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Acoustic analogues of black holes (dumb holes) are generated when a supersonic fluid
flow entrains sound waves and forms a trapped region from which sound cannot escape.
The surface of no return, the acoustic horizon, is qualitatively very similar to the event
horizon of a general relativity black hole. In particular Hawking radiation (a thermal
bath of phonons with temperature proportional to the “surface gravity”) is expected to
occur. In this note we consider quasi-one-dimensional supersonic flow of a Bose–Einstein
condensate (BEC) in a Laval nozzle (converging-diverging nozzle), with a view to finding
which experimental settings could magnify this effect and provide an observable signal.
We discuss constraints and problems for our model and identify the issues that should be
addressed in the near future in order to set up an experiment. In particular we identify
an experimentally plausible configuration with a Hawking temperature of order 70 n K;
to be contrasted with a condensation temperature of the order of 90 n K.
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1. Background

Whereas the Hawking radiation phenomenon is a cornerstone of black hole thermo-

dynamics, and is believed to be central to developing a quantum theory of gravity,

the phenomenon has never been seen either experimentally or observationally.

This fact has led to increasing interest in trying to detect the effect indirectly,

by simulating it in condensed matter systems. Acoustic analogues of black holes

(dumb holes) are formed by supersonic fluid flow.1,2 The flow entrains sound waves

and forms a trapped region from which sound cannot escape. The surface of no

return, the acoustic horizon, is qualitatively very similar to the event horizon of a

general relativity black hole; in particular Hawking radiation (in this case a ther-

mal bath of phonons with temperature proportional to the “surface gravity”) is

expected to occur.1,2 There are at least three physical situations in which acoustic

horizons are known to occur: Bondi–Hoyle accretion,6 the Parker wind7 (coronal

outflow from a star), and supersonic wind tunnels. Recent improvements in the

creation and control of BECs (see e.g. Ref. 3) have lead to a growing interest in

these systems as experimental realizations of acoustic analogs of event horizons.

Two key observations are that the speed of sound is very low in these systems and

that the physical temperature of the condensate itself is extremely low. To quantify

the expected size of the effect we consider supersonic flow of a BEC through a Laval

nozzle (converging-diverging nozzle) in a quasi-one-dimensional approximation. We

show that this geometry allows the existence of a fluid flow with acoustic horizons

without requiring any special external acceleration mechanism, and we study this

flow with a view to finding situations in which the Hawking effect is large. We

present simple physical estimates for the “surface gravity” and Hawking temper-

ature. A fluid flow in a Laval nozzle geometry has also been considered in Ref. 4,

but in a different context: that paper deals with a classical effect, related to the

Hawking effect, but does not consider the quantum physics of Hawking radiation

itself.5

2. Laval Nozzle

A general problem with the realization of acoustic horizons is that most of the back-

ground fluid flows so far studied seem to require very special fine-tuned forms for the

external potential used to actively accelerate the fluid (see e.g. the Schwarzschild-

like geometry in Ref. 8). In this respect a possible improvement toward the realiz-

ability of acoustic horizons is the use of a trap which “geometrically constrains” the

flow. An example of such a geometry is the so called Laval nozzle. [This does not

necessarily imply physical contact between the fluid and the walls of the nozzle —

strictly speaking, a hard wall makes no sense in BEC experiments; a geometri-

cal constraint imposed by a passive potential is good enough to avoid fine-tuning

issues.] In particular we shall consider a pair of Laval nozzles; this provides a system

which includes a region of supersonic flow bounded between two subsonic regions,

the same geometry used in building supersonic wind tunnels.
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In engineering parlance the second Laval nozzle is called a “supersonic diffuser.”9

When initially setting up the supersonic flow the throat of the diffuser should be

wider than that of the upstream Laval nozzle (so that it is the upstream nozzle

that first “chokes” forcing the flow supersonic). Once the supersonic flow has been

established the throat of the diffuser can be narrowed until it is just marginally

wider than that of the upstream Laval nozzle. This enables the so-called “breakdown

shock” at the diffuser to be made arbitrarily weak while maintaining hydrodynamic

stability of the system.9,10 Under normal operating conditions there is no shockwave

at the upstream Laval nozzle where the flow first goes supersonic.

