij: ð46Þ

237 Finally, the Weyl tensor for iso-pycnal flows reduces to

Cı̂ı|̂|k̂kl̂l ¼ Rı̂ı|̂|k̂kl̂l þ d̂ıı½l̂lRk̂k�|̂| þ d|̂|½k̂kRl̂l�̂ıı þ
1

3
Rdı̂ı½k̂kdl̂l�|̂|; ð47Þ

Ct̂t̂ıı|̂|k̂k ¼ �oiXjk þ di½jDvk�; ð48Þ

Ct̂t̂ııt̂t|̂| ¼ � 1
2

d

dt
Dij þ

1

2
ðDX þ XDÞij � ðD2Þij þ

1

3
dijTrðD2Þ: ð49Þ

241 3.2. Shear flow

242 As a first simple example of a non-trivial incompressible flow (TrD ¼ 0), consider
243 the flow with constant shear

v ¼ x0ð0; x; 0Þ ð50Þ
245 which has both constant deformation Dxy ¼ Dyx ¼ ð1=2Þx0 and constant vorticity
246 xz ¼ x0 ¼ 2Xxy ¼ �2Xyx (all other components vanishing) [24]. The Riemann cur-

247 vature components are
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Rt̂t̂ııt̂t|̂| ¼ � 1
4

x20Pij;

Rt̂t̂ıı|̂|k̂k ¼ 0;

Rı̂ı|̂|k̂kl̂l ¼
1

4
x20ðhikhjl � hilhjkÞ;

ð51Þ

249 where hik ¼ hki is unity if ðikÞ ¼ ðxyÞ and zero otherwise. The projection operator
Pij � dij � ninj ð52Þ

251 where n ¼ ð0; 0; 1Þ is a unit vector in z-direction ensures that the curvature has non-
252 zero components only in the x- and y-directions.
253 For the Ricci and Einstein tensors

Rt̂t̂ıı ¼ Rı̂ı|̂| ¼ 0;

Rt̂tt̂t ¼ � 1
2

x20 ¼ TrðD2Þ;

R ¼ 1
2
x20;

Gt̂tt̂t ¼ � 1
4
x20;

Gı̂ı|̂| ¼ � 1
4
x20dij;

Gt̂t̂ıı ¼ 0:

ð53Þ

255 Thus the quasiparticles are seen in their effective space-time to be moving on a

256 ð3þ 1Þ-dimensional manifold of constant scalar curvature, with radius of curvature
257 inversely proportional to the shearing rate x0.

258 3.3. Vortex flow of constant circulation

259 A somewhat more interesting case is the constant-circulation flow in the x–y plane

vy ¼
cx

x2 þ y2
; vx ¼ � cy

x2 þ y2
ð54Þ

261 appropriate to a vortex flow well outside the central core, where the circulation is

262
H
v � ds ¼ 2pc. In this case you would not want to trust the geometry for r < rc ¼ c

263 because at r ¼ rc the flow goes supersonic. This flow has

Dxx ¼
2cxy
r4

¼ �Dyy ;

Dxy ¼
cðy2 � x2Þ

r4
¼ Dyx;

Diz ¼ Dzi ¼ 0;
Xij ¼ 0:

ð55Þ

265 Note the ‘‘duality’’ between the vortex core and the far field. In the core the de-

266 formation rate is zero and the vorticity is non-zero, while in the far field it is the
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267 vorticity that is zero and deformation that is non-zero. The Riemann curvature

268 tensor takes the form:

Rx̂xŷyx̂xŷy ¼ det D ¼ � c2

r4
;

Rt̂t̂ıı|̂|k̂k ¼ 0;

Rt̂t̂ııt̂t|̂| ¼ �ðv � rÞDij � ðD2Þij ¼ �ðv � rÞDij �
c2

r4
Pij:

ð56Þ

270 More explicitly

Rt̂tx̂xt̂tx̂x ¼
c2

r6
ðy2 � 3x2Þ;

Rt̂tŷyt̂tŷy ¼
c2

r6
ðx2 � 3y2Þ;

Rt̂tx̂xt̂tŷy ¼ � 4c
2xy
r6

;

Rt̂t̂ııt̂t|̂| ¼ � c2

r6
4xixj
�

� dijr2
�
:

ð57Þ

272 Therefore the Ricci tensor, curvature scalar, and Einstein tensor read

Rt̂tt̂t ¼ � 2c
2

r4
; Rt̂t̂ıı ¼ Rı̂ı|̂| ¼ 0; R ¼ 2c

2

r4
; ð58Þ

Gt̂tt̂t ¼ � c2

r4
; Gı̂ı|̂| ¼ �dij

c2

r4
; Gt̂t̂ıı ¼ 0: ð59Þ

275 It is mildly amusing to note that the vortex geometry is uniquely determined by the

276 cylindrical symmetry plus the equation Gab / dab (not gab).

