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Abstract. We describe the different possibilities that a simple and apparently quite harmless
classical scalar field theory provides to violate the energy conditions. We demonstrate that a non-
minimally coupled scalar field with a positive curvature coupling ξ > 0 can easily violate all the
standard energy conditions, up to and including the averaged null energy condition (ANEC). Indeed,
this violation of the ANEC suggests the possible existence of traversable wormholes supported by
non-minimally coupled scalars. To investigate this possibility we derive the classical solutions
for gravity plus a general (arbitrary ξ ) massless non-minimally coupled scalar field, restricting
attention to the static and spherically symmetric configurations. Among these classical solutions
we find an entire branch of traversable wormholes for every ξ > 0. (This includes and generalizes
the case of conformal coupling ξ = 1

6 we considered in 1999 Phys. Lett. B 466 127–34.) For these
traversable wormholes to exist we demonstrate that the scalar field must reach trans-Planckian
values somewhere in the geometry. We discuss how this can be accommodated within the current
state of the art regarding scalar fields in modern theoretical physics. We emphasize that these scalar
field theories, and the traversable wormhole solutions we derive, are compatible with all known
experimental constraints from both particle physics and gravity.

PACS numbers: 0460D, 0462, 9880H

1. Introduction

It is often (mistakenly) believed that every kind of matter, on scales for which we do not
need to consider its quantum features, has an energy density that is everywhere positive. (In
fact, we could think of this property as defining what we understand by classical matter.)
This is more precisely stated by saying that every type of classical matter satisfies the energy
conditions of general relativity [1]. There are several (pointwise) energy conditions requiring
that various linear combinations of the components of the energy–momentum tensor of matter
have positive values. (Or at the very least, non-negative values.) Among them, we will be
particularly interested in the null energy condition (NEC) because it is the weakest one: if the
NEC is violated all pointwise energy conditions would be violated [2].

Now, if we assume that the energy conditions are satisfied by every kind of classical
matter, general relativity leads to many powerful classical theorems. The singularity theorems
[1], the positive mass theorem [3], the superluminal censorship theorem [4–6], the topological
censorship theorem [7], certain types of no-hair theorem [8] and various constraints on black
hole surface gravity [9], all make use of some type of energy condition. As an illustration of
the importance of these results, the conclusion regarding the inevitability of the appearance of
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singularities [1], has been (for the last 30 years) one of the central pillars from which many
investigations in general relativity start. (Additional powerful technical assumptions are also
needed for the singularity theorems to apply; see [10] for a critical review.) In this regard, the
alleged impossibility of the existence of traversable wormholes connecting different spatial
regions of the universe [7, 11], a topic in which we will be particularly interested in this paper,
could be seen as a complementary way of phrasing that conclusion (of course, one should not
carry this parallelism too far).

Assuming the positivity of the energy density implies that spacetime geometries containing
traversable wormholes† are ruled out of the classical realm. Specifically, the topological
censorship theorem [7] states that if the averaged null energy (ANEC; the NEC averaged
over a complete null geodesic) is satisfied, then there cannot be any topological obstruction
(e.g. a wormhole) inside any asymptotically flat spacetime. In agreement with this result, a
purely local analysis by David Hochberg and one of the present authors [12] shows that the
violation of NEC on or near the throat of a traversable wormhole is a generic property of
these objects. For this reason most of the investigations regarding traversable wormholes tend
to view these objects as semiclassical in nature, using the expectation value of the quantum
operator associated with the energy–momentum tensor as the source of gravity [13].

However, it is easy to demonstrate that an extremely simple and apparently quite innocuous
classical field theory, a scalar field non-minimally coupled to gravity (that is, with a non-
vanishing coupling to the scalar curvature), can violate the NEC and even the ANEC [14–16].
As we will see, some of the other energy conditions can be violated even by minimally coupled
scalar fields. There exist other classical systems that exhibit NEC violations, such as Brans–
Dicke theory [17–20], higher-derivative gravity [21] or Gauss–Bonnet theory [22], but they
are all based on modifications of general relativity at high energies. It is the simplicity of the
scalar field theory that particularly attracted our attention.

In a previous paper [15] we analysed a massless scalar field conformally coupled to gravity
(that is, we used the special value ξ = 1

6 ) and found that among the classical solutions for the
system there exists an entire branch of traversable wormholes. The case of conformal coupling
has many interesting features and, in fact, it seems the most natural behaviour for a scalar field
at low energies [15, 16]. However, in this paper we want to point out that assuming conformal
coupling is not the critical issue, and that it is only the fact of non-minimality (more precisely,
positive curvature coupling ξ > 0) that is important for traversable wormhole solutions to
exist. We have found general expressions for the classical solutions of gravity plus a massless
non-minimally coupled scalar field. In particular, we have found a sub-class of traversable
wormhole solutions for the entire range ξ > 0. In our solutions, apart from the geometry, there
is also a scalar field that modifies the effective Newton constant. We will not address here the
possible effects of this scalar field on the journey of any hypothetical traveller trying to cross
the wormhole throat.

In the next section we will review the possibilities that scalar fields offer to violate the
different energy conditions. (That scalar fields might potentially cause problems in this regard
was first noted at least 25 years ago [23], and is an issue that has periodically come in and out of
focus since then [16].) Then we will obtain and describe the classical solutions for gravity plus
a non-minimally coupled massless scalar field, restricting to static and spherically symmetric
configurations. Among these solutions there are an assortment of naked singularities but we

† The term ‘traversable wormhole’ was adopted by Morris and Thorne [11] to describe a class of Lorentzian geometries
connecting two asymptotically flat regions of spacetime, in a manner suitable for a signal or particle to pass through
in both directions. By the definition of traversability it should be possible to travel from one asymptotic region to the
other without encountering either horizons or naked singularities. In this paper we use this term exclusively from this
geometrical point of view.
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also find an entire branch of traversable wormhole solutions for curvature coupling ξ > 0. We
will leave it to section 4 to analyse these traversable wormhole geometries in detail. Finally, in
section 5 we will discuss the key features of these solutions and the plausibility with which they
might actually be produced in nature, based on the role of scalar fields in modern theoretical
physics and the totality of the experimental constraints arising from both particle physics and
gravity physics.

2. Scalar fields and energy conditions

When a classical scalar field acts as a source of gravity, many of the energy conditions can be
violated depending on the form of the scalar potential and the value of the curvature coupling.

