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ABSTRACT

We argue that combined observations of galaxy rotation curves and gravitational lensing not

only allow the deduction of the mass profile of a galaxy, but also yield information about the

pressure in the galactic fluid. We quantify this statement by enhancing the standard formalism

for rotation curve and lensing measurements to a first post-Newtonian approximation. This

enhanced formalism is compatible with currently employed and established data analysis

techniques, and can in principle be used to reinterpret existing data in a more general context.

The resulting density and pressure profiles from this new approach can be used to constrain

the equation of state of the galactic fluid, and therefore might shed new light on the persistent

question of the nature of dark matter.

Key words: equation of state – gravitational lensing – methods: data analysis – galaxies:

haloes – galaxies: kinematics and dynamics – dark matter.

1 I N T RO D U C T I O N

One of the most compelling issues of modern astrophysics is the

open question concerning the nature of the dark matter which dom-

inates the gravitational field of individual galaxies and galaxy clus-

ters (see e.g. Persic, Salucci & Stel 1996; Borriello & Salucci 2001;

Salucci & Borriello 2003). While the current consensus in the as-

trophysics community is to advocate the cold dark matter (CDM)

paradigm, no direct observations of the equation of state have been

carried out to confirm this widely adopted assumption. Efforts to

confirm this assumption include attempts to detect elementary par-

ticles that have been suggested as CDM candidates. However, exper-

iments that aim (for instance) to detect massive axions with Earth-

based detectors (section 22.2.2; Particle Data Group: Eidelman et al.

2004) do not yet yield a positive result.

A different approach to analysing the nature of dark matter has

been suggested by Bharadwaj & Kar (2003) who first proposed that

combined measurements of rotation curves and gravitational lensing

could be used to determine the equation of state of the galactic

fluid. Whereas their analysis made particular assumptions on the

form of the rotation curve, and is restricted to a certain type of

equation of state, herein we provide a general formalism that allows

us to deduce the density and pressure profiles without any prior

assumptions about their shape or the equation of state.

Analytic galaxy halo models that predict a significant amount

of pressure or tension in the dark matter fluid include ‘string fluid’

(Soleng 1995), or some variations of scalar field dark matter. See for
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instance Schunck (1999), Matos, Guzmán & Ureña-López (2000b),

Matos, Guzmán & Núñez (2000a), Peebles (2000) and Arbey,

Lesgourgues & Salati (2003). Our method provides a means of

observing, or at least constraining, the pressure distribution in a

galactic halo. Therefore it is in principle able to give evidence for

or against specific proposed dark matter candidates.

The key point is that in general relativity, density and pressure

both contribute to generating the gravitational field separately. Fur-

thermore, the perception of this gravitational field depends on the

velocity of probe particles. These effects become especially impor-

tant when one compares rotation curve and gravitational lensing

measurements, where the probe particles are fundamentally differ-

ent: interstellar gas or stars at subluminal velocities for rotation

curves, and photons which travel at the speed of light for lensing

measurements. Our formalism accounts for these crucial differences

between the probe particles, and relates observations of both kinds

to the density and pressure profile of the host galaxy. Although we

(mainly) consider static spherically symmetric galaxies in a first

post-Newtonian approximation, the basic concept is fundamental

and can be extended to more general systems with less symmetry. A

suitable framework for considering most exotic weak gravity scenar-

ios is provided by the effective refractive index tensor, as introduced

by Boonserm et al. (2005).

The present approach might also help to shed some light on

prevailing problems that arise when combining rotation curve and

lensing observations. For example, an unresolved issue exists when

measuring the Hubble constant from the time delay between gravi-

tationally lensed images: using the standard models for matter dis-

tribution in the lens galaxy, the resulting Hubble constant is either

too low compared to its value from other observations, or the dark

matter halo must be excluded from the galaxy model to obtain the
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commonly accepted value of H0 (Kochanek & Schechter 2004). A

possible explanation of this trend might lie in a disregarded pressure

component of the dark matter halo.

We organize this article in the following manner. First, we intro-

duce the minimal necessary framework of general relativity con-

cepts, and point out the important conditions required to obtain the

Newtonian gravity limit. Next, we elaborate on the post-Newtonian

extension of the currently employed rotation curve and gravitational

lensing formalisms. Consequently, we show how to combine rota-

tion curve and lensing measurements to make inferences about the

density and pressure profile of the observed galaxy. We then exam-

ine how noticeable the effects of non-negligible pressure could be

in the measurements. Lastly, we discuss how the formalism adapts

to non-spherically symmetric galaxies and comment on the current

observational situation and issues arising with the new formalism.

