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Abstract
We discuss the issue of quasi-particle production by ‘analogue black holes’
with particular attention to the possibility of reproducing Hawking radiation in
a laboratory. By constructing simple geometric acoustic models, we obtain a
somewhat unexpected result: we show that in order to obtain a stationary and
Planckian emission of quasi-particles, it is not necessary to create an ergoregion
in the acoustic spacetime (corresponding to a supersonic regime in the flow). It
is sufficient to set up a suitable dynamically changing flow. For instance, either
a flow that eventually generates an arbitrarily small sonic region v = c, but
without any ergoregion, or even a flow that just asymptotically, in laboratory
time, approaches a sonic regime with sufficient rapidity.

PACS numbers: 04.20.Gz, 04.62.+v, 04.70.−s, 04.70.Dy, 04.80.Cc

1. Introduction

It is by now well established that the physics associated with classical and quantum fields in
curved spacetimes can be reproduced, within certain approximations, in a variety of different
physical systems—the so-called ‘analogue models of general relativity (GR)’ [1, 2]. The
simplest example of such a system is provided by acoustic disturbances propagating in a
barotropic, irrotational and viscosity-free fluid.

In the context of analogue models it is natural to separate the kinematical aspects of
GR from the dynamical ones. In general, within a sufficiently complex analogue model one
can reproduce any pre-specified spacetime—and the kinematics of fields evolving on it—
independently of whether or not it satisfies the classical (or semiclassical) Einstein equations
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[3]. Indeed, to date there are no analogue models whose effective geometry is determined by
Einstein equations. In this sense we currently have both analogue spacetimes and analogues
of quantum field theory in curved spacetimes, but (strictly speaking) no analogue model for
GR itself [4].

In order to reproduce a specific spacetime geometry within an analogue model, one would
have to take advantage of the specific equations describing the latter (for example, for fluid
models, the Euler and continuity equations, together with an equation of state), plus the
possibility of manipulating the system by applying appropriate external forces. In the analysis
of this paper we will think of the spacetime configuration as ‘externally given’, assuming
that it has been set up as desired by external means—any back-reaction on the geometry is
neglected, as in principle we can counter-balance its effects using the external forces. In the
context of analogue models this is not merely a hypothesis introduced solely for theoretical
simplicity, but rather a realistic situation that is in principle quite achievable.

Specifically, in this paper we analyse in simple terms the issue of quantum quasi-particle
creation by several externally specified (1 + 1)-dimensional analogue geometries simulating
the formation of black hole-like configurations. (In a previous companion paper [5] we
investigated the causal structure of these, and other, spacetimes.) In this analysis we have
in mind, on the one hand, the possibility of setting up laboratory experiments exhibiting
Hawking-like radiation [6–8] and, on the other hand, the acquisition of new insights into
the physics of black hole evaporation in semiclassical gravity. All the discussion holds for
a scalar field obeying the d’Alembert wave equation in a curved spacetime. This means
that we are not (for current purposes) considering the deviations from the phononic dispersion
relations that show up at high energies owing to the atomic structure underlying any condensed
matter system. We shall briefly comment on these modifications at the end of the paper. For
simplicity, throughout the paper we adopt a terminology based on acoustics in moving fluids
(we will use terms such as acoustic spacetimes, sonic points, fluid velocity, etc), but our results
are far more general and apply to many other analogue gravity models not based on acoustics.
We summarize the main conclusions below.

First, we recover the standard Hawking result when considering fluid flows that generate
a supersonic regime at finite time. (That is, we recover a stationary creation of quasi-particles
with a Planckian spectrum.) We then analyse the quasi-particle creation associated with other
types of configurations. In particular, we shall discuss in detail a ‘critical black hole’—a flow
configuration that presents an acoustic horizon without an associated supersonic region. From
this analysis we want to highlight two key results:

• The existence of a supersonic regime (sound velocity c strictly smaller than fluid velocity v)
is not needed in order to reproduce Hawking’s stationary particle creation. We demonstrate
this fact by calculating the quantity of quasi-particle production in an evolving geometry
which generates only an isolated sonic point (v = c), but without a supersonic region, in
a finite amount of laboratory time.

• Moreover, in order to produce a Hawking-like effect it is not even necessary to generate
a sonic point at finite time. All one needs is that a sonic point develops in the asymptotic
future (that is, for t → +∞) with sufficient rapidity (we shall explain in due course what
we exactly mean by this).

From the point of view of the reproducibility of a Hawking-like effect in a laboratory, the
latter result is particularly interesting. In general, the formation of a supersonic regime in a
fluid flow—normally considered to be the crucial requirement to produce Hawking emission—
is associated with various different types of instability (Landau instability in superfluids,
quantized vortex formation in Bose–Einstein condensates, etc) that could mask the Hawking
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effect. To reproduce a Hawking-like effect without invoking a supersonic regime could
alleviate this situation6.

From the point of view of GR, we believe that our result could also have some relevance,
as it suggests a possible alternative scenario for the formation and semiclassical evaporation
of black hole-like objects.

The plan of the paper is the following: in the next section, we introduce the various
acoustic spacetimes on which we focus our attention, spacetimes that describe the formation
of acoustic black holes of different types. In section 4, we present separately the specific
calculations of redshift for sound rays that pass asymptotically close to the event horizon
of these black holes. By invoking standard techniques of quantum field theory in curved
spacetime, one can then immediately say when particle production with a Planckian spectrum
takes place. Finally, in the last section of the paper we summarize and discuss the results
obtained.

2. Acoustic black holes

Associated with the flow of a barotropic, viscosity-free fluid along an infinitely long thin pipe,
with density and velocity fields constant on any cross section orthogonal to the pipe, there is
a (1 + 1)-dimensional acoustic spacetime (M, g), where the manifold M is diffeomorphic to
R

2. Using the laboratory time t ∈ R and physical distance x ∈ R along the pipe as coordinates
on M, the acoustic metric on M can be written as7

g = �2[−(c2 − v2) dt2 + 2v dt dx + dx2] = �2[−c2dt2 + (dx + v dt)2], (2.1)

where c is the speed of sound, v is the fluid velocity and � is an unspecified non-vanishing
function [9]. In general, all these quantities depend on the laboratory coordinates x and t.
Here, we shall assume that c is a constant. Hence, it is the velocity v(x, t) that contains all the
relevant information about the causal structure of the acoustic spacetime (M, g). We direct
the reader to the companion paper [5] for a detailed analysis of the causal structure associated
with a broad class of (1 + 1)-dimensional acoustic geometries, both static and dynamic.

2.1. Apparent horizon

The sonic points, where v(t, x) = ±c, correspond to the so-called acoustic apparent
horizons—apparent horizons for the Lorentzian geometry defined on M by the metric (2.1).
The fact of having an underlying Minkowski structure associated with the laboratory observer
makes the definition of apparent horizons in acoustic models less troublesome than in GR (see
e.g. [2], section 2.5, pp 15–17, or [9]).