2.1. Effective stress–energy tensor

The Einstein equations κGµν = Tµν relate the geometry-dependent Einstein tensor Gµν to the
energy–momentum tensor for the matter field Tµν . The symbol κ represents essentially the
inverse of Newton’s constant, κ = 1/(8πGN). These equations can be obtained by varying
the Einstein–Hilbert action which, for a generically coupled scalar field, reads

S = 1

2

∫
d4x

√−gκR +
∫

d4x
√−g

(
−1

2
gµν∂µφξ∂νφξ − V (φξ )− 1

2
ξRφ2

ξ

)
. (2.1)

Then, the scalar field energy–momentum tensor has the form [14]

[T (φξ )]µν = ∇µφξ∇νφξ − 1
2gµν(∇φξ )2 − gµνV (φξ )

+ξ
[
Gµνφ

2
ξ − 2∇µ(φξ∇νφξ ) + 2gµν∇λ(φξ∇λφξ )

]
. (2.2)

This energy–momentum tensor has a term that depends algebraically on the Einstein tensor.
By grouping all the dependence on Gµν on the left-hand side of the Einstein equations we can
rewrite them, alternatively, by using an effective energy–momentum tensor

[T eff(φξ )]µν = κ

κ − ξφ2
ξ

[∇µφξ∇νφξ − 1
2gµν(∇φξ )2 − gµνV (φξ )

−ξ [2∇µ(φξ∇νφξ )− 2gµν∇λ(φξ∇λφξ )
] ]
. (2.3)

This is the relevant expression for the analysis of the different energy conditions: since the
Einstein equations now read κGµν = [T eff(φξ )]µν , a constraint on this effective stress–energy
tensor is translated directly into a constraint on the spacetime curvature, and it is ultimately
constraints on the spacetime curvature that lead to singularity theorems and the like.

2.2. Pointwise energy conditions

Now let vµ be a properly normalized timelike vector, (v2 = −1), and, for convenience, let it
be locally extended to a geodesic vector field, so that vµ∇µv

ν = 0. If xµ(τ) denotes a timelike
geodesic with tangent vector vµ = dxµ/dτ we have vµ∇µφ = dφ/dτ ≡ φ′. We can now
express the strong energy condition (SEC) as

Rµνv
µvν = 1

κ

(
[T eff(φξ )]µν − 1

2gµν[T eff(φξ )]
)
vµvν

= 1

κ − ξφ2
ξ

[
(φ′

ξ )
2 − V (φξ )− ξ [(φ2

ξ )
′′ − ∇µ(φξ∇µφξ )]

]
� 0, (2.4)
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where Rµν is the Ricci tensor of the geometry. It is easy to see that even in the minimally
coupled case the SEC can be violated for positive values of the scalar potential such as a mass
term or a positive cosmological constant. Every cosmological inflationary process violates the
SEC [16, 24]. We could say that violation of the SEC is a generic property of scalar fields. In
fact, it is so easy to violate SEC in many situations that it has almost become abandoned [16]
as a reasonable restriction on the properties of matter.

With the same definitions, the weak energy condition (WEC) reads

Gµνv
µvν = 1

κ
[T eff(φξ )]µνv

µvν = 1

κ − ξφ2
ξ

× [
(1 − 2ξ)(φ′

ξ )
2 + 1

2 (∇φξ )2 + V (φξ )− ξ [(φ2
ξ )

′′ + 2∇µ(φξ∇µφξ )]
]

� 0.

(2.5)

In the minimally coupled case (ξ = 0) it is generically satisfied. Only a large negative potential,
for example, a negative cosmological constant, could provide a violation of the WEC. Although
recent observations suggest a probable positive value for the effective cosmological constant,
a possible negative value cannot be ruled out on theoretical grounds. In the non-minimal case
there are various terms that can be negative depending on the situation, so the WEC can be
violated in various ways.

Finally, let us now analyse the NEC. It is the weakest pointwise energy condition, that is,
when it is violated the WEC and SEC are violated too. Let kµ be a null vector tangent to the
null geodesic xµ(λ), with λ some affine parameter. In an analogous way as with the previous
energy conditions, we arrive at the following expression for the NEC:

Gµνk
µkν = 1

κ
[T eff(φξ )]µνk

µkν = 1

κ − ξφ2
ξ

[
φ′2
ξ − ξ(φ2

ξ )
′′] � 0. (2.6)

This condition is clearly satisfied by minimally coupled scalars. However, for ξ 	= 0 it can be
violated in a number of ways: for ξ < 0 any local minimum of φ2

ξ violates the NEC, while
for ξ > 0 and |φξ | small (meaning |φξ | < (κ/ξ)1/2), any local maximum of φ2

ξ violates the
NEC. Finally, for ξ > 0 and |φξ | large (meaning |φξ | > (κ/ξ)1/2, roughly corresponding to
super-Planckian values for the scalar field), any local minimum of φ2

ξ violates the NEC.
At this point it is worth noting that, because our analysis is completely classical, it is a priori

conceivable that averaged versions of the energy conditions (averaged over a geodesic) could in
principle be as easily violated as their pointwise counterparts. In particular, ANEC violations,
critical for traversable wormhole configurations to be able to exist, could in principle be as
easy to find as NEC violations, and it is to exploring this possibility that we now turn.

2.3. Averaged energy conditions—ANEC

Suppose we take a segment of a null geodesic and consider the ANEC integral

I(λ1, λ2) =
∫ λ2

λ1

[T eff(φξ )]µνk
µkν dλ. (2.7)

Then

I(λ1, λ2) =
∫ λ2

λ1

κ

κ − ξφ2
ξ

{(
dφξ
dλ

)2

− 2ξ
d

dλ

(
φξ

dφξ
dλ

)}
dλ. (2.8)
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Integrate by parts

I(λ1, λ2) =
∫ λ2

λ1

κ

κ − ξφ2
ξ

{(
dφξ
dλ

)2

+
4ξ 2φ2

ξ (dφξ/dλ)2

κ − ξφ2
ξ

}
dλ−

{
2ξκ

κ − ξφ2
ξ

(
φξ

dφξ
dλ

)}∣∣∣∣∣
λ2

λ1

.

(2.9)

Now assemble the pieces:

I(λ1, λ2) =
∫ λ2

λ1

κ[κ − ξ(1 − 4ξ)φ2
ξ ]

(κ − ξφ2
ξ )

2

(
dφξ
dλ

)2

dλ−
{

2ξκ

κ − ξφ2
ξ

(
φξ

dφξ
dλ

)}∣∣∣∣∣
λ2

λ1

. (2.10)

Discarding the boundary terms is an issue fraught with subtlety. We start by considering a
complete null geodesic and assuming sufficiently smooth asymptotic behaviour. Then the
boundary terms from asymptotic infinity can be neglected, and the only potential problems
with the boundary terms come from the places λi where κ = ξφξ (λi)

2. We obtain

I(−∞,+∞) =
∮

κ[κ − ξ(1 − 4ξ)φ2
ξ ]

(κ − ξφ2
ξ )

2

(
dφξ
dλ

)2

dλ +
∑
i

{
2ξκ

κ − ξφ2
ξ

(
φξ

dφξ
dλ

)}∣∣∣∣∣
λ−
i

λ+
i

.

(2.11)

(a) If ξ < 0 then there are no places on the geodesic where κ = ξ [φξ (λ)]2, so the boundary
terms represent an empty set. However, if ξ < 0 the integrand in the above formula is
itself guaranteed to be positive so the ANEC is satisfied.

