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Abstract
We demonstrate that the emergence of a curved spacetime ‘effective Lorentzian
geometry’ is a common and generic result of linearizing a classical scalar field
theory around some non-trivial background configuration. This investigation
is motivated by considering the large number of ‘analogue models’ of general
relativity that have recently been developed based on condensed matter physics,
and asking whether there is something more fundamental going on. Indeed,
linearization of a classical field theory (that is, a field-theoretic ‘normal-
mode analysis’) results in fluctuations whose propagation is governed by
a Lorentzian-signature curved spacetime ‘effective metric’. In the simple
situation considered in this paper (a single classical scalar field), this procedure
results in a unique effective metric, which is quite sufficient for simulating
kinematic aspects of general relativity (up to and including Hawking radiation).
Upon quantizing the linearized fluctuations around this background geometry,
the one-loop effective action is guaranteed to contain a term proportional to
the Einstein–Hilbert action of general relativity, suggesting that while classical
physics is responsible for generating an ‘effective geometry’, quantum physics
can be argued to induce an ‘effective dynamics’. The situation is strongly
reminiscent of, though not identical to, Sakharov’s ‘induced-gravity’ scenario,
and suggests that Einstein gravity is an emergent low-energy long-distance
phenomenon that is insensitive to the details of the high-energy short-distance
physics. (We mean this in the same sense that hydrodynamics is a long-distance
emergent phenomenon, many of whose predictions are insensitive to the short-
distance cut-off implicit in molecular dynamics.)

PACS numbers: 0440, 0460, 1110, 4520

1. Introduction

The idea of building analogue models of, and possibly for, general relativity is currently
attracting considerable attention [1]. Because of the extreme difficulty (and inadvisability)
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of working with intense gravitational fields in a laboratory setting, interest has now turned to
investigating the possibility of simulating aspects of general relativity—though it is not a priori
expected that all features of Einstein gravity can successfully be carried over to the condensed
matter realm. Numerous rather different physical systems have now been seen to be useful for
developing analogue models of general relativity.

(a) Dielectric media: a refractive index can be reinterpreted as an effective metric, the Gordon
metric (Gordon [2], Skrotskii [3], Balazs [4], Plebañski [5], de Felice [6] and many others).

(b) Acoustics in flowing fluids: acoustic black holes, also known as ‘dumb holes’ (Unruh [7],
Jacobson [8], Visser [9], Liberati et al [10] and many others).

(c) Phase perturbations in Bose–Einstein condensates: formally similar to acoustic
perturbations, and analysed using the nonlinear Schrödinger equation (Gross–Pitaevskii
equation) and Landau–Ginzburg Lagrangian; typical sound speeds are cm s−1 to mm s−1.
(Garay et al [11], Barceló et al [12]).

(d) High-refractive-index dielectric fluids (‘slow light’): in dielectric fluids with an extremely
high group refractive index it is experimentally possible to slow the speed of light to cm s−1

or less (Leonhardt and Piwnicki [13], Hau et al [14], Visser [15] and others).
(e) Quasi-particle excitations: fermionic or bosonic quasi-particles in a heterogeneous

superfluid environment (Volovik [16], Kopnin and Volovik [17], Jacobson and Volovik [18]
and Fischer [19]).

(f) Nonlinear electrodynamics: if the permittivity and permeability themselves depend on
the background electromagnetic field, photon propagation can often be recast in terms of
an effective metric (Plebañski [20], Alarcón et al [21], Salazar et al [22], Dittrich and
Gies [23], Novello et al [24]).

(g) Linear electrodynamics: if you do not take the spacetime metric itself as being
primitive, but instead view the linear constitutive relationships of electromagnetism as
the fundamental objects, one can nevertheless reconstruct the metric from first principles
(Hehl, Obukhov, and Rubilar [25–27]).

(h) Scharnhorst effect: anomalous photon propagation in the Casimir vacuum can be
interpreted in terms of an effective metric (Scharnhorst [28], Barton [29], Liberati et al [30]
and many others).

(i) Thermal vacuum: anomalous photon propagation in QED at non-zero temperature can be
interpreted in terms of an effective metric (Gies [31]).

(j) ‘Solid state’ black holes (Reznik [32], Corley and Jacobson [33] and others).
(k) Astrophysical fluid flows: Bondi–Hoyle accretion and the Parker wind (coronal outflow)

both provide physical examples where an effective acoustic metric is useful, and where
there is good observational evidence that acoustic horizons form in nature (Bondi [34],
Parker [35], Moncrief [36], Matarrese [37] and many others).