277 3.4. Streaming motion past a cylinder

278 The most complex flow we discuss here is provided by the 2-dimensional stream-

279 ing motion from right to left past a cylinder of radius a. According to the circle the-
280 orem [3], the complex velocity potential of such a flow is given by

w ¼ U Z
�

þ a2

Z

	
; ð60Þ

282 where Z ¼ xþ iy and U is the velocity at infinity in negative x-direction. This results
283 in the flow

vx ¼ �U 1

�
þ a2

y2 � x2

r4

	
; vy ¼ 2Uxy

a2

r4
: ð61Þ

285 The velocity at infinity is restricted to be U < 1=2, for the maximal velocity on the
286 cylinder surface to be less than the speed of sound. The formulae for deformation
287 and vorticity (which is identically zero for this flow) read
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Dxx ¼
2Ua2

r6
xð3y2 � x2Þ ¼ �Dyy ;

Dxy ¼
2Ua2

r6
yðy2 � 3x2Þ ¼ Dyx;

Diz ¼ Dzi ¼ 0;
Xij ¼ 0:

ð62Þ

289 The Riemann components show that the flow past a cylinder, due to its reduced

290 symmetry, yields a more complicated space-time geometry for quasiparticles than the

291 vortex flow:

Rx̂xŷyx̂xŷy ¼ det D ¼ � 1
2
TrðD2Þ ¼ � 4U

2a4

r6
;

Rt̂t̂ıı|̂|k̂k ¼ 0;
Rt̂t̂ııt̂t|̂| ¼ �ðv � rÞDij � ðD2Þij ¼ �ðv � rÞDij þPij detD;

ð63Þ

293 where the last line reads more explicitly

Rt̂tx̂xt̂tx̂x ¼
2U 2a2

r8
a2ðy2
�

� 5x2Þ þ 3ðx4 � 6x2y2 þ y4Þ
�
;

Rt̂tŷyt̂tŷy ¼
2U 2a2

r8
a2ðx2
�

� 5y2Þ � 3ðx4 � 6x2y2 þ y4Þ
�
;

Rt̂tx̂xt̂tŷy ¼ � 12U
2a2

r8
xyða2 � 2x2 þ 2y2Þ:

ð64Þ

295 These latter components show that the ‘‘circulation’’ Ua2 is not the only relevant
296 parameter of the flow, in contrast to the constant-circulation vortex case, as we may

297 expect from the reduced symmetry of the flow past the cylinder.

298 The curvature scalar

R ¼ 8U
2a4

r6
ð65Þ

300 decays much more quickly with distance from the cylindrical object than the cur-

301 vature of the vortex flow, Eq. (58).

302 3.5. Rigid rotation

303 The simplest example of a non-trivial incompressible flow (TrD ¼ 0) is pure rota-
304 tion ~vv ¼ Xð�y; x; 0Þ, which has zero deformation Dij ¼ 0, and constant vorticity
305 xz ¼ x0 ¼ 2Xxy ¼ �2Xyx ¼ 2X (all other components vanishing). This flow is appro-
306 priate for instance deep inside the core of a vortex where the fluid effectively rotates

307 as a ‘‘rigid’’ body. (In ordinary fluids this happens because viscosity dominates in the

308 core; in superfluids there is a more dramatic effect in that the superfluid goes normal

309 close enough to the core.) Also note that the core has a maximum size given by

310 j~vvj ¼ 1, that is, rc ¼ 2=x0.
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311 For the rigid rotation flow it is easy to see that the Riemann curvature tensor is

312 identically zero, either (1) by brute force application of the above formulae, or more

313 subtly (2) by going to a rotating frame (of angular velocity X ¼ 2x0) in which the
314 velocity is identically zero, evaluating the Riemann tensor there (where it is blatantly

315 zero), and transforming back to the rotating frame. Although the Riemann tensor is
316 identically zero, there is interesting physics going on: The fact that pure rotation

317 leads to zero Riemann curvature is ultimately responsible for the fact that Eqs.