(b) If ξ > 0, but we have (φξ )2 < κ/ξ , then again there are no places on the geodesic where
κ = ξ [φξ (λ)]2. Furthermore, the integrand appearing above is again positive and the
ANEC is satisfied.

(c) Finally, if ξ > 0, and we have at least some places where (φξ )
2 > κ/ξ , then there

are by definition places on the geodesic where κ = ξ [φξ (λ)]2. The boundary terms
can no longer be neglected and potentially can contribute—typically making negative
and infinite contributions to the ANEC integral. Furthermore, the integrand appearing
above is no longer guaranteed to be positive. (If ξ ∈ (0, 1

4 ) then it is possible to have
(φξ )

2 > κ/[ξ(1 − 4ξ)] and so make the integrand negative.) In short, there is definitely
the possibility of ANEC violations under these conditions, and in the exact solutions we
investigate below we shall see that for some of these exact solutions the ANEC is certainly
violated.

Thus we have seen that a rather simple and apparently quite harmless scalar field theory can
in many cases violate all the energy conditions. Violating all the pointwise energy conditions
is particularly simple, and violating the averaged energy conditions, though more difficult,
is still generically possible. In the next section we shall exhibit some specific examples of
this phenomenon in the form of exact solutions to the coupled Einstein–scalar-field equations.
In the final section we will discuss the extent to which these exact solutions are realistic:
we shall discuss the generic role played by scalar fields in modern theoretical physics, and
the experimental/observational limits on their existence and behaviour in order to address the
physical plausibility of these energy condition violations.

3. Non-minimal classical solutions

As we have just seen, a non-minimally coupled scalar field can violate, in some circumstances,
the NEC and even the ANEC. This opens up the possibility of finding some traversable
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wormholes among the many geometries that can be supported by a classical non-minimally
coupled scalar field. That this is, in fact, the case for a massless conformally coupled scalar
field was shown in [15]. In the present paper, we will see that even for nonconformal coupling
(curvature coupling different from 1

6 ), but positive, we can also find traversable wormholes.
In this section we will obtain the classical solutions for gravity plus a generic non-minimally
coupled scalar field. For simplicity, we will restrict to the spherically symmetric and static
configuration and will take the scalar potential V (φ) as equal to zero. (To add a particle mass
to the scalar field complicates the equations sufficiently to preclude the possibility of analytic
results.)

3.1. Some ‘trivial’ solutions

The first thing that we realize is that for any spatially constant value of the scalar field, φξ = C,
the Einstein equations reduce to κGµν = ξGµνC

2. By looking also at the scalar field equation
(∇2φξ = ξRφξ ) ⇒ ξRφξ = 0, whereR is the Ricci scalar curvature, we can straightforwardly
find a variety of trivial solutions for this system. For (a) ξ > 0 and C 	= ±√

κ/ξ , or (b)
ξ < 0 and any value of C, we find that the ordinary vacuum Einstein solutions also solve
the coupled Einstein-scalar equations. As here we are restricted to spherically symmetric
and static configurations without a cosmological constant, the solutions that show up are the
Schwarzschild and anti-Schwarzschild geometries (M < 0 represents a perfectly good solution
to the Einstein field equations, normally the negative mass Schwarzschild geometry is excluded
by hand, here it is best to keep it for the time being as an aid in classifying the total solution
space).

More surprising is that for ξ > 0 and C = ±√
κ/ξ every Ricci-scalar-flat geometry is a

solution. (That is, any geometry satisfying the condition R = 0 is a solution of the coupled
Einstein-scalar equations.) The condition R = 0 is characteristic of geometries supported by
conformally invariant matter. In particular, the geometries that appear in the solutions for the
ξ = 1

6 case all satisfy R = 0. These geometries were found in Froyland [25] and also in [15],
and will be re-obtained later on this paper as particular cases. Here we want to point out that
these geometries are not only associated with the conformal coupling but they appear quite
generally, for arbitrary ξ > 0, provided only φξ = C ≡ ±√

κ/ξ .

3.2. Solution-generating technique

To obtain additional (non-trivial) solutions for a scalar field non-minimally coupled to gravity
we will use a ‘solution-generating technique’ that relies on knowledge of the solutions for the
minimally coupled case [26, 27]. The classical solutions for a massless scalar field minimally
coupled to gravity are very well known. They have been discovered and rediscovered several
times in different coordinate systems (see the papers by Fisher [28], Janis et al [29], Wyman
[30], and Cavaglia and De Alfaro [31]). They can be expressed [32] as

ds2
m = −

(
1 − 2η

r

)cosχ

dt2 +

(
1 − 2η

r

)− cosχ

dr2 +

(
1 − 2η

r

)1−cosχ

r2(dθ2 + sin2 θ d#2),

(3.1)

φm =
√
κ

2
sin χ ln

(
1 − 2η

r

)
. (3.2)

The same geometry, which has an obvious symmetry under χ → −χ , can exist with a field
configuration φm or the reversed sign configuration −φm. Less obvious is that by making
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a coordinate transformation r → r̃ = r − 2η, one uncovers an additional symmetry under
{η, χ} → {−η, χ + π}, (with φm → +φm). The key to this symmetry is to realize that(

1 − 2η

r

)
=
(

1 +
2η

r̃

)−1

. (3.3)

In view of these symmetries one can without loss of generality take η � 0 and χ ∈ [0, π ]
remembering the overall two possible signs for the scalar field. Similar symmetries will be
encountered for non-minimally coupled scalars.

The Lagrangian for which these ‘minimal’ solutions are extrema is

Sm = 1
2

∫
d4x

√−gmκRm +
∫

d4x
√−gm

(− 1
2g

µν
m ∂µφm∂νφm

)
. (3.4)

This Lagrangian and the Lagrangian for a non-minimally coupled massless scalar field,

Sξ = 1
2

∫
d4x

√−gξκRξ +
∫

d4x
√−gξ

(− 1
2g

µν
ξ ∂µφξ∂νφξ − 1

2ξRξφ
2
ξ

)
, (3.5)

can be related by a conformal transformation of the metric gξµν = %2gmµν and a redefinition of

the scalar field φξ = φξ (φm) [26]. Rescaling the field # = φ/
√

6κ we can write the specific
transformation as

%2 = 1

(1 − 6ξ#2
ξ )
,

d#m

d#ξ

= ±
√

1 − 6ξ(1 − 6ξ)#2
ξ

(1 − 6ξ#2
ξ )

. (3.6)

Note that for 0 < ξ < 1
6 the absolute value of the non-minimally coupled scalar field cannot

surpass 1/
√

6ξ(1 − 6ξ) if we want expression (3.6) to make sense. For every solution of
equation (3.6) we have a two-parameter family, {η, χ}, of solutions for the non-minimally
coupled system. For ξ = 0, the expressions in (3.6) become the identity transformation, as
they must. For ξ = 1

6 we easily find the following solutions:

%2 = cosh2(#m −#0
+), #ξ= 1

6
= ± tanh(#m −#0

+), (3.7)