(l) Other condensed-matter approaches that do not quite fit into the above classifications
[38, 39].

A literature search as of April 2001 finds well over 100 scientific articles devoted to one or
another aspect of analogue gravity and effective metric techniques. The sheer number of
different physical situations lending themselves to an ‘effective metric’ description strongly
suggests that there is something deep and fundamental going on. Typically these are models
of general relativity, in the sense that they provide an effective metric and so generate the basic
kinematical background in which general relativity resides; in the absence of any dynamics
for that effective metric we cannot really speak about these systems as models for general
relativity. However, as we will discuss more fully bellow, quantum effects in these analogue
models might provide some sort of dynamics resembling general relativity.
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On a related front (and we will see the connection soon enough), the particle physics and
relativity communities have also seen Lorentz symmetry emerge as a low-energy approximate
symmetry in several physical situations.

(a) As an infrared fixed point of the renormalization group in certain non-Lorentz invariant
quantum field theories (Nielsen and Picek [40]).

(b) As a low-momentum approximation to acoustic propagation in the presence of viscosity
(Visser [9]).

(c) As a low-momentum approximation to quasi-particle propagation governed by the
Bogolubov dispersion relation (Barceló et al [12]).

(d) In certain other quasi-particle dispersion relations (Volovik [41]).

On a third front, the last few years have seen an increasing number of indications that
Einstein gravity (and even quantum field theory) may not be as ‘fundamental’ as was once
supposed.

(a) Induced gravity: in ‘induced-gravity’ models à la Sakharov [42] the dynamics of gravity is
an emergent low-energy phenomenon that is not fundamental physics. In those models the
dynamics of gravity (the approximate Einstein equations) is a consequence of the quantum
fluctuations of the other fields in the theory. (In induced-gravity models gravitation is
not fundamental in exactly the same sense that phonons are not fundamental: phonons
are collective excitations of condensed matter systems. Phonons are not fundamental
particles in the sense of, say, photons. However, this should not stop you from quantizing
the phonon field as long as you realize you should not take phonons seriously at arbitrarily
high momenta.)

(b) Effective field theory for gravity: Donoghue [43] has argued strongly that quantum gravity
itself should simply be viewed as an effective field theory, in the same sense that the Fermi
theory of the weak interactions is an effective field theory—it still makes sense to quantize
in terms of gravitons [44], but the high-energy physics is likely to be rather different from
what could be guessed based only on observing low-energy excitations, and you should
not necessarily take the gravitons seriously at arbitrarily high momenta.

(c) Effective field theory in general: indeed, even strictly within the confines of particle
physics, attitudes towards effective theories seem to be changing—they are now much
more likely to be used, at least as computational tools. As long as one has a clear
understanding of when to stop taking them seriously effective theories are perfectly good
physics even if they are not ‘fundamental’ [45, 46].

These various observations led us to suspect the existence of a general pattern: that
the occurrence of something like an approximate Lorentz symmetry, and something like an
approximate non-trivial ‘effective metric’ might be an inescapable general consequence of
classical and quantum field theories being viewed as dynamical systems. In this paper we take
some important steps in this direction, and indicate the issues that still must be tackled.

Remember that for mechanical systems with a finite number of degrees of freedom small
oscillations can always be resolved into normal modes: a finite collection of uncoupled
harmonic oscillators. For a classical field theory you would also expect similar behaviour:
small deviations from a background solution of the field equations will be resolved into
travelling waves; then these travelling waves can be viewed as an infinite collection of
harmonic oscillators, or a finite number if the field theory is truncated in the infrared and
ultraviolet, to which you can then apply a normal-mode analysis. The physically interesting
question is whether this normal-mode analysis for field theories can then be reinterpreted in
a ‘geometrically clean’ way in terms of some ‘effective metric’ and ‘effective geometry’. We
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shall show that whenever we are dealing with a single scalar field the answer is definitely
yes: linearization of any Lagrangian-based dynamics, or linearization of any hyperbolic
second-order PDE, will automatically lead to an effective Lorentzian geometry that governs
the propagation of the fluctuations. (The general situation (multiple scalar fields, or a multi-
component vector or tensor) is quite algebraically messy—details of that situation will be
deferred for now.)

Once we have developed the notion of a derived ‘effective metric’ based on a linearization
procedure, we can certainly consider the effect of quantizing the linearized fluctuations. At
one-loop the quantum effective action will contain a term proportional to the Einstein–Hilbert
action—this is, in modern language, a key portion of Sakharov’s ‘induced-gravity’ idea [42].
In the closing segment of the present paper we argue that the occurrence of not just an ‘effective
metric’, but also an ‘effective geometrodynamics’ closely related to Einstein gravity is a largely
unavoidable feature of the linearization and quantization process.