2 G E N E R A L R E L AT I V I T Y F R A M E WO R K

In general relativity the motion of a probe particle is given as the

geodesic of a curved space–time whose curvature is generated by

matter or more generally speaking, stress–energy. The static and ap-

proximately spherically symmetric gravitational field of a galaxy is

represented by the space–time metric (section 23.2; Misner, Thorne

& Wheeler 1973)

ds2 = −e2�(r ) dt2 + dr 2

1 − 2m(r )/r
+ r 2 d�2, (1)

which is completely determined by the two metric functions �(r)

and m(r). These coordinates (t, r, θ , ϕ) are called curvature coordi-
nates and

d�2 = dθ2 + sin2θ dϕ2 (2)

represents the geometry of a unit sphere. Invoking the Einstein field

equations with the most general static and spherically symmetric

stress–energy tensor gives the relation between the metric functions

and the density and pressure profiles:

8π ρ(r ) = 2 m ′(r )

r 2
, (3)

8π pr(r ) = − 2

r 2

{
m(r )

r
− r �′(r )

[
1 − 2 m(r )

r

]}
, (4)

8π pt(r ) = − 1

r 3
[m ′(r ) r − m(r )][1 + r �′(r )]

+
[

1 − 2 m(r )

r

][
�′(r )

r
+ �′(r )2 + �′′(r )

]
, (5)

where ρ(r) is the energy–density profile, and pr(r) and pt(r) denote

the profiles of the principal pressures in the radial and transverse

directions. Note that we use geometrical units (c = 1, GN = 1)

unless otherwise mentioned. Hence, if the metric functions �(r)

and m(r) are given by observations, one can infer the density and

pressure profiles. For a perfect fluid, one would expect p = pr = pt.

From (3) the physical interpretation of m(r) as the total mass–energy

within a sphere of radius r becomes clear.

2.1 The Newtonian limit

Standard Newtonian physics is obtained in the limit of general rel-

ativity where (section 17.4; Misner et al. 1973)

(i) the gravitational field is weak (2m/r � 1, 2� � 1),

(ii) the probe particle speeds involved are slow compared to the

speed of light and

(iii) the pressures and matter fluxes are small compared to the

mass–energy density.

While there is no doubt that in a galaxy condition (i) is satisfied

everywhere apart from the central region (Schödel et al. 2002), con-

dition (ii) only holds for rotation curves and not for gravitational

lensing. Finally, condition (iii) is related to the open question about

the fundamental nature of dark matter. Hence, the possibility of dark

matter being a high-pressure fluid, or some sort of unknown field

with high-field tensions, cannot be excluded a priori.

It is a standard result that condition (i) is enough to deduce that

the gravitational potential �(r) is generated by the tt-component of

the Ricci tensor (Misner et al. 1973):

∇2� ≈ Rt t , (6)

which on invoking the Einstein equations for Rt t becomes

∇2� ≈ 4π (ρ + pr + 2pt). (7)

Therefore, the metric function �(r) can be interpreted as the New-

tonian gravitational potential �N if and only if the pressures of the

galactic fluid are negligible, i.e. if condition (iii) holds:

∇2�N = 4π ρ. (8)

It is now quite obvious from (7) that the gravitational field is highly

sensitive to the pressure if density and pressure are of the same order

of magnitude.

3 ROTAT I O N C U RV E S

For the regime of rotation curve measurements, both conditions (i)

and (ii) apply. In this case, the geodesic equations of the metric (1)

reduce to (Misner et al. 1973)

d2r

dt2
≈ −∇�, (9)

where r denotes the position vector of a probe particle. Equation (9)

is equivalent to the Newtonian formulation of gravity, except for

the general relativistic potential � which replaces the Newtonian

potential �N.

Measurements of rotation curves are carried out by observing

the Doppler shift in the emission lines of the light emitting probe

particles. In a general relativistic context, the observed shift in wave-

length is not exclusively due to Doppler effects of the moving probe

particles, but also depends on the gravitational redshift which arises

as the photons climb out of the gravitational potential well.