%2 = − sinh2(#m −#0
−), #ξ= 1

6
= ± coth(#m −#0

−), (3.8)

with#0
+ and#0

− two arbitrary real constants. The second set of solutions is unphysical because
it gives a negative sign for the metric signature (opposite to the one we are using). However,
one can easily demonstrate [26] that the Einstein tensorGµν and the energy–momentum tensor
(2.2) for a massless scalar field are both invariant if we change gµν to −gµν leaving the field
unchanged. Therefore, from the unphysical solutions (3.8) we obtain physical solutions of the
form

%2 = sinh2(#m −#0
−), #ξ= 1

6
= ± coth(#m −#0

−). (3.9)

We can also find additional solutions by considering the limiting cases when the constants #0
+

or #0
− tend to (±) infinity. In this way we find the solutions:

%2 = exp(2#m), #ξ= 1
6

= ±1, (3.10)

%2 = exp(−2#m), #ξ= 1
6

= ±1. (3.11)

All of these metrics g
(ξ= 1

6 )
µν = %2gmµν , described in (3.7), (3.9), (3.10) and (3.11), have a zero

scalar curvature, R = 0, owing to the conformal coupling features [15]. Therefore, any of
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these geometries, supplemented with the specific value #ξ = ±1/
√

6ξ for the non-minimally
coupled scalar field (with ξ > 0) are examples of the ‘trivial’ solutions for the non-minimally
coupled system of which we have spoken at the beginning of this section†, and these ‘trivial’
solutions no longer seem to be all that trivial. These solutions cannot be obtained by means
of the conformal transformation procedure described above because the conformal factor has
a singular behaviour for those scalar field values.

The spacetime geometries of all these solutions were analysed in a previous paper [15]
although with a slightly different parametrization. Here, we will describe them as limiting
cases of the solutions that we will find for the interval 0 < ξ < 1

6 . However, we want to
mention that among these conformal solutions we found traversable wormholes and that in the
present parametrization they correspond to (3.7) with #0

+ > 0, (3.9) with #0
− > 0, and (3.11);

all using a value for χ in (3.2) equal to π/3.
Let us now solve the general equation (3.6) for an arbitrary ξ . We first rewrite this equation

as a sum of two terms

d#m

d#ξ

= ±

 6ξ

(1 − 6ξ#2
ξ )

√
1 − 6ξ(1 − 6ξ)#2

ξ

+
(1 − 6ξ)√

1 − 6ξ(1 − 6ξ)#2
ξ


. (3.12)

For convenience, we will express the solutions of this equation in terms of two functionsF(#ξ )

and H(#ξ) as

#m(#ξ) = ± ln[F(#ξ )H(#ξ )]. (3.13)

The function F will be related to the first term in (3.12) and the function H with the second
term.

3.3. F(#)

The first term in (3.12) can easily be integrated by changing to a new variable

v ≡ 6ξ#ξ√
1 − 6ξ(1 − 6ξ)#2

ξ

. (3.14)

Using this new variable we only have to solve an integral of the form∫
dv

1 − v2
, (3.15)

that we express in terms of logarithms. In this way (once we invert the change of variables), we
arrive at a closed form for the function F in (3.13), for arbitrary ξ . Indeed, the above integral
gives rise to two possible functions F , F+ and F−, of the form

F±(#ξ ) = #±

√√√√√√±
√

1 − 6ξ(1 − 6ξ)#2
ξ + 6ξ#ξ√

1 − 6ξ(1 − 6ξ)#2
ξ − 6ξ#ξ

(3.16)

for ξ > 0, and only one, the positive sign F+, for ξ � 0.
This restriction on signs is due to the fact that for ξ > 0 the absolute value of the variable

v can be greater or lower than unity and these two domains have to be analysed separately. In

† Note that, for the conformal case, the solutions obtained by means of the limiting procedure, (3.10) and (3.11), are
already in this latter class.
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terms of the scalar field, these two domains are separated by the critical value |#| = 1/
√

6ξ .
At best, the function F+ is only defined for |#| � 1/

√
6ξ , whilst F− is at best defined for the

region |#| � 1/
√

6ξ . Indeed, in the case 0 < ξ < 1
6 , the function F− is only defined up to

|#| � 1/
√

6ξ(1 − 6ξ).
An observation is in order at this point. In the second domain of values for the scalar

field the conformal factor %2 = 1/(1 − 6ξ#2
ξ ) is negative and so the geometry obtained is

‘unphysical’ in the sense that the metric has a reversed signature. As explained before for the
conformal case, from this unphysical solution we can obtain a physical solution by changing
the sign of the conformal factor to %2 = 1/(6ξ#2

ξ − 1) [26]. Another observation concerning
the functions F± is that we have already embedded into them the corresponding integration
constants for each solution. The #± in (3.16) are these integration constants. Owing to the
logarithmic form in which we have cast the solution these constants are both positive. In
summary,

(a) ξ < 0:
F+(#) is real and well defined for all values of #;
F−(#) is undefined (complex), and not needed.

(b) ξ = 0:
F+(#) = #+;
F−(#) is undefined (complex), and not needed.

(c) 0 < ξ < 1
6 :

F+(#) is real and well defined for |#| < 1/
√

6ξ < 1/
√

6ξ(1 − 6ξ);
and is undefined outside this range.
F−(#) is real and well defined for 1/

√
6ξ < |#| < 1/

√
6ξ(1 − 6ξ);

and is undefined outside this range.
(d) ξ = 1

6 :
For conformal coupling there is tremendous simplification

F±(#) = #±

√
± 1 + #

1 −#
.

F+(#) is well defined for |#| < 1, whereas F−(#) is well defined for |#| > 1.
(e) ξ > 1

6 :
F+(#) is real and well defined for |#| < 1/

√
6ξ ;

and is undefined outside this range.
F−(#) is real and well defined for |#| > 1/

√
6ξ ;

and is undefined outside this range.

3.4. H(#)

The second term in (3.12) can be integrated directly yielding different rather complex algebraic
expressions for the function H(#ξ) depending on the value of ξ :

(a) ξ < 0:

H(#ξ) =
(√

6ξ(6ξ − 1)#ξ +
√

1 − 6ξ(1 − 6ξ)#2
ξ

)√
(6ξ−1)/6ξ

. (3.17)

(b) ξ = 0:

H(#ξ) = exp(#ξ ). (3.18)
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(c) 0 < ξ < 1
6 :

H(#ξ) = exp

(√
1 − 6ξ

6ξ
sin−1

(√
6ξ(1 − 6ξ)#ξ

))
. (3.19)

(d) ξ = 1
6 :

H(#ξ) = 1. (3.20)

(e) ξ > 1
6 :

H(#ξ) =
(√

6ξ(6ξ − 1)#ξ +
√

1 − 6ξ(1 − 6ξ)#2
ξ

)−√
(6ξ−1)/6ξ

. (3.21)

Here, we have not introduced any arbitrary integration constants because, as we mentioned
before, we have already included these constants in the F± functions.