2. Lagrangian analysis

Suppose we have a single scalar field φ whose dynamics is governed by some first-order
Lagrangian L(∂µφ, φ). (By ‘first-order’ we mean that the Lagrangian is some arbitrary function
of the field and its first derivatives.) We want to consider linearized fluctuations around some
background solution φ0(t, �x) of the equations of motion, and to this end we write

φ(t, �x) = φ0(t, �x) + εφ1(t, �x) +
ε2

2
φ2(t, �x) + O(ε3). (1)

Now use this to expand the Lagrangian around the classical solution φ0(t, �x):

L(∂µφ, φ) = L(∂µφ0, φ0) + ε

[
∂L

∂(∂µφ)
∂µφ1 +

∂L
∂φ

φ1

]
+
ε2

2

[
∂L

∂(∂µφ)
∂µφ2 +

∂L
∂φ

φ2

]

+
ε2

2

[
∂2L

∂(∂µφ) ∂(∂νφ)
∂µφ1 ∂νφ1 + 2

∂2L
∂(∂µφ) ∂φ

∂µφ1 φ1 +
∂2L
∂φ ∂φ

φ1 φ1

]

+O(ε3). (2)

It is particularly useful to consider the action

S[φ] =
∫

dd+1x L(∂µφ, φ), (3)

since doing so allows us to integrate by parts. (Note that the Lagrangian L is taken to be a
tensor density, not a scalar.) We can now use the Euler–Lagrange equations for the background
field

∂µ

(
∂L

∂(∂µφ)

)
− ∂L

∂φ
= 0, (4)

to discard the linear terms (remember we are linearizing around a solution of the equations of
motion) and so we obtain

S[φ] = S[φ0] +
ε2

2

∫
dd+1x

[{
∂2L

∂(∂µφ) ∂(∂νφ)

}
∂µφ1 ∂νφ1

+

(
∂2L
∂φ ∂φ

− ∂µ

{
∂2L

∂(∂µφ) ∂φ

})
φ1 φ1

]
+ O(ε3). (5)
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Having set things up this way, the equation of motion for the linearized fluctuation is now
easily read off as

∂µ

({
∂2L

∂(∂µφ) ∂(∂νφ)

}
∂νφ1

)
−

(
∂2L
∂φ ∂φ

− ∂µ

{
∂2L

∂(∂µφ) ∂φ

})
φ1 = 0. (6)

This is a second-order differential equation with position-dependent coefficients (these
coefficients all being implicit functions of the background field φ0). Following an analysis
developed for acoustic geometries (Unruh [7], Visser [9], Liberati et al [10], Barceló et al [12]),
which we now apply to this much more general situation, the above can be given a nice clean
geometrical interpretation in terms of a d’Alembertian wave equation—provided we define the
effective spacetime metric by

√−g gµν ≡ f µν ≡
{

∂2L
∂(∂µφ) ∂(∂νφ)

} ∣∣∣∣
φ0

. (7)

Suppressing the φ0 except when necessary for clarity, this implies (in (d + 1) dimensions, d
space dimensions plus one time dimension)

(−g)(d−1)/2 = − det

{
∂2L

∂(∂µφ) ∂(∂νφ)

}
. (8)

Therefore,

gµν(φ0) =
(

− det

{
∂2L

∂(∂µφ) ∂(∂νφ)

})−1/(d−1) ∣∣∣∣
φ0

{
∂2L

∂(∂µφ) ∂(∂νφ)

} ∣∣∣∣
φ0

. (9)

And, taking the inverse

gµν(φ0) =
(

− det

{
∂2L

∂(∂µφ) ∂(∂νφ)

})1/(d−1) ∣∣∣∣
φ0

{
∂2L

∂(∂µφ) ∂(∂νφ)

}−1 ∣∣∣∣
φ0

.