It has been shown for edge-on galaxies that the total wavelength

shift1 z±(r) of an emission line of a probe particle at radius r is given

by (Nucamendi, Salgado & Sudarsky 2001; Lake 2004; Faber 2006)

1 + z±(r ) = 1√
1 − r �′(r )

[
1

e�(r )
− ±|b| √r �′(r )

r

]
, (10)

where prime denotes the derivative with respect to r, ′ = d/dr and b
is the impact parameter. z+ is the wavelength shift of an approaching

particle and z− that of a receding particle.

The impact parameter is equivalent to the apparent distance be-

tween the galactic centre and the emitting particle, once one takes

1 The wavelength shift that arises from the systemic velocity of the galaxy is

not considered here, and Faber (2006) has shown that this does not change

the result presented in this context.
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notice of light bending effects. However, in the weak gravity regime

of galaxies, where flat space is a suitable approximation, one finds

|b| = r + O[�] (11)

for particles whose position vector r (with respect to the galactic

centre) is perpendicular to the observer’s line of sight (Lake 2004).

Thus, with the additional weak field assumption r �′(r) � 1, equa-

tion (10) can be written as

1 + z±(r ) = 1 ∓
√

r �′(r ) + O
[
�, r �′] , (12)

or equivalently,

z2
± = r �′(r ) + O

[
�2, (r �′)3/2, �

√
r �′] . (13)

Comparing this expression to the Doppler shift in Newtonian gravity,

v2

c2
= z2

N = r �′
N (r ), (14)

we conclude that for small particle speeds v � c, i.e. condition (ii),

the observation of z± in edge-on galaxies is in first-order equivalent

to the Doppler redshift in Newtonian gravity, when �N is substituted

by �. This also justifies the previous assumption r �′(r) � 1.

For galaxies of arbitrary orientation it is more tedious to obtain

this result, but in a similar fashion, it can also be shown that the

Doppler shift in wavelength is the dominant contribution to the

observed total redshift (Faber 2006).

Therefore, the usual techniques for obtaining the potential �RC

from rotation curve measurements can be employed if one keeps in

mind that the motion of the observed particles is not governed by the

Newtonian gravitational potential �N, but by its general relativistic

generalization �:

�RC = � 	= �N. (15)

If one assumes condition (iii), the density ρ is related to �RC by (8).

In the general case, however, the interpretation of the mass which is

inferred by rotation curve measurements, mRC(r), can be obtained

from (7):

mRC(r ) = r 2 �′
RC ≈ 4π

∫
(ρ + pr + 2pt) r 2 dr . (16)

Therefore, in the general case, we call mRC(r) 	= m(r) the pseudo-
mass determined by rotation curve measurements.

4 G R AV I TAT I O NA L L E N S I N G

A fundamentally different approach of measuring the gravitational

field of a galaxy is gravitational lensing. Here, the observable pho-

tons are not only conveying the information about the gravitational

field to us, they also act as probe particles themselves. Hence, con-

dition (ii) is naturally not satisfied for gravitational lensing obser-

vations. Consequently, the equations of motion for photons do not
simplify to (9), as is the case for rotation curves. Instead, the geodesic

equations for photons have to be solved exactly to understand the

influence of the gravitational field, as it is described by both metric

functions, �(r) and m(r). Fortunately, for certain space–times, such

as e.g. equation (1), it is possible to characterize the entire trajectory

of light rays with a single effective refractive index n(r).

4.1 Fermat’s principle and the effective refractive index

Fermat’s principle of shortest optical paths also applies to the

geodesic trajectories of four-dimensional curved space–time (Kline

& Kay 1965; Misner et al. 1973). This description of light rays in

a gravitational field is equivalent to classical optics in a transpar-

ent medium with a continuous refractive index n, where Fermat’s

principle is formulated as the vanishing of the first variation of the

optical length between two points, q1 and q2, on the trajectory:

δ

∫ q2

q1

n(r̃ )
√

dr̃ 2 + r̃ 2 d�2 = 0. (17)

By transforming the curvature coordinates of the space–time (1) to

so-called isotropic coordinates (Perlick 2004),

ds2 = e2�(r̃ ) [−dt2 + n(r̃ )2(dr̃ 2 + r̃ 2 d�2)], (18)

we introduce the scalar effective refractive index n(r̃ ) of a static

spherically symmetric gravitational field. By direct comparison

of (1) and (18), we find a differential equation that relates the

r̃ -coordinate of the isotropic coordinates to the r-coordinate of the

curvature coordinates,

dr̃

dr
= r̃

r
√

1 − 2m(r )/r
, (19)

and the refractive index,

n(r̃ ) = r

r̃
e−�(r ). (20)