318 (12) and (21) do not contain any terms quadratic in X, a result that otherwise has
319 to be simply asserted based on explicit calculation.

320 Additionally, we emphasise that even though the Riemann tensor is zero, the

321 Christoffel symbols are definitely not zero. Indeed

Ci
tt ¼ �X2rr̂ri; ð66Þ

Ci
tj ¼ Xij ¼

1

2
�ijkx

k: ð67Þ

324 These two portions of the Christoffel symbols are of course simply representing the
325 centrifugal and Coriolis pseudo-forces. All other components are zero.

326 A further (approximate) example of such a flow is encountered if one considers

327 the coarse-grained flow induced by a lattice of vortices [25]. An (infinite) lattice ro-

328 tates as if it were a solid body, with a vortex density nv ¼ X=pc prescribed by the ro-
329 tation velocity X and the circulation 2pc, assumed to be equal for each individual
330 vortex. For the vortex lattice, it follows from the vanishing of the Riemann curvature

331 that a collimated quasiparticle beam can pass a (sufficiently dilute) lattice without

332 (on average) being deflected.

333 4. Geodesic deviation

334 An invariant measure of the strength of a flow pattern as regards its influence on

335 quasiparticle motion may be defined to be the value of the curvature scalar R / s�j

336 at a certain given distance s from the flow-generating object (cf. Fig. 1, illustrating
337 the generic situation of flow past an object placed in a homogeneous stream). Among
338 the flows discussed in the previous section the shear flow is strongest in that sense

339 (because the ‘‘flow generating object’’ is covering all space, j ¼ 0), followed by the
340 vortex flow (j ¼ 4) and the flow past the cylinder (j ¼ 6). Finally rigid rotation,
341 which has zero R and is ‘‘flat’’ (j ¼ 1). It is the simplest conceivable non-trivial
342 (i.e., inhomogeneous) flow with the property of having all Rabcd equal to zero.
343 A non-vanishing Riemann tensor leads to tidal (relative) acceleration of nearby

344 geodesics, described by the Jacobi equation of geodesic deviation for quasiparticles

D2na

dk2
þ Ra

bcdu
bncud ¼ 0: ð68Þ

346 The above relation gives the covariant relative acceleration of two nearby geodesics,

347 with null tangent vectors u separated by the displacement vector n, and with the
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348 geodesics affinely parametrized by k. (At this stage all we need to know is that use of
349 an ‘‘affine parameter’’ simplifies many formulae; in the following section we will

350 derive a relationship between the affine parameter and physical Newtonian time t.)
351 The fact that the constant time slices of the metric (5) are conformally identical to

352 flat Cartesian space in three dimensions, entails that the space-time curvature of the
353 quasiparticle world is reflected in a relative acceleration of quasiparticle rays in the

354 Newtonian lab world of non-relativistic hydrodynamic flow.

355 Consider a family of geodesics in the x-direction, with tangent vector ua ¼ ðut̂t;
356 ut̂t; 0; 0Þ and a purely space-like separation in the y-direction n ¼ ð0; 0; dy; 0Þ. We then
357 have

D2½dy�
dk2

þ Rŷyt̂tŷyt̂t
�n

þ Rŷyx̂xŷyx̂x
�
ðut̂tÞ2

o
½dy� ¼ 0: ð69Þ

359 This can be viewed as a parametrically driven harmonic oscillator (driven in the

360 affine parameter k), with ‘‘frequency’’

XðkÞ ¼ ut̂t
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Rŷyt̂tŷyt̂t þ Rŷyx̂xŷyx̂x

p
: ð70Þ

362 Physically this means that by looking at the components of the Riemann tensor we

363 can see if the effective geometry locally acts as a focussing lens [corresponding to

364 XðkÞ real] or as a diverging lens [corresponding to XðkÞ imaginary]. Since (in the
365 focussing case, and assuming a reasonably uniform medium) two initially parallel