(10)

We can now write the equation of motion for the linearized fluctuations in the geometrical
form

[�(g(φ0)) − V (φ0)]φ1 = 0, (11)

where � is the d’Alembertian operator associated with the effective metric g(φ0), and V (φ0)

is the background-field-dependent potential

V (φ0) = 1√−g

(
∂2L
∂φ ∂φ

− ∂µ

{
∂2L

∂(∂µφ) ∂φ

})
(12)

=
(

− det

{
∂2L

∂(∂µφ) ∂(∂νφ)

})−1/(d−1) (
∂2L
∂φ ∂φ

− ∂µ

{
∂2L

∂(∂µφ) ∂φ

})
. (13)

Thus V (φ0) is a true scalar (not a density). Note that the differential equation (11) is
automatically formally self-adjoint (with respect to the measure

√−g dd+1x).
It is possible to modify the metric by a conformal factor—doing so preserves the causal

properties of the Lorentzian geometry but destroys formal self-adjointness. (Nevertheless, one
may be willing to pay this price if the payoff is high enough.) Specifically let us define

g̃µν ≡ exp(−2θ) gµν. (14)

Then √
−g̃ g̃µν exp[(d − 1)θ ] ≡ f µν ≡

{
∂2L

∂(∂µφ) ∂(∂νφ)

} ∣∣∣∣
φ0

. (15)
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A brief computation now yields[
�(g̃(φ0)) + (d − 1)∇θ · ∇ − Ṽ (φ0)

]
φ1 = 0, (16)

where the inner product is defined in terms of g̃ and now

Ṽ (φ0) ≡ exp(2θ) V (φ0). (17)

This could be used, for instance, to simplify the potential term at the cost of self-adjointness.
Generically, one would wish to preserve formal self-adjointness even at the cost of a more
complicated potential term, but we emphasize that at the level of causality there is no strong
reason for making a fixed choice.

It is important to realize just how general the result is (and where the limitations are):
it works for any Lagrangian depending only on a single scalar field and its first derivatives.
The linearized PDE will be hyperbolic (and so the linearized equations will have wave-like
solutions) if and only if the effective metric gµν has Lorentzian signature ±[−,+d ]. Observe
that if the Lagrangian contains non-trivial second derivatives you should not be too surprised to
see terms beyond the d’Alembertian showing up in the linearized equations of motion. Specific
examples of this in special cases are already known: for example, this happens in the acoustic
geometry when you add viscosity (Visser [9]; not really a Lagrangian system but the general
idea is the same), or in the quantum geometry of the Bose–Einstein condensate if you keep
terms arising from the quantum potential (Barceló et al [12]).

As a specific example of the appearance of effective metrics due to Lagrangian dynamics
we mention that inviscid irrotational barotropic hydrodynamics naturally falls into this scheme
(which is why, with hindsight, the derivation of the acoustic metric was so relatively
straightforward) [7, 9, 12]. In inviscid irrotational barotropic hydrodynamics the lack of
viscosity (dissipation) guarantees the existence of a Lagrangian; which a priori could depend
on several fields. Since the flow is irrotational �v = ∇ϑ is a function only of the velocity
potential, and the Lagrangian is a function only of this potential and the density. Finally, the
equation of state can be used to eliminate the density leading to a Lagrangian that is a function
only of the single field ϑ and its derivatives.

Note that in all of these cases the (fundamental) dimensionality of spacetime is put in by
hand—in the present formalism there is no way to determine the fundamental dimensionality
dynamically. (Of course in a Kaluza–Klein framework the effective dimensionality can change
if some dimensions and become small for dynamical reasons.) Also note that d = 1 space
dimensions is special, and the present formulation does not work unless det(f µν) = 1.
This observation can be traced back to the conformal covariance of the Laplacian in 1 + 1
dimensions, and implies (perhaps ironically) that the only time the procedure risks failure is
when considering a field theory defined on the worldsheet of a string-like object.

We next demonstrate that even if you do not have a Lagrangian, it is still possible to extract
an ‘effective metric’ for a system with one degree of freedom. (More precisely, we can define
a conformal class of effective metrics. We shall see that the analysis is not as geometrically
‘clean’.)

3. Second-order hyperbolic PDE: linearization and geometrical interpretation

Consider an arbitrary second-order hyperbolic PDE written in the form

F(x, φ, ∂µφ, ∂µ∂νφ) = 0. (18)

The function F and the field φ are taken to be real. The PDE does not have to be linear or
even quasi-linear. Defining hyperbolicity for such a general equation is not trivial—not even
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Courant and Hilbert [47] deal with this particular case explicitly. Instead we shall slightly
adapt the definitions of Courant and Hilbert, using them to define hyperbolicity for this system
in terms of the linearized equation.