3.5. The general solution

At this point we already have (implicitly) all the different classical solutions for gravity plus
a massless non-minimal scalar field. On one hand, if we substitute the different F(#ξ ) and
H(#ξ) in the left-hand side of (3.13), and the minimally coupled scalar field (3.2) in the
right-hand side, we have an implicit expression for the non-minimally coupled scalar field as
a function of the radial coordinate(

1 − 2η

r

)sin χ/2
√

3

= [F(#ξ )H(#ξ )]
±1. (3.22)

These relations cannot be analytically inverted, in general. Also, depending on whether the
function F is F+ or F− we have geometries gξµν = %2gmµν with different conformal factors:

F+ → %2 = 1

1 − 6ξ#2
ξ

; F− → %2 = 1

6ξ#2
ξ − 1

. (3.23)

Our next step is to analyse the different solutions found. Let us begin with some general
comments. For convenience, henceforth we will work in isotropic coordinates,

r = r̄
(

1 +
η

2r̄

)2
. (3.24)

In these coordinates the previous implicit expression for the scalar field (3.22) becomes

[
1 − η/2r̄

1 + η/2r̄

]sin χ/
√

3

= [F(#ξ )H(#ξ )]
±1. (3.25)

As in the minimally coupled case, the non-minimal solutions possess a symmetry under (η, χ)
going to (−η, χ + π). Also, they exhibit a symmetry under the change of χ to −χ and a
simultaneous flip in the sign of the exponent on the right-hand side of (3.25). Therefore, we
will without loss of generality restrict the analysis to η � 0, χ ∈ [0, π ] and the positive
exponent, remembering that for every solution there is a second solution that is geometrically
identical but with a reversed sign for the scalar field.
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Figure 1. F+H , ξ = −0.2, χ = π/6. There are no traversable wormholes for ξ < 0, and the
solutions generically contain naked singularities.

After a little algebra we can express the Schwarzschild radial coordinate R for the different
geometries as a function of #ξ and, therefore, implicitly as a function of the isotropic radial
coordinate r̄ ,

R±(#ξ ) = 2η
(F±H)

√
3(1−cosχ)/ sin χ[

1 − (F±H)2
√

3/ sin χ
]√±(1 − 6ξ#2

ξ )
. (3.26)

In the following discussion it is useful to know that, in the case ξ > 0, if we make a perturbative
expansion of the functions F±H around #ξ = −1/

√
6ξ (that is, we take

#ξ = −1√
6ξ

± ε, (3.27)

with ε and small positive quantity) then the functions F±H → 0 as
√
ε. In the same way, the

conformal factor % → ∞ as 1/
√
ε.

3.6. Solutions with ξ < 0

In this case, the function F+H is everywhere positive (see figure 1). For a certain (finite)
value of the scalar field (depending on #+ and ξ ), F+H → 1. We can easily verify that both
r̄ and R+ go to infinity at this stage, so they are describing an asymptotic region. Indeed, it
is an asymptotically flat region because since the scalar field goes to a finite constant in the
asymptotic region with r̄ → ∞ the conformal factor tends to a constant, and therefore the
geometry behaves as in the minimal solution metric (3.2).

Decreasing the value of the scalar field we drive ourselves towards the interior of the
geometry. As #ξ → −∞, F+H → 0 and r̄ → η/2. Then, analysing the asymptotic
behaviour of #ξ in equation (3.26) we can conclude that the Schwarzschild radial coordinate
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Figure 2. F+H , ξ = 0.1, χ = π/6. For ξ ∈ (0, 1
6 ) both the F+ and F− branches need to be

considered.

shrinks to zero for everyχ 	= 0. Thus, for a non-minimally coupled scalar field with a curvature
coupling ξ < 0 we find naked singularities, in the same manner as for a minimally coupled
scalar field [30]. For the special case χ = 0 we find solutions with a constant value for the
scalar field and a Schwarzschild geometry (of course, in this case the spacetime geometry
does not shrink to zero for r̄ = η/2), while for χ = π we encounter an anti-Schwarzschild
geometry.

3.7. Solutions with ξ = 0

The function F(#) in this case becomes a constant. The function H(#) is exp(#ξ ), so in
equation (3.13) we can read that #m = #ξ + constant. Clearly, we recover the standard
minimally coupled solutions with their naked singularities.

3.8. Solutions with 0 < ξ < 1
6

Here we have to analyse separately both signs in equation (3.26). Let us begin with the
positive, F+. As before, for a certain value of the scalar field the function F+H → 1, making
both R+ → ∞ and r̄ → ∞, thereby describing an asymptotically flat region (see figure 2).
Then, decreasing the value of the field we leave the asymptotic region going towards the
interior of the geometry. At the value −1/

√
6ξ the r̄ coordinate reaches the value η/2 with the

corresponding zero value for F+H . A perturbative analysis around −1/
√

6ξ tells us that for
χ ∈ (0, π/3) the Schwarzschild radial coordinate blows up. For the rest of values the geometry
shrinks to a naked singularity except for χ = 0 and π/3 for which the Schwarzschild radial
coordinate goes to a constant value.

The solution with χ = 0 is once again the Schwarzschild geometry, whilst among the
naked singularities we have the χ = −π case representing the anti-Schwarzschild geometry.
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Figure 3. F−H , ξ = 0.1, χ = π/6. For ξ ∈ (0, 1
6 ) both the F+ and F− branches need to be

considered.

The solutions with χ = π/3 are more bizarre. At r̄ = η/2 the geometry neither shrinks
to zero nor blows up to infinity. We can see the reason for this behaviour easily by looking at
equation (3.26). For χ = π/3 the exponent of the function F+H becomes unity and so it goes

to zero at the same rate as the factor of
√

1 − 6ξ#2
ξ , with these two terms counteracting each

other. Moreover, it can be seen that gtt > 0 for r̄ � η/2, that is, we do not find any horizon by
going inward from the asymptotic region. In fact, we can extend these geometries to values
r̄ < η/2 but we will leave it for the next section to describe the traversable wormhole nature
of these solutions.

The solutions with χ ∈ (0, π/3) also deserve some additional attention. They are
wormhole-like shaped, that is, they have two asymptotic regions (at r̄ = ∞ and r̄ = η/2) joined
by a throat. However, analysing the t t component of the Ricci tensor (Rt̂t̂ in an orthonormal
coordinate basis) one can easily realize that it diverges when the scalar field reaches the value
−1/

√
6ξ , that is, at r̄ = η/2. Therefore, the region r̄ → η/2 is not a proper ‘asymptotic’

region (see the discussion on this point in [15]). Although in these geometries there exist
diverging-lens effects (they have a throat), they are not genuine traversable wormholes.