366 geodesics will focus down to a point after an elapse of affine parameter dk ¼ p=XðkÞ,
367 the corresponding local focal length is (in physical distance units) given by

f local ¼ �pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kRt̂tŷyt̂tŷy þ Rx̂xŷyx̂xŷyk

p : ð71Þ

369 Note the strengths and weaknesses of this concept—it provides a local position and

370 orientation dependent notion of focal length appropriate for nearly parallel geode-

371 sics (nearly parallel quasiparticles; so one is automatically working ‘‘on axis’’ and

372 ignoring ‘‘spherical abberation’’), but this definition of f local does in general not
373 provide significant global information. If the Riemann tensor is strongly inhomo-

374 geneous, varying on length scales significantly smaller than f local, then this concept of

Fig. 1. The quasiparticle geodesic deviation at a distance vector s caused by an object placed in a flow with

velocity v1 at infinity (the generic case of the situation in Section 3.4).
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375 local focal length is not particularly useful. In particular, in the vortex geometry of

376 [26], with flow (54), the focussing effect we had in mind was a global effect due to

377 quasiparticles passing by opposite sides of the vortex core, with impact parameter

378 b—this is not a situation that can be described by the Jacobi equation. The global
379 result obtained there for f ¼ f global ¼ ð2b3=3pr2cÞ½1þOðrc=bÞ� is not the local f local
380 defined above. Indeed two initially parallel quasiparticles passing by on the same side

381 of the vortex core will be driven apart from each other by geodesic deviation—it is

382 this effect that leads to the ‘‘cylindrical abberation’’ of the lens discussed in [26].

383 A case where the local focal length does acquire global meaning is the shear flow

384 (50), for which the focal length (71) becomes a constant

f shear ¼
ffiffiffi
2

p
p

x0
: ð72Þ

386 The focal length is in this case bounded by the atomic length scale itself, simply due

387 to the requirement that the concept of hydrodynamics makes sense. This further

388 strengthens the notion of the shear flow being the strongest possible flow as regards
389 its influence on quasiparticle motion, because any other flow has more stringent

390 bounds on the global f .
391 One useful refinement of the local focal length concept introduced in Eq. (71) is to

392 consider null geodesics (quasiparticle paths) propagating in an arbitrary unit direc-

393 tion �uu and then use indices M and N to denote the two spatial directions perpendic-
394 ular to �uu. Then the local focal length can be generalized to a 2� 2 matrix

f localMN ¼ �pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kRt̂tMt̂tN þ Rı̂ıM |̂|N �uuı̂ı�uu|̂|k

p : ð73Þ

396 The square root and inverse is to be taken in the matrix sense, and the two eigen-

397 values of fMN are the two principal focal lengths along the direction �uu. If these ei-
398 genvalues differ it is a signal of astigmatism.

399 5. Non-affine parameterization of null geodesics

400 While the use of affine parameters for null geodesics is standard in general relativ-

401 ity, it should be borne in mind that in the present Painlev�ee–Gullstrand context there
402 is a preferred temporal foliation provided by the Newtonian time parameter t. It is
403 worth the technical bother of using the non-affine parameterization in terms of t here
404 in order to make aspects of the physics clearer.

405 In general, we know that along any null geodesic there will be some relationship

406 between affine parameter k and Newtonian time t. For instance we can assert

dk ¼ exp½fðtÞ� dt: ð74Þ

408 In the affine parameterization the geodesic equation for a null curve is just

ulrlum ¼ 0; um � dx
m

dk
:
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410 If we choose a non-affine parameterization

�uulrl�uum ¼ _ffðtÞ�uul; �uum � dx
m

dt
:

412 The geodesic equation becomes

d2xl

dt2
¼ �Cl

ab

dxa

dt
dxb

dt
þ _ffðtÞ dx

l

dt
: ð75Þ

414 In this form it is clear that the physical acceleration of the quasiparticle is related to

415 gradients in the Painlev�ee–Gullstrand metric. It is extremely useful to derive an ex-
416 plicit relationship between the affine parameter k and the physical Newtonian time t.
417 To do this let us start with the notion of a stationary geometry (technically: there

418 exists a time-like Killing vector; colloquially: a time-independent geometry). The

419 time-like Killing vector takes the form

Kl ¼ ð1;~00Þ; Kl ¼ ð�½1� v2�;�vÞ: ð76Þ
421 The tangent vector to the null geodesic is denoted

ul ¼ dx
l

dk
¼ dt
dk

1;
d~xx
dt

 !
: ð77Þ

423 It is a standard theorem that the 3þ 1 inner product between a geodesic tangent
424 vector and a Killing vector is conserved, as long as the geodesic is affinely param-