So, suppose we linearize around some solution φ0, writing

φ(t, �x) = φ0(t, �x) + εφ1(t, �x) + O(ε2). (19)

Then

∂F

∂(∂µ∂νφ)
∂µ∂νφ1 +

∂F

∂(∂µφ)
∂µφ1 +

∂F

∂φ
φ1 = 0. (20)

Thus the fluctuation satisfies a second-order linear PDE with time-dependent and position-
dependent coefficients (these coefficients again depend on the background field about which
one is linearizing), though the linear PDE looks somewhat different from what we encountered
in the Lagrangian analysis. The linearized PDE is said to be hyperbolic if the matrix
∂F/∂(∂µ∂νφ)has ‘Lorentzian’ signature ±[−,+d ]. This corresponds to standard mathematical
usage, as given for instance in volume 2 of Courant and Hilbert [47] or in the Encyclopedic
Dictionary of Mathematics [48].

To give a geometrical interpretation to the linearized PDE we start by regrouping the
coefficients as follows:

∂µ

{
∂F

∂(∂µ∂νφ)
∂νφ1

}
+

{
∂F

∂(∂µφ)
− ∂µ

(
∂F

∂(∂µ∂νφ)

)}
∂µφ1 +

∂F

∂φ
φ1 = 0. (21)

Now define

f µν ≡ ∂F

∂(∂µ∂νφ)
, (22)

and

�µ ≡ ∂F

∂(∂µφ)
− ∂µ

(
∂F

∂(∂µ∂νφ)

)
. (23)

Then

∂µ {f µν∂νφ1} + �µ∂µφ1 +
∂F

∂φ
φ1 = 0. (24)

To complete the geometrical interpretation, it is most elegant to modify the formalism
developed for Lagrangian dynamics and define a conformal class of metrics by

�−(d−1) √−g gµν(φ) ≡ f µν. (25)

Here � is (for now) a free variable, which will be chosen to simplify the final result. In terms
of this metric the PDE becomes

�−(d−1) √−g �φ1 +
[
�µ − (d − 1)�−(d−1) √−g gµν∂ν ln�

]
∂µφ1 +

∂F

∂φ
φ1 = 0. (26)

We now construct the vector

Aµ(φ0) = �(d−1)

√−g

[
�µ − (d − 1)�−(d−1) √−g gµν ∂ν ln�

]

= �(d−1)

√−g

[
�µ − (d − 1)f µν ∂ν ln�

]
(27)
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and define the potential

V (φ0) = −�(d−1)

√−g

∂F

∂φ
. (28)

After all this the linearized PDE becomes[
�(g(φ0)) + Aµ(φ0) ∂µ − V (φ0)

]
φ1 = 0. (29)

This is the geometrical formulation we are searching for.
The conformal factor �, buried in the definitions of gµν , Aµ and V , is at this stage

arbitrary and may be chosen to simplify the formulae below according to some convenient
prescription. In particular, and in contrast to the Lagrangian-based analysis, the linearized
PDE is not automatically self-adjoint. Formal self-adjointness is equivalent to being able to
choose Aµ(φ0) = 0. This can be done if and only if the covariant vector

Bµ = [f −1]µν �
ν =

[(
∂F

∂(∂•∂•φ)

)−1
]
µν

{
∂F

∂(∂νφ)
− ∂σ

(
∂F

∂(∂σ ∂νφ)

)}
(30)

is exact. Observe that this vector is defined directly in terms of the coefficients in the linearized
PDE, without having to pre-choose the conformal factor �(φ). If Bµ is exact (Bµ = ∂µ�)
then we can choose � according to the prescription

�d−1 = exp(�). (31)

This has the effect of fixing the conformal factor � and the metric g in such a way that Aµ = 0.
In this case the linearized PDE is self-adjoint and extremely compact

[�(g(φ0)) − V (φ0)]φ1 = 0, (32)

where � is the d’Alembertian operator associated with the effective metric g, and V is the
scalar potential. This finally is identical in form to the equation derived on the basis of the
Lagrangian analysis.

While several of the technical details are different from the Lagrangian-based analysis,
the basic flavour is the same: the key point is that hyperbolicity of the linearized PDE is
defined in terms of the presence of a matrix of indefinite signature ±[−,+d ]. This matrix is
enough to define a conformal class of Lorentzian metrics, and picking the ‘right’ member of
the conformal class is largely a matter of taste—do whatever makes the ‘geometrized’ equation
look cleanest. (In particular, if Bµ is exact there is a unique conformal class that makes the
linearized PDE self-adjoint.)