Consider such a nozzle pointing along the z axis. Let the cross sectional area

be denoted A(z). We apply, with appropriate modifications and simplifications, the

calculation of Ref. 8. The crucial approximation is that transverse velocities (in

the x and y directions) are small with respect to velocity along the z axis. Then,

assuming steady flow, we can write the continuity equation in the form

ρ(z)A(z)v(z) = J ; J = constant . (1)

The Euler equation (including for the moment possible external body forces dΦ/dz,

and internal viscous friction fv) reduces to

ρv
dv

dz
= −dp

dz
− ρ

dΦ

dz
+ fv . (2)

Finally, we assume a barotropic equation of state ρ = ρ(p), and define X ′ = dX/dz.

Then continuity implies

ρ′ = −ρ
(Av)′

(Av)
= −ρ

[

A′

A
+

v′

v

]

= −ρ

[

A′

A
+

a

v2

]

, (3)

while Euler implies

ρa = −dp

dρ
ρ′ − ρΦ′ + fv . (4)

Defining the speed of sound by c2 = dp/dρ,a. and eliminating ρ′ between these two

equations yields a form of the well-known “nozzle equation”

a = − v2

c2 − v2

(

c2

[

A′

A

]

− Φ′ +
fv

ρ

)

. (5)

aStrictly speaking the speed of sound is not constant transversally because of the non-constancy of
the density at the boundary of the trap. This could be seen as a problem for our one-dimensional
approximation. However we can argue that in the case of large N and repulsive interactions, the
density of the condensate becomes quite flat. The actual decrease from the average density n to
zero happens in one healing length. So in our case if the ring section is at least a few healing lengths
wide it is still meaningful to consider surfaces of constant c with radius smaller by one healing
length than the ring cross-section. As long as the nozzle is more than one healing length wide, the
density in the central region is almost constant along the transverse directions; this is a standard
approximation in BEC literature and it is exactly what we need for our quasi-one-dimensional
approximation
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The presence of the factor c2−v2 in the denominator is crucial and leads to several

interesting physical effects. For instance, if the physical acceleration is to be finite

at the acoustic horizon, we need

c2

[

A′

A

]

− Φ′ +
fv

ρ
→ 0 . (6)

This is a condition relating the shape of the nozzle to the external body force and

specific friction. Experience with wind tunnels has shown that the flow will attempt

to self-adjust (in particular, the location of the acoustic horizon will self-adjust) so

as to satisfy this relation.

3. Free Flow

Let us now analyze the special case in which the external body force can be neglected

Φ′ = 0 and no viscous friction is present fv = 0. Whereas the latter condition

is exactly satisfied in superfluid flow, the former can be viewed as a hard wall

approximation for the Laval-nozzle trapping potential. This approximation is exact,

Φ′ = 0, when considering quantities at the nozzle throat. Then the nozzle equation

(5) reduces to

a = − c2v2

c2 − v2

[

A′

A

]

. (7)

Regularity now requires a “fine-tuning” condition

A′ = 0 (8)

at the horizon. That is, the acoustic horizon occurs at a point of minimum area;

exactly the behavior which is physically seen in a Laval nozzle. (That a horizon

cannot form at a maximum of the cross sectional area is established below.) Now

apply the L’Hôpital rule at the horizon (using A′|H = 0)

aH =
−c4A′′/A

(c2)′ − 2aH

∣

∣

∣

∣

H

. (9)

We need to use

(c2)′ ≡ d2p

dρ2
ρ′ = −ρ

d2p

dρ2

(Av)′

Av
⇒ (c2)′|H = −ρH

d2p

dρ2

∣

∣

∣

∣

H

aH

c2
H

. (10)

So that

aH = ± c2

√
2A

√

A′′

1 + (1/2)ρ[d2p/dρ2]/c2

∣

∣

∣

∣

H

. (11)

It is extremely useful to consider the quantity

g = −1

2

d(c2 − v2)

dz
. (12)
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Fig. 1. A pair of Laval nozzles: The second constriction, a “supersonic diffuser,” is used to bring
the fluid flow back to subsonic velocities.