425 eterized. Thus

glmKlum ¼ dt
dk

1

"
� v2 þ v � d~xx

dt

#
¼ constant: ð78Þ

427 On the other hand, because ul is a null vector

1� v2 þ 2v � d~xx
dt

� d~xx
dt

�����
�����
2

¼ 0: ð79Þ

429 Eliminating between these two equations, we can normalize in such a way that

dt
dk

¼ exp½�fðtÞ� ¼ 1

2
4 � v2 þ d~xx

dt

 !235
�1

: ð80Þ

431 That is

fðtÞ ¼ ln 1

2
4 � v2 þ d~xx

dt

 !235: ð81Þ

433 If the fluid is not moving, then~vv ¼ 0 and jd~xx=dtj ¼ 1 so t / k. If the fluid is moving
434 we simply have to live with this position-dependent factor relating the affine pa-

435 rameter k (in terms of which the geodesic equations are most easily written down) to
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436 the Newtonian time parameter t (in terms of which the physical acceleration is most
437 easily calculated).

438 In a similar manner, the Jacobi equation can be rewritten as

D2na

dt2
� _ffðtÞDn

a

dt
þ Ra

bcd�uu
bnc�uud ¼ 0: ð82Þ

440 While this looks somewhat messier than the affinely parameterized Jacobi equation

441 (68), the physics is the same. In particular if we start with two initially parallel null

442 geodesics (Dn=dt ¼ 0 at t ¼ 0), and assume a locally homogeneous medium, we are
443 led to the same notion of local focal length as discussed in the previous section.

444 6. Discussion

445 We have shown how the generation of curved Riemannian space-time geometries

446 for quasiparticles is possible based purely on the velocity pattern of a non-relativistic

447 flow. Conversely, one might conceive of solving for a flow field from a given space-
448 time geometry. This is a highly nonlinear problem, as becomes obvious from the re-

449 lations (21)–(23). It is, however, certainly no more nonlinear or complicated than

450 solving the Einstein equations of general relativity themselves. While the Painlev�ee–
451 Gullstrand geometry discussed here does not provide us with the most generic case

452 (remember that the constant time surfaces are (conformally) flat; for generalizations

453 allowing for more general space-time metrics see [10]), it shows that the underlying

454 kinematical structure of a curved space-time can in principle be perfectly non-relativ-

455 istic. The dynamical identification of this effective geometry with general relativity,
456 i.e., imposing the Einstein equations, is a more advanced step [7], but is possible

457 in principle as well.

458 There are several generalizations of the current analysis that would be of interest:

459 (1) If the quasiparticle propagation speed (c, local speed with respect to the back-
460 ground medium) is varying then the geometry exhibits ‘‘index gradient’’ effects in ad-

461 dition to effects generated by the motion of the medium. While technically

462 straightforward, the relevant calculations of the Riemann tensor are computation-

463 ally messy and the physical interpretation is not so clear (unless the medium is com-
464 pletely at rest; in which case one recovers standard ‘‘index gradient’’ physics). (2) If

465 the density varies from place to place, then it is necessary to distinguish the ‘‘geomet-

466 rical quasiparticle’’ regime (the analogue of geometrical optics) from the ‘‘wave qua-

467 siparticle regime’’ (the analogue of wave optics). In the geometrical approximation

468 the results of the present paper can be carried over; in the wave regime one needs

469 to carry out an analysis in terms of Green functions and wave equations; the entire

470 armoury of quasiparticle trajectories as null geodesics of the effective metric breaks

471 down and must be replaced by a more fundamental wave description.
472 In summary: The use of pseudo–Riemannian geometry has important applica-

473 tions well beyond the confines of general relativity. In particular quasiparticle prop-

474 agation in condensed matter systems can often be characterized in terms of an

475 ‘‘effective’’ space-time geometry; most easily described in Painlev�ee–Gullstrand form.
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476 If the background medium is a fluid, then the Riemann curvature (and Christoffel

477 symbols, etc.) can be calculated in terms of shear (deformation) and vorticity of

478 the fluid. Ultimately this analysis relates the focussing and deflection of quasiparti-

479 cles to the properties of the fluid flow.
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