Consider a monotonically non-decreasing function v̄(x) such that v̄(0) = −c and
v̄(x) → 0 for x → +∞. If one chooses v(x, t) = v̄(x) in (2.1), the corresponding acoustic

6 In this paper, we focus on the intrinsically quantum physics of Hawking radiation. We do not address the
essentially classical—and so conceptually different—issues of ‘super-resonance’ or ‘super-radiance’. The specific
(1 + 1)-dimensional model geometries we work with automatically preclude ‘super-resonance’/‘superradiance’.
7 While in principle one could introduce arbitrary coordinates on the manifold, the use of laboratory time (and
laboratory distance) is particularly useful. Indeed, the acoustic geometries are in a very real sense ‘bi-metric’—the
phonons ‘see’ the acoustic geometry, and indeed only see the acoustic geometry, but laboratory equipment is held
together by the exchange of virtual photons which ‘see’ the physical (approximately Minkowski) spacetime metric.
The laboratory time, and laboratory distances, are thus singled out as being particularly useful when discussing actual
pieces of physical apparatus needed to conduct experiments. The acoustic spacetimes nevertheless exhibit ‘coordinate
invariance’ in the sense that one can in principle adopt arbitrary coordinates without affecting the physics. On the
other hand, there is no natural notion of ‘diffeomorphism invariance’ for these acoustic spacetimes, nor is there any
need to introduce such a notion.
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spacetime represents, for observers with x > 0, a static black hole with the horizon located at
x = 0 (in this case apparent and event horizons coincide), a black hole region for x < 0, and
a (right-sided) surface gravity8

κ := lim
x→0+

dv̄(x)

dx
. (2.2)

We can, moreover, distinguish three cases:

• κ �= 0 and v̄(x) < −c for x < 0: a non-extremal black hole;
• κ �= 0 and v̄(x) = −c for x < 0: a ‘critical’ black hole;
• κ = 0 and v̄(x) = −c for x < 0: an extremal black hole9.

For simplicity we have taken v = −c in the entire region x < 0, but this can certainly
be relaxed, and definitely will be relaxed later on when we discuss ‘double-sided’ velocity
profiles.

Now, taking the above v̄(x), let us consider t-dependent velocity functions

v(x, t) =
{

v̄(ξ(t)) if x � ξ(t),

v̄(x) if x � ξ(t),
(2.3)

with ξ a monotonically decreasing function of t, such that limt→−∞ ξ(t) = +∞ and
limt→−∞ ξ̇ (t) = 0. (The first condition serves to guarantee that spacetime is flat at early
times, whereas we impose the second one only for simplicity. All the analysis in the paper
could be performed without adopting this assumption, leaving the physical results unchanged.
However, that would require more case-by-case splitting, only to cover new situations without
physical interest.)10 There are basically two possibilities for ξ , according to whether the value
ξ = 0 is attained for a finite laboratory time tH or asymptotically for an infinite future value
of laboratory time.

In the first case ξ(tH) = 0 and the corresponding metric (2.1) represents the formation of
a non-extremal, critical, or extremal black hole, respectively. For small values of |t − tH| we
have

ξ(t) = −λ(t − tH) + O([t − tH]2), (2.4)

where λ is a positive parameter. Hence the function ξ behaves, qualitatively, as shown in
figure 1. Apart from this feature, the detailed behaviour of ξ is largely irrelevant for our
purposes.

If instead ξ → 0 is attained only at infinite future time, that is limt→+∞ ξ(t) = 0, one is
describing the asymptotic formation of either a critical black hole (if κ �= 0; obviously, in this
case choosing the non-extremal or the critical v̄(x) profile is irrelevant) or an extremal black
hole (if κ = 0). Now the function ξ behaves, qualitatively, as shown in figure 2. The relevant
feature of ξ(t) is its asymptotic behaviour as t → +∞. In the following we shall consider two
possibilities for this asymptotics, although others can, of course, be envisaged:

8 The appropriate definition of ‘surface gravity’ in an acoustic geometry was first addressed by Unruh in [8], then
later extended in [9]. A detailed up-to-date discussion can be found in [2] .
9 We take the word ‘extremal’ in its generalized sense to be a synonym for ‘zero surface gravity’. While in GR
and its extensions the word ‘extremal’ is commonly associated with a black hole of maximum charge or maximum
angular momentum, the key geometrical attribute that controls the black hole thermodynamics in the extremal case is
the vanishing of the surface gravity—and it is this vanishing of surface gravity, however achieved, that we take as the
defining feature of an extremal black hole—which implies that extremal black holes make sense well outside their
original context in GR.
10 While the implied ‘kink’ in the geometry at x = ξ(t) will (in view of the Israel–Lanczos–Sen thin-shell formalism)
certainly introduce delta-function contributions to the curvature tensor, this is of no immediate concern for our
purposes—the lack of Einstein equations in acoustic spacetimes means that delta-function contributions to the
curvature need not imply delta-function contributions to the distribution of matter (that is, ‘thin shells’ are not
required).
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tH t

ξ

Figure 1. Plot of ξ(t) for the formation of an acoustic apparent horizon at a finite laboratory
time tH. Only the behaviour of ξ for t close to tH is important.

t

ξ

Figure 2. Plot of ξ(t) for the asymptotic formation of an acoustic apparent horizon at infinite future
laboratory time. Only the asymptotic behaviour of ξ for t → +∞ is important. (For comparison
we also plot ξ(t), with a dashed line, for the formation of the apparent horizon at finite laboratory
time.)

(i) Exponential: ξ(t) ∼ A e−κDt , with κD a positive constant, in general different from κ , and
A > 0;

(ii) Power law: ξ(t) ∼ Bt−ν , with ν > 0 and B > 0.

2.2. Null coordinates

For all the situations considered so far, spacetime is Minkowskian in the two asymptotic
regions corresponding to t → −∞, and to t → +∞, x → +∞ (�− and �+

right respectively,
adopting the notation of [5]). Starting with a quantum scalar field in its natural Minkowskian
vacuum at t → −∞, we want to know the total quantity of quasi-particle production to
be detected at the right asymptotic region at late times, t → +∞, caused by the dynamical
evolution of the velocity profile v(x, t).

In the geometric acoustic approximation, a right-going sound ray is an integral curve of
the differential equation

dx

dt
= c + v(x, t). (2.5)

We are interested in sound rays propagating from �− (see figure 3); that is, in solutions of (2.5)
that satisfy an initial condition x(ti) = xi , with xi ∼ cti in the limit ti → −∞ (so P := (xi, ti)

can be thought of as an ‘initial’ event corresponding to the emission of the acoustic signal). If
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Figure 3. Conformal diagram of the spacetime corresponding to the formation of an acoustic
black hole. The dotted line in bold represents the worldline of the kink, x = ξ(t). The dashed
straight line in bold represents a right-going ray connecting the events P = (xi , ti ) near �− and
Q = (xf , tf ) near �+

right.

such a ray ends up on �+
right, we can identify ‘final’ events Q := (xf , tf ) on it, with xf ∼ ctf

as tf → +∞. For a ray connecting �− to �+
right one can also find an event O := (x0, t0)

such that x0 = x(t0) = ξ(t0), which corresponds to the crossing of the ‘kink’ in v, located at
x = ξ(t) according to equation (2.3), by the sound signal. Finally, we can define, for such a
ray, two parameters U and u as follows:

U := lim
ti→−∞(ti − xi/c); (2.6)

u := lim
tf →+∞(tf − xf /c). (2.7)

Such parameters correspond to null coordinates in spacetime. If an acoustic event horizon H
is present in the spacetime, the coordinate U is regular on it (i.e. U attains some finite value
on H), whereas u tends to +∞ as H is approached.