It is very important to stress that the hyperbolic character of these systems (versus elliptic,
parabolic or ‘other’) is encoded in the coefficients of the second-derivative terms in (20)
(or (11)). If we assume a hyperbolic equation, then the null cones defined by the metric
gµν(x) contain all the pointwise information about the propagation of waves at arbitrarily
large momentum. Equivalently, the null cones determine the propagation of sharp pulses. In
fact, since the characteristic surfaces, defined by

f (t, �x) = 0, with gµν ∂µf ∂νf = 0, (33)

are independent of an overall conformal factor in gµν ∝ ∂F/∂(∂µ∂νφ(q)) they take into
account only the causal structure of the geometry. Wave propagation at low momenta (as
opposed to eikonal ray propagation at high momenta) will depend in addition on the conformal
factor. That is, additional features of wave propagation will show up when looking at low
momenta—where the linear and zero-order terms in the PDE will be crucial.
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4. Induced gravity

At this stage we have derived the existence of a classical background metric gµν(φ0) and
linearized fluctuations governed by the equation

[�(g(φ0)) − V (φ0)]φ1 = 0. (34)

To quantize these linearized fluctuations, and see the manner in which they can back-react on
the geometry, we adopt the standard one-loop background field formalism. That is, we go all
the way back to the classical action given in equation (3) and write the fundamental field φ

as the sum of a background field (not necessarily satisfying the classical equations of motion)
plus a quantum fluctuation

φ = φb + φquantum. (35)

Then it is a standard result that integrating out the quantum fluctuations leads to the one-loop
result

�[φb] = S[φb] + 1
2 h̄ tr ln

[
δ2S

δφ δφ

∣∣∣∣
φb

]
+ O(h̄2). (36)

However, in view of our classical analysis performed in section (2) we know that

δ2S

δφ δφ

∣∣∣∣
φb

= �(g(φb)) − V (φb). (37)

So we can write

�[g(φb), φb] = S[φb] + 1
2 h̄ tr ln [�(g(φb)) − V (φb)] + O(h̄2). (38)

Here the determinant of the differential operator may be defined in terms of zeta functions
or heat kernel expansions [49–52]. Note that we have chosen the notation to emphasize
the fact that the effective action depends on the background field in two ways: explicitly
through φb, and implicitly through g(φb). The key point (more or less equivalent to Sakharov’s
‘induced-gravity’ proposal) is that defining the determinant requires both regularization and
renormalization, and that doing so introduces counterterms proportional to the first d/2 Seeley–
DeWitt coefficients [51–54]. The form of these counterterms is well known, and, in fact, for
the second-order differential operator �(g(φb)) − V (φb) we have

a0 = 1; (39)

a1 = 1
6R(g) − V (φb); (40)

a2 = 1
2

(
1
6R − V (φb)

)2
+ 1

6�V (φb) − 1
30�R − 1

180R
µν Rµν + 1

180R
µνρσ Rµνρσ . (41)

The higher-order Seeley–DeWitt coefficients are multinomials in the Riemann tensor, its
contractions, and covariant derivatives, and in the potential V (φb) and its covariant derivatives.
The zeroth Seeley–DeWitt coefficient a0 induces a cosmological constant, while a1 induces
an Einstein–Hilbert term. There are additional terms proportional to a2 (and a3 and higher in
more than (3 + 1) dimensions). The current experimental constraints on these terms are rather
weak [55].

In the original version of Sakharov’s idea [42], he introduced an explicit ultraviolet cut-
off—this approach is equivalent to writing

ln [�(g(φb)) − V (φb)]cut-off =
∫ ∞

cut-off

ds

s
exp(−s [�(g(φb)) − V (φb)]). (42)



3604 C Barceló et al

The asymptotic expansion of the heat kernel for small s then reads

〈x| exp(−s [�(g(φb)) − V (φb)])|x〉 = 1

(4πs)d/2

[
N∑
n=0

an s
n + O(sN+1)

]
. (43)

So that

〈x| ln [�(g(φb)) − V (φb)]cut-off |x〉 = 1

(4π)d/2

[
d/2∑
n=0

an (cut-off)n−d/2 + finite

]
. (44)

As usual, one should interpret (cut-off)0 as ln(cut-off) [56]. Again we see that the effective
action contains terms proportional to a cosmological constant, the Einstein–Hilbert action, and
others. It is most useful to organize the terms in the effective action in a gradient expansion in
the effective metric and background field. All in all:

�[g(φb), φb] = S[φb] + h̄

∫ √−g κ [−2( + R(g(φb))] dd+1x + h̄X[g(φb), φb] + O(h̄2).