Since condition (i) is satisfied for the region we are interested in,

we can Taylor expand and formally integrate (19) under appropriate

boundary conditions and find

r̃ = r exp

{∫
m(r )

r 2
dr + O

[(
2m

r

)2
]}

, (21)

which, inserted into (20), gives

n(r̃ ) = exp

{
− �[r (r̃ )] −

∫
m[r (r̃ )]

r (r̃ )2

dr

dr̃
dr̃

+O
[(

2m

r (r̃ )

)2
]}

, (22)

where r (r̃ ) is given by the inverse of (21). Since r̃ = r +O[2m/r ],

the radii in both sets of coordinates are interchangeable to the desired

order and hence, we can also give the refractive index as a function

of the curvature coordinate r directly:

n(r ) = 1 − �(r ) −
∫

m(r )

r 2
dr + O

[(
2m

r

)2

,
2m

r
�, �2

]
.

(23)

This effective refractive index entirely determines the trajectory of

a light ray, i.e. the probe particles of gravitational lensing. Hence, it

is the only possible observable of gravitational lensing. We note that

the refractive index contains two distinct ingredients, the potential

part, �(r), and the integral over the mass function,
∫

2m(r )/r 2 dr .

At this point, we conclude that since gravitational lensing ob-

servations yield n(r) and rotation curve measurements yield �(r),

combined observations of n(r) and �(r) allow the separate deduction

of �(r) and m(r), and therefore describe the gravitational field of a

galaxy in a general relativistic sense, without any prior assumptions.

The fundamental principle is that the perception of the gravitational

field by probe particles depends on the speed of the probe particles,

which manifests itself in the difference of observables n(r) 	= �(r).

For convenience and comparability, we define the lensing poten-

tial as

2 �lens(r ) = �(r ) +
∫

m(r )

r 2
dr , (24)
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so that

n(r ) = 1 − 2 �lens(r ) + O
[
�2

lens

]
. (25)

4.2 Gravitational lensing formalism

The standard formalism of gravitational lensing in weak gravita-

tional fields is based on the superposition of the deflection angles

of many infinitesimal point masses (section 4.3; Schneider, Ehlers

& Falco 1992).

In general relativity, a point mass M is described by the

Schwarzschild exterior metric,

ds2 = −
(

1 − 2M

r

)
dt2 + dr 2

1 − 2M/r
+ r 2 d�2, (26)

which inserted into (23) gives the effective refractive index

n(r ) = 1 + M

r
−

∫
M

r 2
dr + O

[(
2M

r

)2
]

(27)

= 1 + 2M

r
+ O

[(
2M

r

)2
]

. (28)

In the Newtonian limit, this is generally identified with the Newto-

nian potential,

n(r ) = 1 − 2 �N(r ), (29)

whereas from (27) it is clear that in the general case, the refractive

index is only partially specified by the potential term. That the mass

term of the refractive index of a point mass is identical to the potential

term is a special case of the Schwarzschild metric. Keeping this in

mind, we proceed to outline the current formalism.

For a point mass, the angular displacement of the gravitationally

lensed image in the lens plane can be calculated from the refractive

index (28) (Schneider et al. 1992):

α̂ = 4M
ξ

|ξ|2 , (30)

where ξ is the vector that connects the lensed image and the centre

of the lens in the two-dimensional lens plane. Since the extent of

the mass distribution of a lensing galaxy is small compared to the

distance between the light emitting background object and the lens,

as well as compared to the distance between the lensing galaxy and

the observer, one assumes the deflecting mass distribution to be

geometrically thin. Therefore, the volume density ρ of the lensing

galaxy can be projected on to the so-called lens plane, resulting

in the surface density 	(ξ) which describes the mass distribution

within the lens plane (Schneider 1985).

The total deflection angle of a lensing mass with finite extent is

then said to be given by the superposition of all small angles (30)

due to the infinitesimal masses in the lens plane (Schneider et al.

1992):

α̂(ξ) = 4

∫
	(ξ′)

ξ − ξ′

|ξ − ξ′|2 d2ξ ′. (31)

This equation is the foundation of the gravitational lensing formal-

ism as introduced by Schneider (1985) and Blandford & Narayan

(1986).

