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Abstract. The ‘theoretical’ existence of traversable Lorentzian wormholes in the
classical, macroscopic world is plagued by the violation of the well-known energy condi-
tions of general relativity. In this brief article we show: (i) how the extent of violation can
be quantified using certain volume integrals and (ii) whether this ‘amount of violation’
can be minimised for some specific cut-and-paste geometric constructions. Examples and
possibilities are also outlined.

Keywords. Wormholes; energy conditions; general relativity.

PACS Nos 04.70.Dy; 04.62.+v; 11.10.Kk

1. The problem and our attitude

It is well-known by now that the ‘theoretical’ existence of traversable Lorentzian
wormholes is plagued by the violation of the energy conditions of general relativity
[1,2]. Researchers have come up with a variety of proposals, most of which gain
support from the fact that quantum expectation values of the stress energy tensor
can often become negative [3,4]. The experimentally verified case of the Casimir
effect [5] is often cited as a ‘proof’ of the existence of ‘matter’ with ‘negative energy
density’ though in experiments on the Casimir effect the quantity measured is the
force (and hence the pressure) of the ‘fluctuating vacuum’ between parallel metallic
plates.
Leaving aside the question about whether wormholes exist or whether negative

energy is justifiable we prefer to adopt a somewhat braver attitude based on some
recent results in other areas of physics. For instance, before it was actually seen
in the laboratory one never believed that ‘negative group velocity’ [6] or ‘negative
refractive index’ [7] could be real. Theoretically however, these esoteric concepts
were outlined decades ago and largely forgotten. The same also holds good for the
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Casimir effect. It is true that today, negative energy or wormholes are esoteric ideas.
But, following the abovementioned realisation of negative vg and n it may not be
too outrageous to say that exotic things of today might be a reality (in some now-
inconceivable form) tomorrow. Another example is ‘dark energy’ which seems to
dominate 70% of the matter in the universe today [8]. Dark energy has ‘negative’
pressure which is indeed counterintuitive but largely in vogue amongst today’s
cosmolgists. Furthermore, particle theorists seem to be happy with a negative
cosmological constant [9] which helps them solve the so-called hierarchy problem.
So, why not wormholes with ‘negative energy’?
Of course, negative energy or negative energy density is problematic. But then,

one must ask the question ‘how much negative energy’– or is there a way to quantify
the amount of violation? There have been attempts at such quantification through
the so-called ‘quantum inequalities’ which are essentially similar to the energy–time
uncertainty relations [10]. Here we propose a quantifier in terms of a spatial volume
integral [11]. Using this we can show that certain ‘cut-and-paste constructions’
allow us to reduce this ‘amount of violation’ to arbitrarily small values. We provide
an example of such a construction and conclude with some open questions [11].

2. The energy conditions and the ‘volume integral quantifier’

Let us begin by discussing some of the energy conditions in the literature. We can
classify them as ‘local’ and ‘global’ conditions. Among local conditions we have
the weak energy condition (WEC) and the null energy condition (NEC) which
are stated as (for a diagonal energy momentum tensor with energy density ρ and
pressures pi (i = 1, 2, 3)):

ρ ≥ 0, ρ+ pi ≥ 0 (WEC); ρ+ pi ≥ 0 (NEC). (1)

Other local conditions include the strong energy condition (SEC) and the domi-
nant energy condition (DEC) (for a discussion on these, see [2]). On the other hand,
global conditions involve line integrals along complete null or time-like geodesics and
therefore yield numbers. For example, the averaged null energy condition (ANEC)
is given as

∫ λ2

λ1

Tijk
ikjdλ ≥ 0, (2)

where ki is the tangent vector along a null geodesic and λ is the affine parameter
labeling points on the geodesic. A useful discussion on the violation of the local
and global energy conditions in the context of both classical (exotic) or quantum
stress–energy can be found in [2,12].
Now consider a static spherically symmetric space-time with a line element given

by

ds2 = − exp[2φ(r)] dt2 + dr2

1− b(r)/r
+ r2(dθ2 + sin2 θ dϕ2). (3)
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Using the Einstein field equations, the components of the diagonal energy–
momentum tensor in an orthonormal basis turn out to be (units – G = c = 1) [2]:

ρ =
1

8π

b′

r2
; pr =

1

8π

[

− b

r3
+ 2

{

1− b

r

}

φ′

r

]

, (4)

pt =
1

8π

[

{

1− b

r

}[

φ′′ + φ′
(

φ′ +
1

r

)]

− 1
2

(

b

r

)′(

φ′ +
1

r

)

]

, (5)

where ρ, pr, and pt are the energy density, the radial and tangential pressures
respectively.
The ANEC integral along a radial null geodesic is

I =

∮

(ρ+ pr) exp(−2φ) dλ =
∮

(ρ+ pr) exp(−φ) dη

= − 1
4π

∮

2

r

d

dr

[

e−φ
√

1− b(r)

r

]

dr

= − 1
4π

∮

1

r2
e−φ

√

1− b

r
dr < 0, (6)

where η is the proper radial distance and we have performed an integration by
parts in the last step. Both the local and averaged energy conditions are violated
by wormholes [1]. A quick way to see this is to note that for light rays the wormhole
throat behaves like a diverging lens – light rays are not focused and therefore there
must be a violation of the null convergence condition (or null energy condition, via
the Einstein equations).
However, the ANEC is a line integral and therefore not very helpful for quan-

tifying the ‘amount of violation’. This prompts us to propose a ‘volume integral
quantifier’ which amounts to calculating the following definite integrals (for the
relevant coordinate domains):