The solutions withF− in equation (3.26) merit a discussion similar to that made for the plus
sign. The real function F−H is only defined for absolute values of the scalar field greater than
1/

√
6ξ , and of course less than 1/

√
6ξ(1 − 6ξ) (see figure 3). When the scalar field reaches

a value slightly lower than −1/
√

6ξ the radial coordinate r̄ approaches η/2, with F−H going
to zero. At this coordinate point we can perform the same analysis as before, concerning the
different behaviour as a function of χ of the Schwarzschild radial coordinate R−. Obviously,
we find the same results. The case in which we are most interested is that of χ = π/3. In
the next section we will see how by extending the geometry beyond η/2 we finally obtain a
perfectly well defined traversable wormhole. However, for this to happen it is necessary that
by decreasing the value of the scalar field from the critical value −1/

√
6ξ , one must reach an

asymptotic region before arriving at the lowest possible value of −1/
√

6ξ(1 − 6ξ). That can
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only be guaranteed if the condition

#− > exp

(
−
√

1 − 6ξ

6ξ

π

2

)
(3.28)

is fulfilled. This condition is obtained by requiring F−H to have a value greater than one for
# = −1/

√
6ξ(1 − 6ξ). In the example of figure 3 this is not satisfied. This constraint implies

super-Planckian values of the scalar field in the wormhole throat, and is a cause for some mild
concern—we shall return to this point shortly.

3.9. Solutions with ξ = 1
6

The coupling constant ξ = 1
6 corresponds to a conformal coupling prescription. We have

already found all the classical solutions for this system in [15], highlighting the many interesting
characteristics possessed by the conformal coupling. Here, we present these solutions as a
particular case of the curvature coupling. For this particular case the function H is unity and
the functions F± become

F±(#[ξ= 1
6 ]) = #±

√√√√±
1 + #[ξ= 1

6 ]

1 −#[ξ= 1
6 ]
. (3.29)

The expression (3.13) can be inverted† yielding the two solutions (3.7) and (3.9), provided we
identify #0

− = ln#− and #0
+ = ln#+.

The analysis done for the previous 0 < ξ < 1
6 case extends directly to ξ = 1

6 . The
special geometry corresponding to χ = π/3 will be described more fully in the next section
in combination with the equivalents for the range 0 < ξ < 1

6 .

3.10. Solutions with ξ > 1
6

Once more it is necessary to take into account the functions F+ and F− separately. The form of
F+H tells us that the scalar field reaches some finite value in an asymptotic region, at the point
with F+H = 1 (see figure 4). Then, by going inward from this asymptotically flat region we
approach the r̄ = η/2 section, for a value of the scalar field equal to −1/

√
6ξ . Perturbatively

analysing the form ofF+H around#ξ = −1/
√

6ξ we can see that R+ has a different behaviour
depending on the value of χ . One again obtains the same qualitative results as for the previous
0 < ξ < 1

6 case. For 0 < χ < π/3 the geometry blows up in a singular way, for π/3 < χ < π

the geometry shrinks to a naked singularity, and in the special χ = π/3 case the geometry can
be extended to values r̄ < η/2. Once more, this particular case will be described in the next
section.

If we now consider the functionF−H , we can see that it is only defined for |#ξ | > 1/
√

6ξ .
Here, for a negative value of the field lower than −1/

√
6ξ we have an asymptotically flat region,

r̄ → ∞ (F−H → 1), but now this happens independently of the value of #− (see figure 5).
Increasing the value of the scalar field up to −1/

√
6ξ we arrive at the inner r̄ = η/2 region.

At this coordinate point we find once more what we now see are the three possible standard
behaviours for the geometry depending on χ .

† Tip: remember that 1
2 ln 1+x

1−x = tanh−1(x).
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Figure 4. F+H , ξ = 0.2, χ = π/6. For ξ ∈ (0, 1
6 ) both the F+ and F− branches need to be

considered.

Figure 5. F−H , ξ = 0.2, χ = π/6. For ξ ∈ (0, 1
6 ) both the F+ and F− branches need to be

considered.

4. Non-minimal scalars and traversable wormholes

In this section we shall describe in more detail the solutions with χ = π/3 and ξ > 0. In all
these cases the expression under the square root symbol of the functions F+ or F− changes its
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sign when #ξ = −1/
√

6ξ (r̄ = η/2). It seems that we cannot define the scalar field beyond
this point because of the apparently complex values that F would generate. However, we have
to realize that for χ = π/3 the expression (3.25) can be written as[

1 − η/2r̄

1 + η/2r̄

]
= [F(#ξ )H(#ξ )]

2 (4.1)

which we shall see allows us to avoid the problem and permits the extension. By using isotropic
coordinates and particularizing to the value χ = π/3 one can realize that there is a convenient
way in which we can write the metric:

ds2
ξ = ± (F±H)2

1 − 6ξ#2
ξ

[
−dt2 +

(
1 +

η

2r̄

)4
[dr̄2 + r̄2(dθ2 + sin2 θ d#2)]

]
. (4.2)

Let us see what happens in the 0 < ξ < 1
6 case when we choose the function F+. As we

explained in the previous section, the implicit relation (4.1), and the form of the Schwarzschild
radial coordinate (3.26), tell us that we have a geometry that is perfectly regular from r̄ → ∞
to r̄ = η/2, at which point the scalar field acquires the value −1/

√
6ξ . The function (F+H)2

has a zero for #ξ = −1/
√

6ξ which counteracts the zero in the denominator of the prefactor
in equation (4.2). Therefore, despite naive appearances, this prefactor acquires a finite positive
value on #ξ = −1/

√
6ξ . Beyond that point, that is for r̄ < η/2 and # < −1/

√
6ξ , we can

see that this prefactor continues to be finite and positive ((F+H)2 changes its sign in the same
way as (1 − 6ξ#2

ξ )) even at the lowest possible value for the scalar field −1/
√

6ξ(1 − 6ξ).
Now, if the radial coordinate r̄ reaches the value zero before the scalar field reaches its lowest
possible value −1/

√
6ξ(1 − 6ξ), that is, if the condition

#+ > exp

(
−
√

1 − 6ξ

6ξ

π

2

)
(4.3)

is fulfilled, expression (4.2) tells us that for r̄ = 0 there is another asymptotically flat region.
This spacetime is now a perfectly well defined traversable wormhole geometry.

If the condition (4.3) is not satisfied, then the scalar field reaches the critical value
−1/

√
6ξ(1 − 6ξ) before the function (F+H)2 reaches the value −1 for which the other

asymptotic region shows up. In these solutions, we can extend the geometry and the
scalar field regularly up to a spherical section at which the scalar field approaches the value
−1/

√
6ξ(1 − 6ξ). At this value we can see, by differentiating (3.25) with respect to r̄ , that

the derivative of the scalar field becomes infinite. This, and the form of the scalar curvature
for these systems,

Rξ = 6(∇#ξ)
2(1 − 6ξ)

1 − 6ξ(1 − 6ξ)#2
ξ

, (4.4)

tells us that there is a curvature singularity in these solutions. (This will be a naked singularity
hiding behind a wormhole throat, but the lack of a second asymptotic region implies these are
not true traversable wormhole solutions.)