It is this combination g, rather than the physical acceleration of the fluid a, that

more closely tracks the notion of black hole “surface gravity,”2 and it is the limit of

this quantity as one approaches the acoustic horizon that enters into the Hawking

radiation calculation.11 Since g = a − (c2)′/2, the fine-tuning used to keep a finite

at the acoustic horizon will also keep g finite there. In particular,

gH =

[

1 +
ρ

2c2

d2p

dρ2

]

aH (13)

= ± c2
H√

2AH

√

1 +
ρ

2c2

d2p

dρ2

∣

∣

∣

∣

H

√

A′′

H . (14)

The first factor is of order c2
H/R, with R the minimum radius of the nozzle, while

the second and third factors are square roots of dimensionless numbers. This is in

accord with our intuition based on dimensional analysis.2,8 If A′′ < 0, corresponding

to a maximum of the cross section, then gH is imaginary which means no event

horizon can form there. The two signs ± correspond to either speeding up (black

hole horizon) and slowing down (white hole horizon) as you cross the horizon, both

of these must occur at a minimum of the cross sectional area A′′ > 0 (see Fig. 1).

If the nozzle has a circular cross section, then the quantity A′′

H is related to the

longitudinal radius of curvature Rc at the throat of the nozzle, in fact A′′

H = πR/Rc.

4. Bose Einstein Condensate

Equation (14) for the surface gravity of the acoustic horizon was derived consider-

ing an inviscid, irrotational, barotropic flow. Hence, in order to apply the previous

discussion to the case of a BEC, we need to consider Bose–Einstein condensates for

which the superfluid description of the condensate applies.3 This regime is encoun-

tered when the Gross–Pitaeveskii (GP) equation holds and the quantum pressure

can be neglected. Indeed, the GP equation is derived from a many-body Hamil-

tonian in the case in which most of the atoms are in the condensed phase (mean

field approximation) and the gas is very dilute in such a way that only the two-

body short-range collisions are relevant. (This is equivalent to imposing n|a|3 � 1,

where n is the number density and a is the scattering length for bi-atomic inter-

actions.) Once the GP holds the BEC can be described as a superfluid (inviscid and

irrotational) with a barotropic equation of state p ∝ n2 with the only “anomaly”
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being the presence of the quantum potential term VQ = ~
2∇2

√
n/(2m

√
n). This

quantum potential is generally neglected in the case of strong repulsive interaction

when the density profile becomes smooth. The requirement that this assumption

holds not only for the background configuration but also for perturbations around

it, implies that one must restrict attention to those perturbations with wavelengths

long with respect to the “healing length” ξ = (4πan)−1/2 which is the typical scale

over which the quantum potential is of the same order of the interaction term in

the GP equation.3 We shall consider later the consequences of relaxing this last

approximation.

The speed of sound in a uniform BEC is (corrections due to the finite size of

the trap can be shown to be marginal)

c =
2~

m

√
πan , (15)

so we have, rather simply

gH = ± c2
H√
AH

√

3A′′

H/4 . (16)

This implies, at a black hole horizon [future horizon], a Hawking temperature1,2,11

kBTH =
~gH

2πcH
= ~

cH

2π
√

AH

√

3A′′

H

4
. (17)

Ignoring for now the issue of gray-body factors (they are a refinement on the Hawk-

ing effect, not really an essential part of the physics), the phonon spectrum peaks at

λpeak = 4π2
√

AH

√

4

3A′′

H

= 4π2

√

4

3
RRc . (18)

This extremely simple result relates the Hawking emission to the physical size of

the constriction and a factor depending on the flare-out at the narrowest point.