We can express both U and u in terms of the velocity profile (shape and dynamics) and of
the crossing time t0. To this end, we can integrate equation (2.5), first between P and O:

ξ(t0) − xi =
∫ t0

ti

dt (c + v̄(ξ(t))); (2.8)

then between O and Q:

tf − t0 =
∫ xf

ξ(t0)

dx

c + v̄(x)
. (2.9)

On replacing xi from equation (2.8) into (2.6), we find the value of U for a generic right-moving
ray that crosses the kink at laboratory time t0:

U = t0 − ξ(t0)

c
+

1

c

∫ t0

−∞
dt v̄(ξ(t)). (2.10)
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Similarly, substituting tf from equation (2.9) into (2.7), then adding and subtracting the
quantity ξ(t0)/c, we find

u = t0 − ξ(t0)

c
− 1

c

∫ +∞

ξ(t0)

dx
v̄(x)

c + v̄(x)
. (2.11)

In the analysis below, our chief goal consists of finding the relation between U and u for
a sound ray that is close to the horizon, i.e., in the asymptotic regime u → +∞. From such a
relation it is then a standard procedure to find the Bogoliubov β coefficients and hence the total
quasi-particle content to be measured, in this case, by an asymptotic observer at �+

right. (See,
for example, [7].) In the case of an exponential relation between U and u it is a well-established
result that a Planckian spectrum is observed at late times [10], so Hawking-like radiation will
be recovered.

3. Event horizon formation

When the apparent horizon forms at a finite laboratory time, say at t = tH, an event horizon
always exists, generated by the right-moving ray that eventually remains frozen on the apparent
horizon, at x = 0. For such a ray t0 → tH, and since ξ(tH) = 0, the U parameter has the finite
value

UH = tH +
1

c

∫ tH

−∞
dt v̄(ξ(t)). (3.1)

For a ray with U < UH we then obtain, combining equations (2.10) and (3.1):

U = UH + t0 − tH − ξ(t0)

c
− 1

c

∫ tH

t0

dt v̄(ξ(t)). (3.2)

This exact equation is now in a form suitable for conveniently extracting approximate results
in the region t0 ∼ tH, corresponding to sound rays that ‘skim’ the horizon.

On the other hand, when the trapping horizon consists of just one single sonic point
located at t = +∞, it is not obvious that an event horizon exists. Loosely speaking, in this
case it might happen that the trapping horizon forms ‘after’ every right-going ray from �− has
managed to cross x = 0. Since there is a competition between two infinite quantities—the
time at which the trapping horizon forms, and the time at which the ‘last’ right-going signal
that connects x = −∞ with x = +∞ crosses x = 0—a careful case-by-case analysis is in
order.

This is essentially all that can be said without relying on specific features of v̄(x). We
now consider separately the various situations of interest, focussing first on the issue of the
existence of the event horizon.

3.1. Non-extremal black hole

In the case of a non-extremal black hole, the qualitative behaviour of the function v̄(x) is
shown, graphically, in figure 4. Note that, for small values of |x|, one can write

v̄(x) = −c + κx + O(x2). (3.3)

The function ξ(t) behaves as already shown in figure 1. A sketch of the worldlines of right-
moving sound rays is presented in figure 5. Note that in the portion of the diagram to the right
of the curve x = ξ(t) (i.e., to the right of the moving kink in the velocity profile), spacetime
is static. For t → −∞, the geometry is Minkowskian and the worldlines tend to approach
straight lines with slope 1/c.
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x

−c

v

Figure 4. The static velocity profile v̄(x) for an acoustic non-extremal black hole.

o
tH

x

t

Figure 5. The worldlines of right-moving sound rays in the spacetime describing the formation of
a non-critical, non-extremal black hole. The thick solid line is the event horizon; the dashed one
is the worldline of the ‘kink,’ x = ξ(t).

x

−cv

Figure 6. The static velocity profile v̄(x) for a critical black hole.

The sound ray that generates the event horizon corresponds to a finite11 value UH of the
coordinate U. Hence, in this situation an event horizon always exists. This is also clear from
the fact that the vertical half-line x = 0, t > tH in figure 5 is an apparent horizon.

3.2. Critical black hole

The function v̄(x) behaves as shown in figure 6. Regarding the right side of the profile, x > 0,
it is indistinguishable from the profile of a non-extremal black hole (figure 4).

11 It is easy to check this explicitly using (3.1), given the asymptotic behaviours of v̄ and ξ .
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o

x

t

Figure 7. The worldlines of right-moving sound rays in the spacetime describing the formation
of a critical black hole. The apparent horizon is just an asymptotic point at x = 0, t → +∞. The
event horizon, when it exists, corresponds to a line like the thick solid one. The worldline of the
kink is dashed. This situation is qualitatively identical to the case of the formation of an extremal
black hole in an infinite laboratory time.

3.2.1. Finite time. When the function ξ(t) is of the form (2.4), that is, when the apparent
horizon is formed at a finite amount of laboratory time, the situation is exactly the same as for
the non-extremal black hole discussed above.

3.2.2. Infinite time. Consider now that the sonic point is approached in an infinite amount of
time, so the function ξ(t) behaves as in figure 2. The worldlines of right-moving sound rays
are shown in figure 7. As in the formation of the non-critical black hole, the portion of the
diagram to the right of the curve x = ξ(t) (i.e., to the right of the moving kink in the velocity
profile) corresponds to a static spacetime, and for t → −∞ the geometry is Minkowskian—the
worldlines tend to approach straight lines with slope 1/c. However, now the apparent horizon
is just the asymptotic point located at x = 0, t → +∞, and in order to establish whether an
event horizon does, or does not, exist one must perform an actual calculation of UH for the
‘last’ ray that crosses the kink. The expression for UH is again obtained from equation (2.10),
noting that now t0 = +∞ along the generator of the would-be horizon, so

UH = lim
t0→+∞

(
t0 +

1

c

∫ t0

−∞
dt v̄(ξ(t))

)
. (3.4)

The necessary and sufficient condition for the event horizon to exist is that the limit on the
right-hand side of equation (3.4) be finite. The integrand on the right-hand side of (3.4) can be
approximated, for t → t0 → +∞, as −c + κξ(t), while for t → −∞ it just approaches zero.
Hence UH is, up to a finite constant, equal to κ/c times the integral of ξ , evaluated at t → +∞.
Here we must distinguish between the exponential behaviour and the power law—cases (i)
and (ii). In the former UH is finite, trivially. For the power law, it turns out that UH is finite
iff ν > 1.

3.3. Extremal black hole

The typical spatial profile function v̄(x) for an extremal black hole is plotted in figure 8. For
x approaching zero from positive values we can write12

v̄(x) = −c + µx2 + O(x3), (3.5)
12 For simplicity we tacitly assume that the second derivative of v̄ is nonzero, but we could just as easily deal with
the more general v̄(x) = −c + µx2n + O(x2n+1), or even non-analytic functions such as v̄(x) = −c + exp(−α/x2)

with α a positive constant.
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x

−c

v

Figure 8. The static velocity profile v̄(x) for an acoustic extremal black hole.

o
tH

x

t

Figure 9. The worldlines of right-moving sound rays in the spacetime describing the formation
of an extremal black hole in a finite laboratory time. The thick solid and dashed lines represent,
respectively, the event horizon and the worldline of the kink.

where µ > 0 is a constant. As far as dynamics is concerned, we must distinguish the cases in
which the apparent horizon is formed at finite laboratory time tH, and in an infinite time (i.e.
for t → +∞).

3.3.1. Finite time. The function ξ(t) is of the type shown in figure 1, and the worldlines of
right-going sound rays are sketched in figure 9. The event horizon always exists.