Since this formalism is based on the assumption that the total

angle of deflection is caused by the superposition of point masses

– without the notion of pressure at all – it automatically assumes

that the underlying lensing potential is Newtonian, i.e. �lens = �N.

Hence, the lensing potential and the naively inferred density or mass

distribution are related by (8):

∇2�lens(r ) = 4π ρlens(r ) (32)

which implies

�lens(r ) =
∫

m lens(r )

r 2
dr . (33)

However, as we argued previously, the lensing potential �lens is the

fundamental observable, and not the density ρ which was used to

construct the formalism. Therefore, for the general case that does

not assume (iii), i.e. �lens 	= �N, we note that

ρlens(r ) 	= ρ(r ) and m lens(r ) 	= m(r ). (34)

Instead, the deduced mass distribution mlens(r) has to be considered

as a pseudo-mass similar to that of rotation curve measurements.

Its physical interpretation can be deduced from the definition of the

lensing potential (24):

m lens(r ) = 1

2
mRC(r ) + 1

2
m(r ) (35)

≈ 4π

∫ [
ρ + 1

2
(pr + 2pt)

]
r 2 dr . (36)

5 B R I N G I N G ROTAT I O N C U RV E S A N D

G R AV I TAT I O NA L L E N S I N G TO G E T H E R

We showed in the previous sections that the potentials obtained from

rotation curve and lensing observations, �RC and �lens, do not agree

in the general case,

�RC(r ) = �(r ), (37)

�lens(r ) = 1

2
�(r ) + 1

2

∫
m(r )

r 2
dr , (38)

but only in the Newtonian limit, where condition (iii) holds, in which

case �RC = �lens = �N. Since this is the standard assumption for

interpreting rotation curve and lensing data, the results of these ob-

servations are often reported as mass distributions instead of poten-

tials. Under the Newtonian assumption, the mass and the potential

are related by a field equation of the form (8). In the general case,

this leads to the definition of the distinct pseudo-masses,

mRC(r ) = r 2 �′(r ), (39)

m lens(r ) = 1

2
r 2 �′(r ) + 1

2
m(r ), (40)

which describe the observations equivalently to the potentials (37)

and (38). Equations (39) and (40) can easily be inverted to give the

metric functions �′(r) and m(r),

�′(r ) = mRC(r )

r 2
, (41)

m(r ) = 2 m lens(r ) − mRC(r ), (42)

which inserted into the field equations of general relativity (3)–(5)

yield the density and pressure profiles:

4π r 2ρ(r ) = 2 m ′
lens(r ) − m ′

RC(r ), (43)
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4π r 2 pr(r ) = 2
mRC(r ) − m lens(r )

r
+ O

[(
2 m

r

)2
]

,

4π r 2 pt(r ) = r

[
mRC(r ) − m lens(r )

r

]′
+ O

[(
2 m

r

)2
]

(44)

= r

2

[
4π r 2 pr(r )

]′ + O
[(

2 m

r

)2
]

. (45)

As consistency checks, we note the following.

(i) The Einstein equations in curvature coordinates, (43)–(45),

agree to the given order of 2m/r with the Einstein equations of the

metric in isotropic coordinates, and therefore the approximation

r̃ ≈ r is valid.

(ii) From equations (43)–(45), it follows that

4π r 2 [ρ(r ) + pr(r ) + 2pt(r )] ≈ m ′
RC(r ), (46)

and

4π r 2

{
ρ(r ) + 1

2
[pr(r ) + 2pt(r )]

}
≈ m ′

lens(r ), (47)

and thus these results are consistent with the weak field approx-

imation of the field equations (7), and the interpretations of the

pseudo-masses (16) and (35);

(iii) For m′
RC(r) = m′

lens (r) = m′(r) we find the desired result of

the Newtonian limit:

4π r 2ρ(r ) = m ′(r ), (48)

4π r 2 pr(r ) = O
[(

2 m

r

)2
]

, (49)

4π r 2 pt(r ) = O
[(

2 m

r

)2
]

. (50)

We conclude that the currently existing formalisms for analysing

data from rotation curve and gravitational lensing observations

can be used to separately obtain the pseudo-masses mRC(r) and

mlens(r), which by (43)–(45) yield the density and pressure pro-

files in a first post-Newtonian approximation. Furthermore, from the

combination

4π r 2 (pr + 2pt) ≈ 2 (m ′
RC − m ′

lens), (51)

one can immediately infer that the observed system is Newtonian in

the sense of condition (iii) if and only if m′
RC(r) ≈m′

lens(r). Further-

more, defining the dimensionless quantity

w(r ) = pr(r ) + 2pt(r )

3ρ(r )
≈ 2

3

m ′
RC(r ) − m ′

lens(r )

2 m ′
lens(r ) − m ′

RC(r )
(52)

gives a convenient parameter that determines a ‘measure’ of the

equation of state.