Note that you cannot permit A′′

H to become large, since then you would violate the

quasi-one-dimensional approximation for the fluid flow that we have been using in

this note. (There is of course nothing physically wrong with violating the quasi-one-

dimensional approximation, it just means the analysis becomes more complicated.)

The preceding argument suggests strongly that the best we can realistically hope

for is that the spectrum peaks at wavelength λpeak &
√

AH ≈ R. Note that this

is the analog, in the context of acoustic black holes, of the fact that the Hawking

flux from general relativity black holes is expected to peak at wavelengths near the

physical diameter of the black hole — up to numerical factors depending on charge

and angular momentum. You can (in principle) try to adjust the equation of state

to make the second factor in (14) larger, but this is unlikely to be technologically

feasible.
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In closing this analysis of the Hawking radiation for a wind-tunnel-shaped BEC

flow, we revisit the issue of the neglect of the quantum potential. How is our analysis

changed regarding the physical realizability of the flow, and the nature of the Hawk-

ing radiation, if the quantum potential is taken into account? We can summarize

the most important changes in three points:

The “fine tuning” condition (8) is replaced by a more general relation which

includes the quantum potential and hence higher-order derivatives in the density at

the horizon. For this reason the generalization of (8) cannot be seen as a special fine-

tuning condition. Indeed, this implies that the horizon will no longer occur exactly

at the minimum diameter of the nozzle, and that divergence of the acceleration at

the horizon will no longer be generic. Basically the quantum potential can be seen to

play a role similar to that of a viscous term (which instead introduces higher-order

derivatives in the speed of the flow) as described in Ref. 8.

Thanks to the presence of the quantum potential shockwaves are no longer

a generic feature. In fact, shockwaves are generic features of inviscid systems.

(Viscosity gives a finite thickness to physical, as opposed to idealized, shocks.)

The quantum potential comes into play when gradients in the density are on scales

comparable to the healing length, effectively avoiding discontinuities in the hydro-

dynamical quantities. It is nevertheless important to consider configurations where

large gradients are naturally avoided (like the wind tunnel considered here) because

gradients on scales of the order of the healing length would be problematic for the

mean field approximation (and hence the GP equation) to hold.

Finally one has to take into account that the quantum potential is directly

related to the existence of the quartic term in the dispersion relation for perturba-

tions in the BEC

ω2 = c2

(

k2 +
k4

K2
0

)

, (19)

where K0 ∝ ξ−1.16,17 This is the so-called Bogoliubov dispersion relation3 which

is a phonon spectrum modified at high momenta in such a way as to recover

the “infinite” propagation speed typical of the non-relativistic system we started

with (the non-linear Schödinger equation, the GP equation). This high-momentum

modification of the BEC quasi-particle dispersion relation can be important to the

generation of Hawking radiation given that any outgoing Hawking quanta with

finite wavelength far away from the horizon will be blue-shifted when traced back

toward the dumb hole and eventually will reach a point where its wavelength will

be of the order of the healing length. This type of modification of the dispersion

relation has been extensively considered in relation to the possible resolution of the

so called trans-Planckian problem. Fortunately it is known, thanks to model calcu-

lations in field theories with explicit high-momentum cutoffs, that the low energy

physics of the emitted radiation is largely insensitive to the nature and specific fea-

tures of the cutoff if the peak wavelength of the Hawking flux is much larger than

the cut-off scale (in our case the healing length). We shall explicitly check that
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this condition is satisfied for our system in the following section. As a final remark

we stress that “superluminal” dispersion relations of the Bogoliubov kind can still

have a potentially dangerous side. This is related to an intrinsic instability in the

quantum particle creation when compact ergoregions (regions where the timelike

Killing vector becomes spacelike) are present, a phenomenon christened “back hole

laser.”18 This instability is relevant for system like the one considered in this letter.