3.3.2. Infinite time. The function ξ(t) is as shown in figure 2, and the worldlines of right-
going signals are shown in figure 7. As in the case of the formation of a critical black
hole, the apparent horizon forms only asymptotically, for x = 0 and t → +∞, so the event
horizon exists iff UH, given by equation (3.4), has a finite value. Using the expansion (3.5) in
equation (3.4), one finds that UH is always finite when ξ(t) is asymptotically exponential. On
the other hand, for a power law, the event horizon exists iff ν > 1/2. (Note that the critical
value of the exponent, ν = 1/2, is now not the same as for the critical black hole, ν = 1.)

3.4. Double-sided black hole configurations

The configurations we have analysed until now are the simplest from a purely mathematical
point of view. However, having in mind acoustic analogue geometries reproducible in a one-
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x

I −c

v

Figure 10. The static velocity profile v̄(x) for a double-sided critical black hole. I indicates the
size of the internal flat segment.

x

−cv

Figure 11. The static velocity profile v̄(x) for a double-sided critical black hole with zero
‘thickness’ (I = 0).

dimensional pipe in the laboratory, it is more sensible to consider double-sided configurations.
By this we mean that, after passing (or approaching) the sonic/supersonic regime at x = 0,
and traversing an interval of width I � 0, the fluid again goes back to a subsonic regime
as x → −∞.

Consider for example functions v̄(x) such that v̄(x) = −c for −I � x � 0,

lim
x→−I−

dv̄(x)

dx
�= 0, lim

x→0+

dv̄(x)

dx
�= 0, (3.6)

and which outside the interval −I � x � 0 tend monotonically to zero as |x| increases (see
figures 10 and 11). The corresponding fluid configuration represents what could be called
a static ‘double-sided critical black hole’. The formation of such a configuration can be
modelled by the velocity function

v(x, t) =




v̄(x) if x � ξ(t),

v̄(ξ(t)) if −I − ξ(t) � x � ξ(t),

v̄(x) if x � −I − ξ(t),

(3.7)

with ξ a monotonically decreasing function of t, and v̄ as above. Accordingly, the differential
equation for right-going sound rays also splits:

dx

dt
=




c + v̄(x) if x � ξ(t),

c + v̄(ξ(t)) if −I − ξ(t) � x � ξ(t),

c + v̄(x) if x � −I − ξ(t).

(3.8)

Geometries associated with the formation of non-extremal and extremal black holes can be
constructed in the same way; see figures 12 and 13 for plots of the respective v̄ functions.
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x

−c

v

Figure 12. The static velocity profile v̄(x) for a double-sided non-extremal black hole. In the
companion paper [5] we refer to this configuration as a black hole–white hole configuration.

x

−c
v

Figure 13. The static velocity profile v̄(x) for a double-sided extremal black hole with zero
thickness (I = 0).
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Figure 14. The worldlines of right-moving sound rays in the spacetime describing the formation
of a double-sided critical black hole in a finite laboratory time. The event horizon is represented
by the thick solid line, while the worldlines of the kinks are dashed.

3.4.1. Finite time. The function ξ(t) is of the type illustrated in figure 1. The behaviour of
right-going sound rays is shown in figure 14. The apparent horizon is the half-line x = 0, t > 0,
and the event horizon always exists.

3.4.2. Infinite time. Let us now consider a function ξ(t) of the type illustrated in figure 2. The
behaviour of right-going sound rays is shown in figure 15. For these particular configurations,
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Figure 15. The worldlines of right-moving sound rays in the spacetime describing the formation
of a double-sided critical black hole in an infinite laboratory time. The apparent horizon is the
asymptotic point x = 0, t → +∞. The event horizon (when it exists) is represented by the thick
solid line, while the worldlines of the kinks are dashed.

whether an event horizon does, or does not, actually exist is now a rather tricky issue. The
asymptotic behaviour of the function ξ(t) at t → −∞ ensures that all the right-going rays
start to the left of the right-moving kink (i.e. the one in the region x < 0), then catch up
with it, and begin to propagate through the intermediate region at a velocity c + v̄(ξ(t)) that
depends only on t. Before they reach the point x = 0, such rays might be overtaken by the
right-moving kink, but only to start the chase again. After several mutual overtakings (if the
function ξ(t) is sufficiently complicated), the rays will always make an ultimate overtaking
of the right-moving kink, embarking upon a final encounter with the left-moving kink on the
right (i.e. in the region x > 0). Let us denote by t1 the time of such a last crossing of the
right-moving kink, so the corresponding event is (−ξ(t1) − I, t1). Also, let us denote by t2
the time at which the same ray crosses the kink on the right, so that the corresponding event
is (ξ(t2), t2). From equation (3.8) we directly obtain the relation

ξ(t1) + I = −ξ(t2) +
∫ t2

t1

dt[c + v̄(ξ(t))] (3.9)

between t2 and t1. (When the ray crosses the right-moving kink more than once, equation (3.9)
will be satisfied by more than one value of t1 for any given t2. In order to avoid cumbersome
notation, we shall simply denote by t1 the largest of these roots, corresponding to the last
crossing.) Then a necessary and sufficient condition for the existence of an event horizon is
that, for t2 → +∞, t1 tends to a finite value, say t1H. This guarantees that any right-going ray
that last crosses the left kink at a time greater than t1H does not reach the region x > 0 (as
ray-crossing cannot occur under the working hypothesis of this paper).

Applying this condition straightforwardly in order to see whether the event horizon exists
is not easy. Indeed, that would require us to evaluate the integral in equation (3.9) for a generic,
finite value of t2, then solve for t1 as a function of t2. It is easier to use one of the following
two alternative strategies:

(i) Instead of asking whether the event horizon exists, one can ask whether the event horizon
does not exist. A necessary and sufficient condition for this is that, for t2 → +∞, also
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t1 → +∞. In such a case, we can insert the asymptotic expansions (3.3) or (3.5) into
equation (3.9) to get

ξ(t1) + I ∼ −ξ(t2) + κ

∫ t2

t1

dt ξ(t) (3.10)

for a non-extremal black hole, and

ξ(t1) + I ∼ −ξ(t2) + µ

∫ t2

t1

dt ξ(t)2 (3.11)

for an extremal one. Plugging into these expressions the different asymptotic behaviours
of the function ξ(t), one can explicitly solve for t1 as a function of t2 for large values of
the latter, and check whether t1 does, or does not, tend to infinity when t2 → +∞.

(ii) Setting t2 = +∞ into (3.9), one obtains

ξ(t) + I =
∫ +∞

t

dt ′[c + v̄(ξ(t ′))]. (3.12)

It is possible to show13 that the event horizon exists if and only if equation (3.12) possesses
an odd number of finite solutions14. In order to establish whether this is the case, it is
convenient to define the function of t

f (t) :=
∫ +∞

t

dt ′[c + v̄(ξ(t ′))], (3.13)

whose points of crossing with ξ(t) + I correspond to the solutions of equation (3.12). Of
course, for f to be well defined (and therefore for solutions of (3.12) to exist at all) one
needs the integral defining it to be convergent. For asymptotically (t → +∞) exponential
and power-law behaviours of ξ(t) this happens in the cases already described. Now,
whenever f is well defined, it is clearly a monotonically decreasing function, because the
integrand in equation (3.13) is always strictly positive. For t → −∞, f (t) is just equal
to the integral of the function c + v̄(ξ(t)) evaluated at t, up to a finite constant. In this
limit, c + v̄(ξ(t)) → c so we can write, for t → −∞:

f (t) ∼ −ct + const. (3.14)

Given the condition limt→−∞ ξ̇ = 0, it is clear that the function f (t) is always greater
than ξ(t) + I for t → −∞. On the other hand, for t → +∞, the asymptotic behaviour of
f (t) is obtained by expanding v̄ in (3.13), which gives

f (t) ∼ κ

∫ +∞

t

dt ′ ξ(t ′) (3.15)

for critical (and non-extremal) black holes and

f (t) ∼ µ

∫ +∞

t

dt ′ ξ 2(t ′) (3.16)

for extremal ones. If, for t → +∞, f (t) is smaller (greater) than ξ(t) + I , then
equation (3.12) has an odd (even) number of finite solutions, and the event horizon
does (does not) exist. Note that, if f (t) ∼ ξ(t) + I , one must analyse subdominant terms
in the asymptotic behaviour of ξ(t) in order to draw any conclusion.