6 PA R A M E T R I Z I N G T H E S I Z E O F T H E

E F F E C T

To get an idea how noticeable the existence of a pressure contribution

is likely to be in the measured data, we introduce the χ -factor which

Figure 1. The χ -factor (53) as a function of w in the commonly discussed

range w ∈ [ − 1, 1]. Naturally χ (0) = 1, which corresponds to the Newtonian

case, see equations (48)–(50). At the ends of the plotted range we find χ (−1)

= 1/4 and χ (1) = 5/8. The zero-crossing and the first-order pole correspond

to w = −2/3 and −1/3, respectively, as is obvious from equation (53).

we define as the ratio of the derivatives of mlens and mRC:

χ [w(r )] = m ′
lens(r )

m ′
RC(r )

= 2 + 3w(r )

2 + 6w(r )
. (53)

This can easily be obtained from rearranging (52).

Using Fig. 1, we can now see how the ratio of the slopes of mlens

and mRC relates to w. One should especially note that χ is not very

different from unity in the vicinity of w = 0, making it difficult

to detect small pressures. However, for w ∈ [1/2, 1], which is a

range that might plausibly be identified with real-life data (or at

the very least with some real-world theoretical prejudices), χ takes

values between 62.5 and 70 per cent. For most negative w in

the interval [−1, 0], χ is rather distinct from unity, and therefore

should be easily detectable if the quality of the observational data is

high.

Also note that in the special case of a position-independent w – so

that the ‘equation of state of the galactic fluid’ is constant throughout

the observed region – the ratio between mlens and mRC will be the

same as between their derivatives:

m lens(r ) = χ (w) mRC(r ). (54)

This relation is likely to be more useful since it does not depend on

numerically obtained derivatives when one wishes to compare mass

profiles. However, it comes at the price of the additional assumption

that w = constant.

7 N O N - S P H E R I C A L G A L A X I E S

Although we chose to present this new formalism using the exam-

ple of a simple spherically symmetric galaxy, it is easy to show

that the fundamental concept behind the formalism is also valid for

configurations with less symmetry.

7.1 Rotation curves

The formalism of Newtonian mechanics is usually adopted when

data from dynamical observations are examined to determine the

shape of the matter distribution of a galaxy. That is, the fundamental

equation employed is (9):

d2r

dt2
≈ −∇�(x, y, z). (55)
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Note that no particular symmetry is now assumed for the gravita-

tional potential �(x, y, z). The only necessary assumptions are the

weakness of the gravitational field (condition i) and the slowness of

the probe particles (condition ii).

In view of the formalism presented herein, one now only needs

to realize that the gravitational potential inferred from dynamical

observations is generally not the Newtonian potential

�RC(x, y, z) = �(x, y, z) 	= �N(x, y, z), (56)

and that the valid field equation is (cf. equation 7):

∇2�(x, y, z) ≈ 4π

[
ρ(x, y, z) +

∑3

i=1
pi (x, y, z)

]
. (57)

7.2 Gravitational lensing

The notion of a simple effective refractive index can easily be ex-

tended to the class of conformally static space–times which are also

conformally Euclidean (Perlick 2004). The metric of this class has

no particular spatial symmetry and takes the form:

ds2 = e2�(x,y,z) [−dt2 + n(x, y, z)2(dx2 + dy2 + dz2)]. (58)

To account for the weakness of the gravitational field (condition i),

we assume

�(x, y, z) � 1 (59)

and

n(x, y, z) = 1 + h(x, y, z) with h(x, y, z) � 1. (60)

The first Einstein field equation2 is then

4πρ(x, y, z) = −∇2�(x, y, z) − ∇2h(x, y, z)

+O[�2, h�, h2]. (61)

Inverting this equation yields the effective refractive index

n(x, y, z) = 1 − �(x, y, z) − 4π (∇2)−1ρ(x, y, z)