We can now realize that by choosing the F− branch and extending upwards from scalar
field values greater than −1/

√
6ξ(1 − 6ξ) towards #ξ > −1/

√
6ξ , we obtain the same

solutions as for F+, but with interchanged asymptotic regions. The prefactor in equation (4.2)
is (F−H)2/(6ξ#2

ξ − 1) in this case. The condition (3.28) now plays the same role here as that
of (4.3) previously.

The traversable wormhole solutions that we found in [15] for the conformal case can be
rediscovered here as the limiting case of those with 0 < ξ < 1

6 . The conditions (3.28) and
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(4.3) for the existence of wormholes, become #− > 1 and #+ > 1 which yield easily the
conditions #0

− = ln#− > 0 and #0
+ = ln#+ > 0 for the conformal wormholes.

In the case ξ > 1
6 , and using the function F+, we had solutions with an asymptotic region

in which the scalar field acquired a value greater than −1/
√

6ξ . From this asymptotic region
one can move in the direction in which the scalar field decreases. In this way, first one crosses
the non-singular section with #ξ = −1/

√
6ξ . Later on, one crosses a spherical section with a

minimum diameter (a throat), and from that point on the size of the spherical sections begins to
grow to reach another asymptotic region associated with some asymptotic value for the scalar
field which is of course lower than −1/

√
6ξ . Here, one does not have to impose any restriction

on #+ in order to obtain a traversable wormhole configuration.
By choosing the function F− we find the same solutions, but coordinatized in a reversed

way: the asymptotic region with a greater scalar field value is here that with r̄ = 0.
In view of the plethora of traversable wormhole solutions we have found, an important

observation is in order. In all these solutions the scalar field has to reach absolute values above
∼mp/

√
ξ , wheremp is the Planck mass. That is, either the scalar field acquires trans-Planckian

values or the curvature coupling constant ξ must become disturbingly large†. Moreover,
imagining that we include in the system some additional matter field with an action

Sm =
∫ √−gξf (#ξ )Lm, (4.5)

its contribution to the effective energy–momentum tensor would be

[T m
eff ]µν = f (#ξ )

1 − 6ξ#2
ξ

T m
µν. (4.6)

This behaves as if this matter interacts through an ‘effective Newton constant’

G̃eff = GN
f (#ξ )

1 − 6ξ#2
ξ

= 1

8π

f (φξ )

κ − ξφ2
ξ

. (4.7)

(This is not yet quite the physical Newton constant even in the standard case f (#ξ ) = 1; see
section 5 below.) Then, unless f (#ξ ) is specifically chosen to counteract the 1 − 6ξ#2

ξ factor,
this effective Newton constant would change its sign from one asymptotic region to the other,
producing weird effects on ordinary matter‡. One can try to ‘build’ symmetric wormholes
beginning from these asymmetric wormholes [15] and performing ‘thin-shell surgery’ [33].
In this way, one could potentially restrict the peculiar effects on matter to a thin region around
the wormhole throat.

5. Summary and discussion

We have seen that a non-minimally coupled scalar field can violate all the energy conditions at
a classical level. The violation, in principle, of the ANEC inspired us to look for the possible
existence of traversable wormhole geometries supported by these non-minimal scalar fields.
We have obtained the classical solutions for gravity plus a massless arbitrarily coupled scalar
field in the restricted class of spherically symmetric and static configurations. Let us separate
the different cases:

† This might suggest that ultimately a proper quantum treatment of these wormholes would be desirable.
‡ It might also be a source of problems for the stability of the solutions found, but we have not addressed this problem
here.
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(a) ξ < 0. We find naked singularity geometries and, in the case of a constant value for the
scalar field, we recover the Schwarzschild solution.

(b) ξ = 0. In this case we have the usual class of minimally coupled solutions with its naked
singularities. Again, we recover the Schwarzschild solution for a constant field.

(c) 0 < ξ < 1
6 . We find assorted naked singularities. In some of them the geometry shrinks

to zero, in others the singularity is placed in an asymptotic region, and in yet others there
is a scalar curvature singularity at a finite size spherical section.
For a constant value of the field we recover the Schwarzschild solution, but if this value
is exactly ±1/

√
6ξ the geometry can be arbitrarily chosen from among the solutions for

the conformal ξ = 1
6 case.

Apart from these solutions we find a two-parameter family of perfectly well defined
traversable wormhole geometries. Given an asymptotic value for the scalar field, with
absolute value lower than 1/

√
6ξ(1 − 6ξ), and a scalar charge, the asymptotic mass for a

traversable wormhole is fixed.
(d) ξ = 1

6 . The case of conformal coupling leads to the same type of naked singularities that
were seen before, but the scalar curvature singularities are now absent.
The different geometries can appear either in combination with a suitable spatially
dependent scalar field, or with a constant field # = ±1.
Here, we also have a two-parameter family of traversable wormholes with the only
difference being that now the asymptotic value of the scalar field can have arbitrary values.
In fact, when one asymptotic region has an infinite value for the scalar field it means that
it is not asymptotically flat, degenerating to a cornucopia [15].

(e) ξ > 1
6 . Once again we find assorted naked singularities of the same type as in the

conformal coupling.
For a special constant value of the field, ±1/

√
6ξ , the geometry can again be arbitrarily

selected from among the solutions for the conformal 1
6 case. For a different constant value

we only recover the Schwarzschild solution.
Also, there are specific traversable wormhole solutions in which an infinite asymptotic
value for the scalar field cannot be reached.

Since the potential existence of traversable wormholes is a perhaps somewhat disturbing
possibility, we feel it a good idea to see where the potential pitfalls might be—mathematically,
we have exhibited exact classical traversable wormhole solutions to the Einstein equations,
and now wish to investigate the extent to which they should physically be trusted.

To start with, scalar fields play a somewhat ambiguous role in modern theoretical physics:
on the one hand, they provide great toy models, and are from a theoretician’s perspective
almost inevitable components of any reasonable model of empirical reality; on the other hand,
the direct experimental/observational evidence is patchy.

The only scalar fields for which we have really direct ‘hands-on’ experimental evidence
are the scalar mesons (pions π ; kaons K; and their ‘charm’, ‘truth’ and ‘beauty’ relatives,
plus a whole slew of resonances such as the η, f0, η′, a0, . . . ) [34]. Not a single one of these
particles are fundamental, they are all quark–antiquark bound states, and while the description
in terms of scalar fields is useful when these systems are probed at low momenta (as measured
in their rest frame) we should certainly not continue to use the scalar field description once
the system is probed with momenta greater than h̄/(bound state radius). In terms of the scalar
field itself, this means you should not trust the scalar field description if gradients become
large, if

‖∇φ‖ > ‖φ‖
bound state radius

. (5.1)
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Similarly, you should not trust the scalar field description if the energy density in the scalar
field exceeds the critical density for the quark–hadron phase transition. (Note that if the scalar
mesons were strict Goldstone bosons (exactly massless) rather than pseudo–Goldstone bosons,
then they could achieve arbitrarily large values of the field variable with zero energy cost.)
Thus scalar mesons are a mixed bag: they definitely exist, and we know quite a bit about
their properties, but there are stringent limitations on how far we should trust the scalar field
description.