13 We omit the somewhat delicate proof of this statement in order not to overburden the presentation.
14 Note that, if this criterion is satisfied, t1H is the solution of equation (3.12) with the largest value.
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With either method, we find that for I �= 0 the existence of an event horizon in double-sided
configurations follows the same rules as in the previously analysed one-sided configurations.
When I = 0 however, it is more difficult to have an event horizon in a double-sided
configuration, and in general, one has to increase the rapidity with which one approaches the
sonic regime. More specifically, for a critical black hole and an asymptotically exponential
ξ(t), the event horizon exists if κD > κ , but not when κD < κ , while for a power law there
is no horizon. For an extremal black hole and an exponential ξ(t) the horizon always exists,
but in the case of a power law it does not exist if ν < 1, and it exists for ν � 1, with the
additional condition B < 1/µ for the particular value ν = 1. For a critical black hole with
asymptotically exponential ξ(t) and κD = κ , as well as for an extremal black hole with a
power law and ν = 1, B = 1/µ, the asymptotic analysis is not sufficient and one must take
into account also subdominant terms in the expansion of ξ(t) for t → +∞.

4. Asymptotic redshift relations

For those situations in which an event horizon exists, we now find the asymptotic relation
between u and U for rays close to the horizon generator. We also briefly discuss the implications
of such a relation for quasi-particle creation in the various cases of interest.

4.1. Non-extremal black hole

Consider a sound ray corresponding to a value U < UH. For U very close to UH, t0 is very
close to tH, and we can use the approximation (2.4) for ξ(t). Furthermore, we can approximate
v̄ as in (3.3), so equation (3.2) gives

U = UH +
λ

c
(t0 − tH) + O([t0 − tH]2). (4.1)

This provides us with the link between U and t0.
In order to link t0 with u, consider the integral on the right-hand side of equation (2.11).

For x → +∞, the integrand function vanishes, while near ξ(t0) it can be approximated by
−c/(κx). Then the integral is just given by the difference of the corresponding integrals
evaluated at x = +∞ and x = ξ(t0), respectively, up to a possible finite positive constant.
This gives15

−λ(t0 − tH) ∼ const e−κu. (4.3)

Together with equation (4.1), this leads to

U ∼ UH − const e−κu. (4.4)

This relation between U and u is exactly the one found by Hawking in his famous analysis
of particle creation by a collapsing star [6]. It is by now a standard result that this relation
implies the stationary creation of particles with a Planckian spectrum at temperature κ/(2π)

[7, 10].

15 This result could also have been obtained by noting that the corresponding part of the worldline lies into a static
portion of spacetime, for which one can simply use the representative profile for v̄ given in [5]. Using equation (4.2)
from that paper we have

u = t0 − tH − ξ(t0)

c
− 1

κ
ln |1 − e−2κξ(t0)/c|. (4.2)

Expanding, we find again equation (4.3), to the leading order in t0 − tH.
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4.2. Critical black hole

For a critical black hole, the results are very different according to whether the sonic regime
is attained in a finite or an infinite laboratory time.

4.2.1. Finite time. The calculation of the relation between U and u is exactly equal to the one
presented for the non-extremal black hole case. The two geometries coincide everywhere to
the right of the apparent horizon and cannot be distinguished by the quasi-particle production
observed at x → +∞.

4.2.2. Infinite time. Let us suppose that we are in a situation in which the event horizon
exists, so UH is finite. For another right-moving sound ray that corresponds to a value U < UH

we find, combining equations (2.10) and (3.4),

U = UH − ξ(t0)

c
− 1

c

∫ +∞

t0

dt[c + v̄(ξ(t))]. (4.5)

In the integration interval, ξ(t) is close to zero, so equation (4.5) can be approximated as

U ∼ UH − ξ(t0)

c
− κ

c

∫ +∞

t0

dt ξ(t), (4.6)

where the expansion (3.3) has been used. Equation (4.6) gives

U ∼ UH − A

c

(
1 +

κ

κD

)
e−κDt0 (4.7)

for an asymptotically exponential ξ , and

U ∼ UH − κB

(ν − 1)c
t
−(ν−1)
0 (4.8)

for a power law with ν > 1.
For the link between t0 and u we obtain

u ∼ t0 − 1

κ
ln ξ(t0), (4.9)

as one can easily check inserting the appropriate asymptotic expansions into equation (2.11).16

Using equation (4.9) into equations (4.7) and (4.8) we find

U ∼ UH − const exp

(
− κκD

κ + κD
u

)
(4.10)

for the exponential case, and

U ∼ UH − const u−(ν−1) (4.11)

for a power law with ν > 1. (Remember that for ν � 1 the event horizon does not form.)
It is interesting to compare equations (4.10) and (4.11) with the corresponding one for the

non-critical black hole, equation (4.4). Whereas the latter is basically independent of the details
of the black hole formation (which only appear in the multiplicative constant), the relation
between U and u in the critical case is not universal, but depends on the dynamical evolution.
Even for an asymptotically exponential ξ(t), which leads to an exponential dependence on u,
the coefficient in the exponent is not universal as in equation (4.4), but depends on dynamics
through the parameter κD. This is not difficult to understand looking back at the way in

16 One could again also use equation (4.2) from [5]; this leads to equation (4.2) which, expanded, gives
equation (4.9). The result holds, however, independently of the details of v̄(x).
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which equations (4.4) and (4.10) have been derived. For equation (4.4), the exponential
dependence was introduced relating t0 with u, which only involves sound propagation in
the final static region and cannot, therefore, be affected by dynamics. On the other hand,
when deriving equation (4.10) it is sound propagation in the initial, dynamical, regime that
introduces the exponential (in the particular case of an asymptotically exponential ξ ); hence,
it is not surprising that the final result keeps track of the dynamical evolution. However, it is
interesting to note that in the limit κD → +∞ equations (4.4) and (4.10) coincide. This limit
corresponds to a very rapid approach towards the formation of an otherwise-never-formed
(in finite time) apparent horizon. Regarding the creation of quasi-particles, this situation is
operationally indistinguishable from the actual formation of the sonic point. However, this
‘degeneracy’ might be accidental, given that the origin of the exponential relation is very
different in the two cases.

4.3. Extremal black hole

As for the case of a critical black hole, we must distinguish between a finite and an infinite
time of formation of the event horizon.