+O[�2, h�, h2], (62)

where the constants of integration have been chosen to agree with

the special case of spherical symmetry (23), and (∇2)−1 is the in-

verse Laplacian operator. The general non-spherical lensing poten-

tial analogous to (24) can be defined as

2 �lens(x, y, z) = �(x, y, z) + 4π (∇2)−1ρ(x, y, z), (63)

so that the non-spherical refractive index is of the same form as (25):

n(x, y, z) = 1 − 2 �lens(x, y, z) + O
[
�2

lens

]
. (64)

The corresponding field equation for the lensing potential is

∇2�lens(x, y, z) = 1

2
∇2�(x, y, z) + 2π ρ(x, y, z) (65)

= 4π

[
ρ(x, y, z) + 1

2

∑3

i=1
pi (x, y, z)

]
. (66)

2 The first Einstein field equation is that which is associated with the tt-
component of the Einstein tensor.

7.3 Non-spherical formalism

Combining the non-spherical field equations (57) and (66) yields

the density and pressure distributions in absence of any particular

spatial symmetry:

4π ρ ≈ 2 ∇2�lens(x, y, z) − ∇2�RC(x, y, z), (67)

4π
∑3

i=1
pi ≈ 2

[∇2�RC(x, y, z) − ∇2�lens(x, y, z)
]
. (68)

Thus the two observable potentials �RC(x, y, z) and �lens(x, y, z)

determine the density and pressure distributions of a non-spherical

galaxy to the lowest order in the weak gravitational field represented

by the functions �(x, y, z) and h(x, y, z). This is the straightforward

extension of the spherically symmetric formalism presented in this

paper.

8 O B S E RVAT I O NA L S I T UAT I O N

The post-Newtonian formalism we have outlined requires the si-

multaneous measurement of (pseudo-)density profiles from rotation

curve and gravitational lensing observations.

While in principle these profiles do not have to be of the same

galaxy, they must be comparable in the sense that they accurately de-

scribe ‘similar’ galaxies. For example, weak lensing measurements

can be used to statistically infer the (pseudo)-density profile of an

‘average’ galaxy (Brainerd 2004). At the same time, analysing the

dynamics of satellite galaxies gives the rotation curve and thus, the

corresponding pseudo-density profile, of another ‘average’ galaxy

(Brainerd 2004). Whether these two ‘average’ galaxies are com-

parable or not depends on many factors, such as, for example, the

distribution of galaxy morphologies in both samples, the statistical

noise, the employed models for the (pseudo)-density distribution,

etc. These statistical issues render the fast-growing collection of

weak lensing data problematic for our purposes.

On the other hand, combined simultaneous measurements of ro-

tation curves and lensing of individual galaxies are extremely well

suited for our formalism. However, while there is a large number

of individual rotation curves available (>100 000; Sofue & Rubin

2001), the number of individual ‘strong’ lensing systems with multi-

ple images is rather limited3 (∼70; Kochanek et al. 2005). Combined

observations are further aggravated by the differing distance scales:

most high quality rotation curves are naturally available for galaxies

with a low to intermediate redshift of up to z ∼ 0.4 (Sofue & Rubin

2001), while gravitational lenses are easier to detect at intermediate

to high redshifts (z � 0.4; Kochanek et al. 2005), since the image

separation scales increasingly with the redshift of the lensing galaxy

(Schneider 1985; Kochanek & Schechter 2004). Therefore, even for

nearby galaxies with existing combined measurements of kinemat-

ics and lensing (e.g. 2237+0.305 at z ≈ 0.039 and ESO 325−G004

at z ≈ 0.035), the lensing data are restricted to the core region, while

the rotation curve is only described by few data points in the outer

region of the lens galaxy (Barnes et al. 1999; Trott & Webster 2002;

Smith et al. 2005). Consequently, the inferred pseudo-mass profiles

are available for the same galaxy, but unfortunately at different radii

and therefore not comparable.

Although the observational situation makes it currently difficult

to employ the formalism presented, the situation is likely to improve

in the future when observations with a higher resolution will be car-

ried out – preferably with an emphasis on obtaining high-resolution

3 For an up to date list see http://www.cfa.harvard.edu/glensdata/.
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rotation curves for lensing galaxies that exhibit lensed images at

different radii.