∫

ρdV ;

∫

(ρ+ pi)dV (7)

with an appropriate choice of the integration measure (4πr2dr or
√
g dr dθ dφ). We

define the amount of violation as the extent to which these integrals can become
negative. The important point which we shall demonstrate below is that even if
the ANEC yields a constant negative number the volume integrals can be adjusted
to become vanishingly small by appropriate choice of parameters.
Let us now focus on one such volume integral. Using the Einstein field equations

it is easy to check that

ρ+ pr =
1

8πr

{

1− b

r

}[

ln

(

exp(2φ)

1− b/r

)]′

. (8)

Then integrating by parts
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∮

(ρ+ pr) dV =

[

(r − b) ln

(

exp(2φ)

1− b/r

)]∞

r0

−
∫ ∞

r0

(1− b′)

[

ln

(

exp(2φ)

1− b/r

)]

dr. (9)

The boundary term at r0 vanishes by our construction (recall that for a wormhole
b(r = r0) = r0, where r0 is the throat radius and hence the minimum value of
r). The boundary term at infinity vanishes because of the assumed condition of
asymptotic flatness. Then

∮

(ρ+ pr) dV = −
∫ ∞

r0

(1− b′)

[

ln

(

exp(2φ)

1− b/r

)]

dr. (10)

The value of this volume integral provides information about the ‘total amount’
of ANEC violating matter in the space-time. One should also calculate the other
volume integrals though in most cases they do not provide any further information
on the amount of violation.

3. An explicit ‘cut-and-paste’ example

Let us now look at a specific example. If we consider a line element for which
the spatial metric is exactly Schwarzschild, that is b(r) → 2m = r0. Then ρ = 0
throughout the space-time and we simply get

∮

pr dV = −
∫ ∞

r0

ln

[

exp(2φ)

1− 2m/r

]

dr. (11)

Now assume that we have a wormhole whose field only deviates from
Schwarzschild (g00 6= − (1− 2m/r)) in the region from the throat out to radius
a > 2m. At r = a we join this geometry to a Schwarzschild. We must take care of
the matching conditions – details on these are available in [11]. It turns out that
for this case, we can further simplify the above volume integral to

∮

pr dV = −
∫ a

r0

ln

[

exp(2φ)

1− 2m/r

]

dr. (12)

Under this same restriction the ANEC integral satisfies

I < − 2
4π

∫ ∞

a

1

r2
dr = − 1

2π a
, (13)

which is strictly bounded away from zero. (Note that while evaluating the
above from eq. (5) one has to be careful about the derivative discontinuity of

e−φ
√

1− b(r)/r at r = a. As discussed below, this formula can safely be applied
as a approaches 2m from the a > 2m side.) Now

∫ a

r0

ln

[

exp(2φ)

1− 2m/r

]

dr <

∫ a

r0

ln

[

exp(2φmax)

1− 2m/r

]

dr. (14)
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Evaluating this last integral

∮

pr dV > −(a− 2m) ln
[

exp(2φmax)

1− 2m/a

]

− 2m ln
( a

2m

)

. (15)

This is useful because it is an explicit lower bound on the total amount of ra-
dial stress in terms of φmax and the size of the region of ANEC violating matter.
Similarly

∮

pr dV < −(a− 2m) ln
[

exp(2φmin)

1− 2m/a

]

− 2m ln
( a

2m

)

. (16)

This is now an upper bound in terms of φmin and the size of the region of ANEC
violating matter. If we now choose geometries such that φmax and φmin are not
excessively divergent (no worse than (a− 2m)−δ with δ < 1), we can take the limit
a → 2m+ (the superscript + here means that a approaches 2m from the a > 2m
side) to obtain

∮

pr dV → 0. (17)

We emphasize here that the ANEC integral does not go to zero as a→ 2m+.
Furthermore, by considering a sequence of traversable wormholes with suitably

chosen a and φ(r) (and b(r) = 2m) we can construct traversable wormholes with
arbitrarily small quantities of ANEC-violating matter (with the ANEC line integral
nevertheless remaining finite and negative). More examples are available in [11].

4. Remarks and conclusions

The above discussion shows that we are able to (i) quantify the amount of violation
and (ii) construct examples for which the violation can be made very small. It is
worthwhile to note that in both these constructions the local and averaged energy
conditions still remain violated and that violation cannot be made to vanish! It
might seem therefore that we have skirted the real issue by ‘redefining’ the notion
of violation through these volume integrals. Therefore, to prove our point we must
try to establish the fact that these volume integrals are the correct quantifiers (on
physical grounds they do seem to be so) and all theorems which assume the validity
of the averaged conditions can now be extended to include these volume averaged
conditions. This is a task for the future.
Finally let us place our result in the context of the four great results of classical

general relativity – the area increase theorem [13,14], the singularity theorem [13],
the positive mass theorem [15] and the topological censorship theorem [16]. Each
of these theorems do assume some form of an energy condition. The question is:
if violations are small, can the conclusions of these theorems be evaded? It is
worth noting at this point that the conclusions of the area increase and topological
censorship thoerems can indeed be reversed by quantum-induced violations. In the
case of the other two theorems the consequences of such microscopic violations may
not lead to any drastic changes in their conclusions.
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