4.3.1. Finite time. For a sound ray close to the one that generates the horizon, equation (3.2)
still holds. However, now one must use the expansion (3.5) when approximating the integrand
thus obtaining

U ∼ UH +
λ

c
(t0 − tH) + O([t0 − tH]3). (4.12)

Using again the approximation (3.5) in the evaluation of the integral on the right-hand side of
equation (2.11) one finds

t0 ∼ tH − λµu−1. (4.13)

Finally,

U ∼ UH − 1

µc
u−1. (4.14)

Interestingly, this is the same relation that one finds for the gravitational case [16]. In particular,
this implies that finite time collapse to form an extremal black hole will not result in a Planckian
spectrum of quasi-particles [16]. This is completely compatible with the standard GR analysis,
and is one of the reasons why extremal and non-extremal black holes are commonly interpreted
as belonging to completely different thermodynamic sectors [17].

4.3.2. Infinite time. Assuming that the event horizon exists, we can again apply equation (4.5)
and use the approximation (3.5) in order to find the relation between U and t0. The results are,
for an asymptotically exponential ξ(t):

U ∼ UH − A

c
e−κDt0; (4.15)

for a power law with 1/2 < ν < 1:

U ∼ UH − B

c
t−ν
0 ; (4.16)

for a power law with ν = 1:

U ∼ UH − B

c
(1 + µB)t−1

0 ; (4.17)
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for a power law with ν > 1:

U ∼ UH − µB2

(2ν − 1)c
t−2ν+1
0 . (4.18)

Using the appropriate expansions in equation (2.9),17 one obtains the relation between t0
and u:

u ∼ t0 +
1

µξ(t0)
. (4.19)

For an asymptotically exponential ξ(t) this becomes

u ∼ 1

µA
eκDt0 . (4.20)

For a power law, one must again distinguish between three cases; for 1/2 < ν < 1:

u ∼ t0; (4.21)

for ν = 1:

u ∼
(

1 +
1

µB

)
t0; (4.22)

for ν > 1:

u ∼ 1

µB
tν0 . (4.23)

Putting together equations (4.15) and (4.20) one finds the relationship between U and u for
the exponential case:

U ∼ UH − 1

µc
u−1. (4.24)

For the power law one finds from equations (4.16)–(4.18) and (4.21)–(4.23), for 1/2 < ν < 1:

U ∼ UH − B

c
u−ν; (4.25)

for ν = 1:

U ∼ UH − (1 + µB)2µcu−1; (4.26)

and finally, for ν > 1:

U ∼ UH − (µB)1/ν

(2ν − 1)µc
u−(2−1/ν). (4.27)

In all these cases, quasi-particle production is neither universal, nor Planckian.

4.4. Double-sided black hole configurations

It is not difficult to prove that in the formation, in a finite amount of time, of double-sided non-
extremal black holes, double-sided extremal black holes and double-sided critical black holes,
the asymptotic relation between U and u is identical to that calculated in the corresponding
subsections above. The amount and features of quasi-particle creation are then the same.
We will demonstrate this in detail for the case of a double-sided critical black hole, and then
proceed to consider the situation in which the formation takes place in an infinite amount of
time.
17 Or equation (4.14) in [5].
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4.4.1. Finite time. Using the same notation as in section 3.4.2, let us call t1 the largest of
the t1’s that satisfy equation (3.9), so t1 is the time at which a right-going ray last crosses the
kink on the left. There will be some regular relationship between U and t1, expressed by some
differentiable function f , so that we can write U = f (t1). For the event horizon to exist,
the corresponding U must be finite (equal to some value UH, say), so also t1H = f −1(UH)

must be finite (as already done in section 3.4.2, we denote by a suffix ‘H’ the quantities that
correspond to the horizon generator).

For a ray very close to the horizon generator we have

U = UH + f (t1) − f (t1H) ∼ UH − ḟ (t1H)(t1H − t1), (4.28)

where a dot denotes the derivative with respect to t. On the horizon, t2 = tH so equation (3.9)
reduces to

ξ(t1H) + I =
∫ tH

t1H

dt[c + v̄(ξ(t))]. (4.29)

Subtracting (4.29) from (3.9) we obtain

ξ(t1) − ξ(t1H) = −ξ(t2) +
∫ t1H

t1

dt[c + v̄(ξ(t))] −
∫ tH

t2

dt[c + v̄(ξ(t))]. (4.30)

For a ray close to the horizon generator, t2 is close to tH, and t1 close to t1H, so equation (4.30)
gives, keeping only terms to the leading order:

t1H − t1 ∼ λ

c + v̄(ξ(t1H)) + ξ̇ (t1H)
(tH − t2). (4.31)

Together, equations (4.28) and (4.31) provide a linear link between U and t2. Since the
relationship between t2 and u is exactly the same as the one between t0 and u in equation (4.3),
the final result is again the one expressed by (4.4):

U ∼ UH − const e−κu.

4.4.2. Infinite time. Assuming that we are in a situation for which the event horizon does
indeed exist, we can subtract equation (3.12) with t1 → t1H from equation (3.9), finding:

ξ(t1) − ξ(t1H) = −ξ(t2) +
∫ t1H

t1

dt[c + v̄(ξ(t))] −
∫ +∞

t2

dt[c + v̄(ξ(t))]. (4.32)

For a ray close to the horizon generator, t1 is close to t1H and t2 is large, so

t1H − t1 ∼ ξ(t1) + κ
∫ +∞
t2

dt ξ(t)

c + v̄(ξ(t1H)) + ξ̇ (t1H)
. (4.33)

For an asymptotically exponential ξ(t) we find, performing the integral,

t1H − t1 ∼ A

c + v̄(ξ(t1H)) + ξ̇ (t1H)

(
1 +

κ

κD

)
e−κDt2 . (4.34)

Similarly, for a power law with ν > 1:

t1H − t1 ∼ Bκ

(ν − 1)(c + v̄(ξ(t1H)) + ξ̇ (t1H))
t
−(ν−1)
2 . (4.35)

In both cases, the same results as in section 4.2, equations (4.10) and (4.11), follow.
In short, the amount and characteristics of the quasi-particle production calculated with the

double-sided configurations are exactly the same as those calculated with the simpler profiles
in the previous subsections except in two specific situations: the double-sided critical black
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Table 1. This is a summary of the results found for the different configurations analysed in the
paper. To the table we have to add the following comments: for double-sided extremal black hole
with I = 0, with an infinite time of formation and an asymptotic power law for ξ(t), the horizon
forms in the case ν = 1 if the further condition B < 1/µ holds. For the double-sided configurations
with I = 0 and an infinite time of formation, the asymptotic analysis is not sufficient for drawing
conclusions when ξ(t) is asymptotically exponential and κD = κ , and when ξ(t) is asymptotically
a power law and ν = 1, B = 1/µ. For those cases, one needs also consider subdominant terms in
ξ(t), so the results will depend on the details of formation.

Black hole type Horizon? Redshift Equation

Non-extremal Finite time Always Exponential (4.4)
Critical and Finite time Always Exponential (4.4)
double-sided critical Infinite Exponential Always Exponential (4.10)
with I �= 0 time Power law For ν > 1 Power law (4.11)

Extremal and Finite time Always Power law (4.14)
double-sided extremal Infinite Exponential Always Power law (4.24)
with I �= 0 time Power law For ν > 1/2 Power law (4.25)–(4.27)

Double-sided Finite time Always Exponential (4.4)
critical Infinite Exponential For κD > κ Exponential (4.10)
with I = 0 time Power law Never

Double-sided Finite time Always Power law (4.14)
extremal Infinite Exponential Always Power law (4.24)
with I = 0 time Power law For ν � 1 Power law (4.26)–(4.27)

hole with I = 0 (see figure 11) and the double-sided extremal black hole. In the critical case,
only the asymptotically exponential behaviour with κD > κ produces an event horizon and,
therefore, only then we can talk about a stationary and Planckian creation of quasi-particles.
In the extremal case the results described in section 4.3.2 only apply for ν � 1 (with the
further condition B < 1/µ in the particular case ν = 1), because otherwise the event horizon
itself does not exist.