(45)

Here κ and ( are constants of dimensions (mass)2 (that is, (length)−2) that emerge from
the renormalization procedure. Finally, X(φb) denotes all other finite contributions to the
renormalized one-loop effective action (including gradient and curvature-squared contributions
coming from a2, plus possible background-field-dependent modifications of κ and ( coming
from a1 and a2). Phenomenologically, we will want to eventually relate κ to the Newton
constant, and ( to the cosmological constant. It is the automatic emergence of the Einstein–
Hilbert action as part of the one-loop effective action that is the salient point.

Note that our approach is not identical to Sakharov’s idea—in his proposal the metric was
put in by fiat, but without any intrinsic dynamics; all the dynamics was generated via one-loop
quantum effects. (Implicit in Sakharov’s approach is the assumption that if there is high-energy
microphysics leading to the notion of the metric, then it should decouple from the low-energy
physics; more on this point below.) In our proposal the very existence of the effective metric
itself is an emergent phenomenon. In Sakharov’s approach the metric was free to be varied at
will, leading precisely to the Einstein equations (plus quantum corrections); in our approach
the metric is not a free variable and the equations of motion will be a little trickier.

The quantum equations of motion are defined in the usual way by varying with respect to
the background φb. It is important to remember that the metric is a function of the background
field so that it does not make sense to vary the metric independently—we must always evaluate
variations using the chain rule. Thus

δ�[g(φb), φb]

δφb(x)
≡ δ�[g(φb), φb]

δφb(x)

∣∣∣∣
gb

+
δ�[g(φb), φb]

δgµν

∣∣∣∣
φb

δgµν(φb)

δφb(x)
. (46)

Applied to the one-loop action the equations of motion are

δ�[g(φb), φb]

δφb(x)
= 0 =

{
δS[φb]

δφb
+ h̄

δX[g(φb), φb]

δφb

∣∣∣∣
gb

}

+h̄

{
κ(φb)

√
g

[
Gµν(g) + ((φb)g

µν
]

+
δX[g(φb), φb]

δgµν

∣∣∣∣
φ0

}
δgµν(φb)

δφb(x)
+ O(h̄2).

(47)

These are not the Einstein equations, but they are closely related: the first two terms on the
right-hand side are problematic in that they encode the dependence on the original background
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geometry (typically Minkowski space) implicitly used in setting up the fundamental
Lagrangian, while the next three terms involve the effective metric and are similar to those
obtained in studies of embedded-submanifold versions of general relativity; see, for example,
Regge and Teitelboim [57] and Deser et al [58]. To obtain Einstein-like dynamics we need to
suppress the dependence on the original background metric, and write these equations solely
in terms of the effective metric g(φ0). This can be done if and only if there exists a functional
Z[g(φ0)], which depends on φ0 only implicitly via the effective metric, such that∫

L[φb] dd+1x + h̄ X[g(φb), φb] = h̄ Z[g(φb)] + O(h̄2). (48)

This is, very definitely, a powerful restriction of the theory under consideration; but it appears
to be the minimal condition for something similar to Einstein dynamics to arise. In particular,
we view this particular hurdle as the single biggest issue facing the ‘induced-gravity’ proposal,
though some particular implementations of this idea may skirt the issue. For instance,
consider Volovik’s proposals to extract the dynamics of Einstein gravity from condensed matter
quasiparticle excitations [41]: Volovik essentially argues that certain theories might exhibit
‘one-loop dominance’ in the sense that the one-loop physics dominates over the zero-loop
physics. In contrast, Sakharov implicitly assumes that whatever the microphysics is, it has
effectively decoupled from the low-energy effective metric. Our expression in equation (48)
above is an explicit characterization of what this decoupling condition should be. Note that it
is quite sufficient for our purposes if this constraint holds as an approximation for some region
in field space surrounding the metrics of interest; it does not need to be a global constraint on
the theory. Given this constraint the background geometry (the microphysics) decouples from
the effective metric (the macrophysics) and we have{

κ
[
Gµν(g) + (gµν

]
+

1√
g

δZ[g(φb)]

δgµν

}
δgµν(φb)

δφb(x)
= O(h̄). (49)

The δZ[g]/δg term now encodes three separate terms form equation (47) and denotes the type
of ‘curvature-squared’ corrections to the Einstein equations that are commonly encountered
in string theory (indeed, in almost any candidate theory for quantum gravity) and in the usual
implementation of Sakharov’s approach. Additionally, it must be emphasized that because of
the contraction with the δgµν(φb)/δφb(x) these are not the usual Einstein equations, though
they are certainly implied by the (curvature-enhanced) Einstein equations. It is in this sense
that we can begin to see the structure of Einstein gravity emerging from this field-theoretic
normal-mode analysis.