The next candidate scalar field that is closest to experimental verification is the Higgs
particle responsible for electroweak symmetry breaking. While in the standard model the
Higgs is fundamental, and while almost everyone is firmly convinced that some Higgs-like
scalar field exists, there is a possibility that the physical Higgs (like the scalar mesons) might
itself be a bound state of some deeper level of elementary particles (e.g. technicolour and its
variants). Despite the tremendous successes of the standard model of particle physics we do
not (currently) have direct proof of the existence of a fundamental Higgs scalar field.

Accepting for now the existence of a fundamental Higgs scalar, what is its curvature
coupling? The parameter ξ is completely unconstrained in the flat-space standard model. If
we choose for technical reasons to adopt the ‘new improved stress–energy tensor’ for the Higgs
scalar in flat spacetime then one is naturally led to conformal coupling in curved spacetime
[15]. Conformal coupling seems to be the ‘most natural’ choice for the Higgs curvature
coupling, and we have seen in this paper that both conformal coupling and the entire open
half-line ξ ∈ (0,∞) surrounding conformal coupling lead to traversable wormhole geometries.
Unfortunately, adding a Higgs mass results in analytically intractable equations.

A third candidate scalar field of great phenomenological interest is the axion: it is
extremely difficult to see how one could make strong interaction physics compatible with the
observed lack of strong CP violation, without something like an axion to solve the so-called
‘strong CP problem’. Still, the axion has not yet been directly observed experimentally.

A fourth candidate scalar field of phenomenological interest specifically within the
astrophysics/cosmology community is the so-called ‘inflaton’. This scalar field is used as a
mechanism for driving the anomalously fast expansion of the universe during the inflationary
era. While observationally it is a relatively secure bet that something like cosmological inflation
(in the sense of anomalously fast cosmological expansion) actually took place, and while scalar
fields of some type are presently viewed as the most reasonable way of driving inflation, we
must again admit that direct observational verification of the existence of the inflaton field (and
its variants, such as quintessence) is far from being accomplished. Note that in many forms
of inflation trans-Planckian values of the scalar field are generic and widely accepted (though
not universally accepted) as part of the inflationary paradigm.

A fifth candidate scalar field of phenomenological interest specifically within the general
relativity community is the so-called ‘Brans–Dicke scalar’. This is perhaps the simplest
extension to Einstein gravity that is not ruled out by experiment. (It is certainly greatly
constrained by observation and experiment, and there is no positive experimental data
guaranteeing its existence, but it is not ruled out.) The relativity community views the
Brans–Dicke scalar mainly as an excellent testing ground for alternative ideas and as a useful
way of parametrizing possible deviations from Einstein gravity. (And experimentally and
observationally, Einstein gravity still wins.)

In this regard it is important to emphasize that the type of scalar fields we have been
discussing in the present paper are completely compatible with current experimental limits on
Brans–Dicke scalars, or more generally, generic scalar–tensor theories [35, 36]. To take the
observational limits and utilize them in our formalism you need to use the translations

#Brans–Dicke = κ − ξφ2
ξ , (5.2)
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ω(#Brans–Dicke) = #Brans–Dicke(
d#Brans–Dicke/dφξ

)2 = κ − ξφ2
ξ

4ξ 2φ2
ξ

. (5.3)

Then, the physical Newton constant, which takes its meaning within the perturbative PPN
expansion around flat Minkowski space, can be written as

Gphysical = 1

#Brans–Dicke

(
4 + 2ω

3 + 2ω

) ∣∣∣∣
asymp

= 1

8π

1

κ − ξφ2
ξ

(
4 + 2ω

3 + 2ω

) ∣∣∣∣
asymp

. (5.4)

(Here, we have set the function f (φξ ) in (4.7) equal to one. However, it must be pointed out
that if f (φξ ) 	= 1 then the current theories are more general even than the standard scalar–
tensor models.) In the wormhole solutions that we have found, the scalar field φξ reaches a
trans-Planckian value in one of the asymptotic regions, making the physical Newton constant
negative. This means that, contrary to what is commonly done in scalar–tensor theories [37],
the translated Brans–Dicke field should not be restricted to only positive values. In order to
cover our wormhole solutions, negative values of the Brans–Dicke field are required.

Current solar system measurements imply ‖ω(#Brans–Dicke)‖ > 3000 [38]. More precisely,
VLBI techniques allow us to use the deflection of light by the Sun to place very strong
constraints on the PPN parameter γ , with [38]

γ = 1 − (0.6 ± 3.1)× 10−4. (5.5)

The standard result that for Brans–Dicke theories [35, 36]

γ = ω + 1

ω + 2
(5.6)

now provides the limit on ‖ω‖ quoted above. For instance, this constraint is very easily
satisfied if the scalar field φξ is a small fraction of the naive Planck scale (

√
κ) in the solar

neighbourhood. Thus, the scalar theories we investigate in this paper are perfectly compatible
with known physics.

Finally, the membrane-inspired field theories (low-energy limits of what used to be called
string theory) are literally infested with scalar fields. In membrane theories it is impossible to
avoid scalar fields, with the most ubiquitous being the so-called ‘dilaton’. However, the dilaton
field is far from unique, in general, there is a large class of so-called ‘moduli’ fields, which
are scalar fields corresponding to the directions in which the background spacetime geometry
is particularly ‘soft’ and easily deformed. So if membrane theory really is the fundamental
theory of quantum gravity, then the existence of fundamental scalar fields is automatic, with
the field theory description of these fundamental scalars being valid at least up to the Planck
scale and possibly higher.

(For good measure, by making a conformal transformation of the spacetime geometry it
is typically possible to put membrane-inspired scalar fields into a framework which closely
parallels that of the generalized Brans–Dicke fields. Thus there is a potential for much
cross-pollination between Brans–Dicke-inspired variants of general relativity and membrane-
inspired field theories.)

So overall, we have excellent theoretical reasons to expect that scalar field theories are an
integral part of reality, but the direct experimental/observational verification of the existence
of fundamental fields is still an open question. Nevertheless, we think it fair to say that there
are excellent reasons for taking scalar fields seriously, and excellent reasons for thinking that
the gravitational properties of scalar fields are of interest cosmologically, astrophysically and
for providing fundamental probes of general relativity. The fact that scalar fields then lead to
such widespread violations of the energy conditions [14–16, 23], with potentially far-reaching
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consequences like a ‘universal bounce’ (instead of a big-bang singularity) [23, 39, 40], the
traversable wormholes of this paper (see also [15, 16]), and possibly even weirder physics
(see, for example, [2]), leads to a rather sobering assessment of the marked limitations of our
current understanding.
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[15] Barceló C and Visser M 1999 Phys. Lett. B 466 127
[16] Visser M and Barceló C 2000 Energy conditions and their cosmological implications Proc. Cosmo99 (Trieste,

1999) (Singapore: World Scientific)
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