5. Conclusions and discussion

In the present paper we have analysed different dynamical black hole-like analogue geometries
with regard to their properties in terms of quantum quasi-particle production. We have taken
several (1 + 1)-dimensional spacetimes (considered as externally fixed backgrounds), and for
each of them we (i) have calculated whether it possesses an event horizon or not, and if the
answer is ‘yes’, (ii) have calculated the asymptotic redshift function that characterizes the
amount and properties of the late-time quasi-particle production. In table 1 the reader can find
a summary of all our results.

The above results are pertinent to a purely mathematical model. Their physical relevance
has to be assessed with respect to their application to both experimental reproduction of the
analogue Hawking radiation, and to the lessons they can provide concerning the possible
behaviour of black hole formation and evaporation in semiclassical gravity. We now turn to
separately consider these two issues.

5.1. Experimental realizability

The study carried on in this paper has identified several velocity profiles that are potentially
interesting for experiments. In particular the critical black hole models seem worth taking into
consideration in connection with the realizability of a Hawking-like flux in the laboratory. The
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creation of supersonic configurations in a laboratory is usually associated with the development
of instabilities. There are many examples of the latter in the literature; e.g. in [21] it was shown
that in an analogue model based on ripplons on the interface between two different sliding
superfluids (for instance, 3He-phase A and 3He-phase B), the formation of an ergoregion
would make the ripplons acquire an amplification factor that eventually would destroy the
configuration. Therefore, this analogue system, although very interesting in its own right,
will prove to be useless in terms of detecting a Hawking-like flux. However, by creating,
instead of an ergoregion, a critical configuration one should be able, at least, to have a better
control of the incipient instability, while at the same time producing a dynamically controllable
Hawking-like flux.

Nevertheless, the actual realization of a critical configuration could also appear as a
problematic task for entirely different reasons. The corresponding velocity profiles are
characterized by discontinuities in the derivatives, so one might wonder whether they would
be amenable to experimental construction, given that the continuum model is only an
approximation. Let us therefore discuss in some detail the validity of the latter for realistic
systems.

The main difference between an ideal perfect fluid model and a realistic condensed matter
analogue is due to the microscopic structure of the system considered. In particular, it is
generic to have a length scale δ which characterizes the breakdown of the continuum model
(δ is of the order of the intermolecular distance for an ordinary fluid; of the coherence length
for a superfluid; and of the healing length for a Bose–Einstein condensate). In general, the
viability of the analogue model requires one to consider distances 
 of order of at least a few
δ, depending on the accuracy of the experiment performed. In particular, wave propagation
is well defined only for wavelengths larger than δ (generally with an intermediate regime, for
wavelengths between δ and 
, where the phenomena exhibit deviations with respect to the
predictions based on the continuum model).

In general, a mathematical description based on the continuum model contains details
involving scales smaller than 
 (for example, in the velocity profile). These details should,
however, be regarded as unphysical: they are present in the model, but do not correspond to
properties of the real physical system. In particular, they cannot be detected experimentally,
because this would require e.g. using wavelengths smaller than 
, which do not behave
according to the predictions of the model (and for wavelengths smaller than δ do not even
make physical sense).

For the mathematical models considered in the present paper, all this implies that one
will not be able to distinguish, on empirical grounds, between those cases for which the
velocity profiles differ from each other only by small-scale details. In particular, double-sided
configurations with I = 0 should be equivalent to configurations with a small, but non-zero,
thickness I < 
. Also, one would not be able to distinguish between two velocity profiles
that differ only in a neighbourhood 
 of x = 0, one of which corresponds to a critical black
hole, while the other describes an extremal one. In particular Hawking radiation will not
distinguish between the models within each of these pairs.

This fact would not be troublesome, had our analysis led to identical results for the
acoustic black holes of each pair. However, this is not the case (see table 1). But then what
shall we see if we realize these models in a laboratory?

In realistic situations, what is relevant for Hawking radiation is a coarse-grained profile
obtained by averaging over a scale of order 
, thus neglecting the unphysical small scale
details in v̄(x). This implies that as far as double-sided critical black holes are concerned,
the reliable results are those pertinent to the non-zero thickness case (I �= 0). Similarly, since
these extremal black holes are never exactly realizable in a laboratory (as this would require
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tuning the velocity profile on arbitrary small scales), only the predictions based on the critical
black hole mathematical model will survive in an experimental setting. Indeed, the relevant
surface gravity will be defined by averaging the slope of the velocity profile over scales which
are of the order of 
.18 This averaged surface gravity will be non-zero for both the critical and
the extremal black hole, but will be approximately equal to the surface gravity at the horizon
of the critical black hole, while it will obviously not coincide with the one of the extremal
(which is zero).

5.2. Hints for semiclassical gravity

In the body of the paper we have used a terminology particularly suitable to dealing with
analogue models based on acoustics. Let us now discuss the most relevant features of our
findings using a language more natural to GR.

When the geometry associated with the formation of a spherically symmetric black hole
through classical gravitational collapse (as, for example, in the Oppenheimer–Snyder model
[18]) is described in terms of Painlevé–Gullstrand [19] coordinates (whose counterparts, in
the context of acoustic geometries, are the natural laboratory coordinates x and t), the apparent
horizon forms in a finite amount of coordinate time. In this regard, the Painlevé–Gullstrand
time behaves similarly to the proper time measured by a freely-falling observer attached to
the surface of the collapsing star. The non-extremal, non-critical (1 + 1)-dimensional model
analysed in this paper, captures the main features of the formation of a (non-extremal) black
hole. The dynamical collapse is represented by the function ξ(t) in our calculations. In the
language of GR, we can think of ξ(t) as the radial distance between the surface of a collapsing
star and its Schwarzschild radius; ξ(tH) = 0 corresponds to the moment in which the surface
of the star enters its Schwarzschild radius, and this moment corresponds to a finite time (which
we took to be tH).

For this model we recovered Hawking’s result that the formation of (non-extremal) black
holes causes the quantum emission towards infinity of a stationary stream of radiation with a
Planckian spectrum, at temperature κ/(2π). The mechanism for particle creation is somewhat
‘more than dynamical’ as the characteristics of the stationary stream of particles are ‘universal’
and only depend on the properties of the geometry at the horizon, κ , and not on any detail of
the dynamical collapse. Indeed, for ξ(t) given by equation (2.4)—apparent horizon formation
in a finite amount of time—we have seen that asymptotic quasi-particle creation does not
depend even on the coefficient λ. That is, particle production does not depend on the velocity
with which the surface of the collapsing star enters its Schwarzschild radius.

This picture leans towards the (quite standard) view that Hawking’s process is not just
dynamical, but relies on the actual existence of an apparent horizon and an ‘ergoregion’ beyond
it, able to absorb the negative energy pairs [7, 20]. However, by analysing alternative models,
in this paper we have seen two unexpected things:

(i) One can also produce a truly Hawking flux with a temperature κ/(2π) through the
formation in a finite amount of time of either a single-sided critical black hole, or a
double-sided critical black hole of finite ‘thickness’, or even one of zero ‘thickness’ (see
figure 11). This is an intriguing result, as in none of these cases there is an ‘ergoregion’
beyond the apparent horizon, and in the last case there is just a single sonic point. (In the
language of GR, this last configuration corresponds to stopping the collapse of a star at
the very moment in which its surface reaches the Schwarzschild radius.)