9 C O N C L U S I O N S

We have argued that the standard formalism of rotation curve mea-

surements and gravitational lensing make an a priori Newtonian

assumption that is based on the CDM paradigm. We introduce a

post-Newtonian formalism that does not rely on such an assump-

tion, and furthermore allows one to deduce the density and pres-

sure profiles in a general relativistic framework. In this framework,

rotation curve measurements provide a pseudo-mass profile mRC(r)

and gravitational lensing observations yield a different pseudo-mass

profile mlens(r). Combining both pseudo-masses allows one to draw

conclusions about the density and pressure profiles4 in the lensing

galaxy,

ρ(r ) = 1

4π r 2
[2 m ′

lens(r ) − m ′
RC(r )], (69)

pr(r ) + 2pt(r ) ≈ 2 c2

4π r 2
[m ′

RC(r ) − m ′
lens(r )]. (70)

In the case of absent or negligible pressure, this could be used to ob-

servationally confirm the CDM paradigm of a pressureless galactic

fluid. Conversely, if significant pressure is detected, a decomposi-

tion of the galaxy morphology would allow new insight into the

equation of state of dark matter.

For instance, detailed observation of the recently discovered clos-

est known strong lensing galaxy ESO 325−G004 (Smith et al. 2005)

could provide satisfactory data to allow the decomposition of den-

sity and pressure of the galactic fluid, as outlined in this article. The

system consists of an isolated lensing galaxy at redshift z ≈ 0.035

with an effective radius of Reff = 12.5 arcsec and arc-shaped images

of the background object at R ≈ 3 arcsec, and possible arc candi-

dates at R ≈ 9 arcsec. Smith et al. (2005) intend to collect more

detailed data that hopefully will include extended stellar dynam-

ics and hence, allow for a direct comparison of the rotation curve

and lensing data, if the arc candidates at R ≈ 9 arcsec turn out to

contribute to the measurements.

Since the formalism presented is based on a first-order weak field

approximation, we suggest that to confirm the findings, one should

re-insert the obtained density and pressure profiles into the metric

(1). The actual observed quantities can then be extracted numeri-

cally for comparison from the exact field equations (3)–(5) and the

geodesic equations.

Finally, even though data might not yet be available to constrain

the dark matter equation of state notiably, one should note that the

possibility of non-negligible pressure in the galactic fluid introduces

a new free parameter into the analysis of combined rotation curve

and lensing observations.

4 These formulae are given in SI units, hence the factor of c2.

AC K N OW L E D G M E N T S

We thank Silke Weinfurtner for some helpful suggestions and com-

ments. This research was supported by the Marsden Fund adminis-

tered by the Royal Society of New Zealand (MV), the J. L. Stewart

Scholarship and a Victoria University of Wellington Postgraduate

Scholarship for Master’s Study (TF).

R E F E R E N C E S

Arbey A., Lesgourgues J., Salati P., 2003, Phys. Rev. D, 68, 023511

Barnes D. G., Webster R. L., Schmidt R. W., Hughes A., 1999, MNRAS,

309, 641

Bharadwaj S., Kar S., 2003, Phys. Rev. D, 68, 023516

Blandford R., Narayan R., 1986, AJ, 310, 568

Boonserm P., Cattoen C., Faber T., Visser M., Weinfurtner S., 2005, Class.

Quantum Gravity, 22, 1905

Borriello A., Salucci P., 2001, MNRAS, 323, 285

Brainerd T. G., 2004, in Allen R. E., Nanopoulos D. V., Pope C. N., eds, AIP

Conf. Proc. Vol. 743, The New Cosmology. Am. Inst. Phys., New York,

p. 129

Faber T., 2006, MSc thesis, Victoria Univ. of Wellington (gr-qc/0607029)

Kline M., Kay I. W., 1965, Pure and Applied Mathematics Vol. XII, Electro-

magnetic Theory and Geometrical Optics. Interscience Publishers, New

York

Kochanek C. S., Schechter P. L., 2004, in Freedman W. L., ed., Measur-

ing and Modelling the Universe. Cambridge Univ. Press, Cambridge,

p. 117

Kochanek C. S., Falco E. E., Impey C., Lehar J., McLeod B.,

Rix H.-W., 2005, CASTLE Survey Gravitational Lens Data Base,

http://www.cfa.harvard.edu/glensdata/

Lake K., 2004, Phys. Rev. Lett., 92, 051101, (gr-qc/0302067)
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