We shall see that instead of being a potential problem, this instability might be

exploited as a possible venue for the detection of quantum particle creation in a

BEC flow.

5. Size of the Effect

It is the fact that the peak wavelength of the Hawking radiation is of order the speed

of sound (which in BEC systems is very low) that makes the effect so difficult to

detect. Simultaneously one can easily realize that the minimal radius of the nozzle

is quite constrained. The peak wavelength (18), a purely geometrical quantity, has

to be much larger than the healing length for the hydrodynamic approximation to

hold. We have also argued that for the quasi-one-dimensional approximation to hold

the transverse size of the throat must be more than one healing length, in contrast

an upper limit on the transverse size of the nozzle throat is provided by the require-

ment of stability of our system to vortex nucleation. The minimum diameter for a

vortex in a BEC is several healing lengths. To obtain significant vortex production

one would need a throat that was many healing lengths in diameter. Furthermore

in a Laval nozzle the pressure is maximum at the throat, further suppressing the

possibility of vortex nucleation. Thus the transverse dimensions of the throat should

be several healing lengths. (In contrast, lengthwise the system can be many healing

lengths long; which permits us to use the one-dimensional hydrodynamic approxi-

mation.) An exact calculation of the constraints on the ratio of healing length ξ to

nozzle radius R is basically impossible, being determined by several experimental

as well as theoretical issues. We shall here assume that R = χξ where χ is some

positive number of order one or greater, χ & 1. Similarly, regarding the steepness

of the throat we can write Rc = α2R where α is a constant equal to or greater than

one: α & 1. Taking into account these definitions one can see that

λpeak = 45χαξ & 45ξ . (20)

We then see that in our model even for the “extremal” values χ = α = 1 the peak

wavelength of the Hawking radiation is always larger than the healing length and

that even in the case in which χ is fixed by the constraint of vortex formation one

can tune the shape of the nozzle parametrized by α is such a way to be in a regime

where λ � ξ.

This shows that in this particular model the bulk of the Hawking flux exists in

a regime which is definitely “sub-Planckian”, given that the healing length plays

in BEC analogue model the same role that the Planck scale plays in semiclassical
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gravity. Our equation (20) also implies that our model is a specific counter-example

to Unruh’s recent objection to the viability of BEC systems for studies of analog

Hawking radiation.12

Another possible concern regarding the size of λpeak is that our analysis also

requires λpeak � L where L is the typical size of the condensate. In typical traps this

size is about 100 times the healing length (10 microns of size against 10−1 microns

for the healing length) leaving a small region for the validity of ξ � λpeak � L.

In our case L would be the total length of the tunnel and one can hope that this

length can be extended in order to be in the range of 10–100 microns. This is in

any case a technical issue rather than a fundamental obstruction to the realization

of such a configuration.

In BECs experiments it is common to have a sound speed of order 6 mm/s,

then, considering a throat R = 1 micron (that is, χ = 10) and Rc = R (that is,

α = 1) we obtain a Hawking temperature TH ≈ 7n K. Comparing this TH to the

condensation critical temperature

Tcondensate ≈ 90 n K , (21)

we see that in this situation the Hawking effect, although tiny, is at least compa-

rable in magnitude to other relevant temperature scales. In order to enhance TH

one could increase the density of the condensate, this simultaneously increases the

speed of sound and allows for smaller R by reducing ξ. A similar enhancement can

be achieved by increasing the scattering length. In particular, recent experiments

indicate that this quantity can be tuned by making use of the so called Fesh-

bach resonance13 and that increments by a factor up to 100 can be experimentally

obtained.14 The propagation speed (15) could thereby be enhanced by a factor up

to 10. Basically, as long as the dilute gas limit holds, it appears possible to enhance

n or a in order to improve the Hawking temperature by at least a factor 10:

TH ≈ 70 n K . (22)

This places us much closer to the condensation temperature. If the Hawking effect

can be experimentally realized in these situations, it may be sufficiently large to

disrupt the condensate configuration, or even the condensate itself. The power loss

due to Hawking radiation would be

P = σT 4
HAH =

3~c4
H

5120π2AH
(A′′

H)2 . (23)

Numerically (even including the effect of the Feshbach resonance), this is extremely

small P ≈ 10−48 W. Despite this, it is still possible that a detection of the quan-

tum particle creation can be obtained via some other kind of instability. Let us

elaborate this point: The Garay et al. analysis15 shows (even without assuming

the hydrodynamic approximation) that it should be possible to create stable BEC

configurations with acoustic horizons. In their particular analysis, in which a BEC

is spinning in a effectively one-dimensional ring, they found stable configurations
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surrounded by unstable regions. But the Laval nozzle geometry being analyzed can

be seen as a specific implementation of the ring configuration if we feed the outflow

from the second (diffuser) nozzle back into the inflow of the first upstream nozzle.

Once the system is engineered to be in a configuration which would be stable in

the absence of the Hawking effect, one can search for the purely quantum effect of

Hawking emission.

An alternative route is to look at the instability regions (see e.g. the analysis

regarding the nature of the instability regions in Garay et al.15). As previously

discussed, because of the high-frequency “superluminal” dispersion and the presence

of the two horizons in our system one should encounter instabilities related to

the “black hole laser” mechanism18). There are good reasons to believe that the

instability bands found by Garay et al. are due to this effect, and that the existence

of stability regions is due to the periodic boundary conditions imposed by the ring

geometry. In this case one can have additional hopes of detecting a signal of quantum

particle creation by looking at the instability regions. In fact it is expected that such

quantum phonon creation is driven to a run-away production of phonons18 (phonon

lasing) which should be much easier to detect than the Hawking flux because of its

typical spectrum and because it would lead to a new type of instability, disrupting

the otherwise classically stable configuration. It is nevertheless important to stress

here that the laser instability is classical in nature and that the laser mechanism can

excite existing classical fluctuations (real phonons) or create them from the vacuum.

In the first case one would expect excitation of particles in coherent states, in the

second one should have squeezed states. Correlation measurements on phonons

on different sides of the horizon could provide a way to distinguish these effects

although it is possible that the classical effect would be overwhelming with respect

to the quantum one.

Finally we describe a third possibility for an indirect detection of a Hawking flux,

based on the measurement of the slow-down of the flow on long timescales (several

Hawking cycles) due to energy loss induced by the Hawking radiation. The problems

in this case are related to the technical possibility of suppressing or distinguishing

any other competitive dissipative process, and to the actual obtainable lifetime of

a stable condensate.

6. Conclusions

The present note complements the analysis by Garay et al.15 in that it provides a

rationale for simple physical estimates of the analog Hawking effect. Additionally,

the current study identifies several specific physical mechanisms by which the Hawk-

ing temperature can be manipulated: via the speed of sound, the nozzle radius, the

equation of state, and the degree of flare-out at the throat. In particular, we have

identified a plausible configuration with a Hawking temperature of order 70 n K;

to be contrasted with the critical condensation temperature which is of the order

of 90 n K (keeping in mind that the actual physical temperature of the condensate
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is estimated to be well below this value). We have discussed the experimental con-

straints on our model and checked that there is not, at least at a theoretical level,

any a priori obstruction to considering such a system as a plausible set up for the

laboratory reproduction of the Hawking phenomenon. Finally we have discussed

several alternative signatures for the relevant quantum particle production.

While there is no serious dispute that the Hawking effect will actually occur in

general relativistic black holes, there is currently no direct evidence to this effect.

It is for this reason that analogue models are so important — they may provide an

indirect window on fundamental aspects of curved space quantum field theory.
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