18 The average is the one from the right, since we know that it is the slope in the proximity of the second kink that is
responsible for the Hawking-like effect.
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(ii) Moreover, one can also produce a stationary and Planckian emission of quasi-particles
by, instead of actually forming the apparent horizon, just approaching its formation
asymptotically in time with sufficient rapidity (ξ(t) ∼ e−κDt ). In this case the temperature
is not THawking = κ/(2π) but Teff = κeff/(2π), with19

κeff := κκD

κ + κD
, (5.2)

and (at any finite time) there is neither an apparent horizon nor an ergoregion within the
configuration. Explanations of particle production based on tunnelling then seem not
viable, and the phenomenon is closer to being interpreted as dynamical in origin. If fact,
these configurations interpolate between situations in which the dynamics appears more
prominently—when κD � κ we have that the temperature goes as κD/(2π)—and others
in which the characteristics of the approached configuration are the more relevant and
‘universality’ is recovered—when κD 	 κ we have that the temperature goes as κ/(2π),
indistinguishable from Hawking’s result.

By looking at our simple critical model, we can say that, in geometrical (kinematical)
terms, in order to obtain a steady and universal flux of particles from a collapsing (spherically
symmetric) star there is no need for its surface to actually cross the Schwarzschild radius; it is
sufficient that it tends towards it asymptotically (in proper time), with sufficient rapidity.

Our critical configurations could prove to be relevant also in the overall picture of
semiclassical collapse and evaporation of black hole-like objects. Our results based on critical
configurations suggest an alternative scenario to the standard paradigm. At this stage we are
only able to present it in qualitative and somewhat speculative terms. Being aware of the
various assumptions that could ultimately prove to be untenable, we still think it is worth
presenting this possible alternative scenario.

Imagine a dynamically collapsing star. The collapse process starts to create particles
dynamically before the surface of the star crosses its Schwarzschild radius (this particle
creation is normally associated with a transient regime and has nothing to do with Hawking’s
Planckian radiation). The energy extracted from the star in this way will make (due to energy
conservation) its total mass decrease, and so also its Schwarzschild radius. By this argument
alone, we can see that a process is established in which the surface of the star starts to closely
chase its Schwarzschild radius while both collapse towards zero (this situation was already
described by Boulware in [22]). Now, the question is: will the surface of the shrinking star
capture its shrinking Schwarzschild radius in a finite amount of proper time?

Let us rephrase this question in the language of this paper. In an evaporating situation our
function ξ(t) still represents the distance between the surface of the star and its Schwarzschild
radius. The standard answer to the previous question is that ξ(t) becomes zero in a finite
amount of proper time. To our knowledge, this view (while certainly plausible) is not
guaranteed by explicit systematic and compelling calculations but still relies on somewhat
qualitative arguments. The standard reasoning can be presented as follows: for sufficiently
massive collapsing objects, the classical behaviour of the geometry should dominate any
quantum back-reaction at any and all stages of the collapse process, as Hawking’s temperature

19 In terms of the inverse temperature β = 1/T = 2π/κ we have the rather suggestive result

βeff = βHawking + βD, (5.1)

where we have formally defined βD = 2π/κD.
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(considered as an estimate of the strength of this back-reaction) is very low; quantum effects
would be expected to become important only at the last stages of the evaporation process20.

However, in opposition to this standard view, Stephens, ’t Hooft and Whiting [24] have
argued for the mutual incompatibility of the existence of external observers measuring a
Hawking flux and, at the same time, the existence of infalling observers describing magnitudes
beyond the apparent horizon. The reason is that the operators describing any feature of the
Hawking flux do not commute (and this non-commutation blows up at late times) with the
infalling components of the energy–momentum tensor operator at the horizon. Therefore, if
we accept this argument, the presence of a Hawking flux at infinity would be incompatible with
the actual formation of the trapping horizon, which would be destroyed by the back-reaction
associated with Hawking particles. This fact leads these authors (seeking for self-consistency),
to look for the existence of a Hawking flux (or at least a flux looking very much like it) in
background geometries in which the collapse process of the star is halted, just before crossing
the Schwarzschild radius, producing a bounce. (In our language this could be represented by
a function ξ(t) monotonically decreasing from t = −∞ to some t = t∗, at which it reaches a
very small positive value, and then monotonically increasing from t = t∗ to t = +∞.) In their
analysis they found exactly that: an approximately Planckian spectrum of particles present at
infinity during a sufficiently long time interval.

However, the modified behaviour that deviates the least from the classical collapse picture,
and at the same time eliminates the trapping horizon, is that in which ξ(t) does not reach zero,
but just ‘asymptotically approaches zero’ at infinite proper time, and does that very quickly.
This is represented in our critical configurations by the exponential behaviour ξ(t) ∼ e−κDt

with a very large κD. The interesting point is that the analysis in this paper suggests that with
quasi-stationary configurations like this, one could expect quasi-stationary Planckian radiation
at a temperature very close to κ/(2π), just like in the Hawking process.

Standard GR suggests that the surface gravity κ (inversely proportional to the total mass
of the star) would increase with time through the back-reaction caused by the quantum
dissipation. Moreover, it is sensible to think that during the evaporation process κD would
also depend on t. As the evaporation temperature increases (κ increases) the back-reaction
would become more efficient and therefore we might expect that κD decreases. Then, one
could arrive at a situation as the one portrayed in figure 16. The evolution of the evaporation
temperature would interpolate between a starting temperature completely controlled by κ

and a late time temperature completely controlled by κD, showing a possible semiclassical
mechanism for regularizing the end point of the evaporation process. In this scenario the
complete semiclassical geometry will have neither an apparent horizon nor an event horizon. In
this circumstance there would be no trans-Planckian problem, nor information loss associated
with the collapse and evaporation of this black hole-like object. Whether this scenario is viable
or not will be the subject of future work.

Let us end by making a brief comment concerning modified dispersion relations.
Everything we said in this paper assumes strict adherence to Lorentz symmetry. Even if
semiclassical gravity contained Lorentz-violating traces in the form of modified dispersion
relations at high energy, one would still expect that the resulting scenario for the collapse and
evaporation of a black hole-like object would keep the quasi-stationary Hawking-like flux of
particles as a robust prediction [25]. However, the complete conceptual scenario could be
very different. In the presence of dispersion at high energies, the notion of horizon itself
shows up only as a low-energy concept. For example, with superluminal modifications of the

20 In [23], Ashtekar and Bojowald advocate for a different view in which they clearly associate the quantum effects
with the formation of the singularity and not just with the last stages of the evaporation process. In their proposed
scenario the formation of a trapped horizon does not need to imply loss of information.
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Figure 16. Possible behaviour of the evaporation temperature in an alternative semiclassical
collapse and evaporation process based on critical configurations.

dispersion relations, high energy signals will be able to escape from the trapped region. The
non-analytic behaviour of some sets of modes at the horizon becomes regularized. Therefore,
the Stephens–’t Hooft–Whiting obstruction described above forbidding the formation of a
(now approximate) trapping horizon need no longer apply. We expect that by analysing
different analogue models in which the Lorentz violating terms appear at different energy
scales one would be able to explore the transition between all these alternative paradigms.
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[2] Barceló C, Liberati S and Visser M 2005 Analogue gravity Living Rev. Relativ. 8 12 (Preprint gr-qc/0505065.)

URL (cited on 22 March 2006): http://www.livingreviews.org/lrr-2005-12
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