5. Discussion

In this paper we have provided two key developments.

(a) We have shown that the emergence of an ‘effective metric’, in the sense that this notion
is used in the so-called ‘analogue models’ of general relativity, is a rather generic feature
of the linearization process. While the existence of an effective metric by itself does not
allow you to simulate all of Einstein gravity, it allows one to do quite enough to be really
significant—in particular, it seems that the existence of an effective Lorentzian metric
is really all that is, in principle, needed to obtain simulations of the Hawking radiation
effect [7, 59, 60]. In this regard, the major technical limitation of the current analysis is
that it is limited to a single scalar field; extensions of this idea involve both some technical
subtleties and some new physics, and we shall discuss that scenario more fully elsewhere.
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The major piece of additional physics is the possible presence of birefringence, or more
generally ‘multi-refringence’, with different normal modes possibly reacting to different
metrics. The Eötvös experiment (the observational universality of free fall to extremely
high accuracy) indicates that all the physical fields describing ordinary bulk matter ‘see’
(to high precision) the same metric. This allows us to formulate the Einstein equivalence
principle and speak of the metric of spacetime. Thus in extending the notion of effective
geometry to a system with many degrees of freedom, experiment tells us that we should
seek conditions that would naturally serve to suppress birefringence. Only in that case
would it make sense to speak of a unique spacetime metric (or at worst, of multiple
almost-degenerate metrics).

(b) By invoking one-loop quantum effects, we can argue that something akin to Sakharov’s
induced-gravity scenario is operating: in particular, we can generically argue that there is a
term in the quantum effective action proportional to the Einstein–Hilbert action. However,
because of the technical assumption that the effective metric depends on the background
only via the single scalar field φ0(x) we have not been able to reproduce full Einstein
gravity, though certainly we have some extremely suggestive results along these lines.
Additional issues that are definitely worth future exploration are the physical import of
the fine tuning used to decouple the effective metric from the background (equation (48)),
the question of going beyond the linearized approximation (that is, beyond one-loop),
and whether the addition of extra fields helps one to obtain a better approximation to full
Einstein gravity—this because you would obtain one equation of motion per background
field, so with six or more fields you would expect to be able to explore the full algebraic
structure of the metric. So adding extra fields, which is technically a hindrance in the
kinematical part of the programme (developing the effective metric formalism), should in
compensation allow one to more closely approach the dynamics of Einstein gravity.

From an experimental point of view, the distinction between our proposal and the usual
implementation of Sakharov’s approach will be encoded in the form of the expected departures
from standard general relativity (GR). These departures will show up either by considering
high-energy settings or by performing high-precision low-energy tests. In the former limit
(high energies), both approaches share the apearance of corrections to GR of the type ‘curvature
squared’. However, in our approach it is explicitly contemplated that the condition (48) can
fail in some circumstances (with its associated deviations from the usual dispersion relations
for gravitons). In particular, this condition could be strictly true only at sufficiently low
energies. This would lead, at high energies, to the appearance of non-metric terms in the
gravitational action (terms not just built up from the metric tensor) or, generically speaking, of
some underlying spacetime structure. In the cases in which equation (48) does hold exactly,
or the high-energy regime is not experimentally accessible, the distinction between the two
approaches relies on the existence of the conformal factor showing up in equation (49) or
possibly on the existence of spacetime-dependent Newton and/or cosmological constant terms.
We stress that the existence of the conformal factor could happen to be a spurious feature of
the simple single-field case analysed here. If not, it is unclear how it would manifest itself,
possibly via extra (scalar?) fields, apart from the graviton, or by the appearance of explicit
deviations from the standard Einstein equations.

In summary, the full generality of the situations under which effective metrics are
encountered is truly remarkable, and the extent to which the resulting analogue models seem
able to reproduce key aspects of Einstein gravity is even more remarkable. The physics of
these systems is fascinating, and the potential for laboratory investigation of models close to
(but not necessarily identical to) Einstein gravity is extremely encouraging. Our interpretation
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of these results is that they provide suggestive evidence that what we call Einstein gravity
(general relativity) is an almost automatic low-energy consequence of almost any well behaved
quantum field theory: the dimensionality of spacetime is put in by hand, but the occurrence
of an effective metric is almost automatic (even in the classical theory), while the presence of
Einstein-like dynamics can plausibly be engendered by one-loop quantum effects.
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