
SPin – A Fujaba Plugin for Architecture Stratification

Felix Klar, Thomas Kühne, Martin Girschick
Fachgebiet Metamodellierung

Fachbereich Informatik
Technische Universität Darmstadt, Germany

felix@klarentwickelt.de, {kuehne, girschick}@informatik.tu-darmstadt.de

ABSTRACT
SPin is a plugin for Fujaba that provides basic support for
architecture stratification. It enables Fujaba models to be
annotated with refinement directives which may then au-
tomatically be executed by the plugin. The corresponding
refinement transformations may be defined with a combi-
nation of story driven modeling and Java coding. These
transformations affect both model and associated code, and
may be defined interactively, i.e., do not require Fujaba to
be shutdown and started up again. In this paper we describe
the purpose of the plugin, how to use it, its realization, and
some supporting functionality.
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1. INTRODUCTION
Today’s software systems have reached such a level of com-
plexity that a single view, e.g., architectural description, is
not sufficient anymore. If the system is described from a
bird’s eye view, using a very high level architecture descrip-
tion, many important details regarding performance, exten-
sibility, etc. remain hidden. If, however, one chooses a view
with a much lower level of abstraction, allowing the above
properties to be evaluated, the complexity will become un-
wieldy; it becomes difficult to see the forest for the trees.

Architecture stratification is an approach that connects mul-
tiple views on a single system with refinement translations,
so that each view describes the whole system on a particu-
lar level of abstraction. This way single levels do not only
present an optimal mix of overview and detail for various
stakeholders, but they also separate and organize a system’s
extension points, patterns, and concerns [1].

The Fujaba plugin SPin1 [4] supports the automatic trans-
formation of models into more detailed versions and thus
represents basic support for architecture stratification. How-
ever, it is not restricted to this particular flavor of model
driven development, but supports any development approach
that requires annotation-guided model transformations.

In the following, we first describe SPin from a user’s perspec-
tive (section 2) and then present an example demonstrating
the utility of SPin (section 3). Subsequently we take a closer

1An acronym for “Stratification Plugin”.

look at the inside of SPin (section 4), before we outline fu-
ture work (section 6) and finally conclude (section 7).

2. USING SPin
Figure 1 shows how SPin may be used in the context of
Fujaba. SPin supports two kinds of transformations, refine-
ment rules, yielding more concrete models and abstraction
rules, yielding more abstract models both of which can be
regarded as endogenous transformations [5]. In the following
we will concentrate on rules defining refinement transforma-
tions only, though.

Figure 1: SPin’s role within Fujaba

Since SPin’s transformation rules may not only transform
models (e.g., class diagrams) but also any associated code
(e.g., method implementations) it can be used to transform a
simple system description into a complex one, using multiple
steps. The most complex system description can then be
used to create an executable system by virtue of the Fujaba
code generation engine.

The prerequisite for automatically transforming models in
this top-down fashion, however, are directives, i.e., annota-
tions in a model.

2.1 Annotating a model
Annotations specify in which way a model element should
be refined in order to obtain a finer grained realization. To
provide additional information for the transformation, anno-
tations can be parameterized using basic types (e.g., a string
specifying the name of a class that should be generated) or
links to other model elements (e.g., specifying one or more
of the already existing elements to be used as observers for
a subject). We therefore chose a notation similar to UML
collaborations in UML class diagrams. Both notations share



the need to specify which elements form a structure—such
as which other element(s) should be involved in the transfor-
mation process or what other element to use as a parameter
to the transformation—and the need to describe the role of
the referenced element.

SPin provides a dedicated annotation editor to support the
introduction and parameterization of annotations. Figure 2
shows a screenshot of the annotation editor displaying the
parameters of an “Observer” annotation (see the example
in section 3). The annotation is parameterized with two
links (“state” and “concreteObserver”) and one basic type
(“observerClassName”).

Figure 2: SPin’s annotation editor

Once a model is completely annotated, the user may use the
context menu of an annotation to initiate the corresponding
transformation process. Currently, SPin supports manual
transformation initiation only, i.e., it is not possible yet to
start a recursive unfold process which stops when no more
annotations exists.

2.2 Creating a rule
Unfolding an annotation triggers the corresponding refine-
ment rule. Such rules are completely user defined. SPin
only provides the machinery for creating, using, and execut-
ing rules. The rules themselves are part of a rule library,
which can be extended dynamically.

Let us step through the creation of a rule implementing the
GoF [3] pattern “singleton”. First, we create a UML class
diagram and then add a new rule class to it by invoking
the “create rule...”-action from the class diagram’s context-
menu. This causes SPin’s “new rule” dialog to open and we
use it to specify the rule type and a rule name. In our exam-
ple we choose a refinement rule with the name “Singleton”.
The rule’s name describes its intent, but will also later be
used to annotate a model.

Figures 3 and 4 show a part of what SPin automatically
generates after the “new rule” dialog has been closed.

Figure 3 shows the addition of a new refinement class (RR-
Singleton). Among other features it defines an ’apply’ method
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Figure 3: A new refinement rule

that contains the actions to be performed when the rule is
triggered.

Figure 4 shows the automatically generated body for ’apply’.
As one can see Fujaba’s Story Driven Modeling (SDM) [6]
is used to implement the ’apply’-method. This results in a
semi-graphical implementation which is more self-explana-
tory and easier to create and to maintain than handwritten
Java-Code. The first check makes sure that the model ele-
ment to be transformed indeed has the correct annotation
(“Singleton” in this case). If yes, a reference to a UMLFac-
tory is created so that new UML elements may be created in
the core transformation part. Finally the annotation is de-
stroyed, i.e., removed from the diagram, since at this point
in time the annotation has served its purpose to create a
more concrete realization of its source structure. The rule
designer may still change any part of this, but this is how
most refinement rules look like, if one leaves out the core
transformation part and any further checks as to whether
the rule is really applicable.
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Figure 4: Generated ’apply’-method

In our example the rule’s precondition has to be enhanced to
check whether the annotation is bound to a UML class (see
figure 5). If this is the case, the class will be transformed
into a singleton class. The transformation code adds an at-
tribute holding the singleton-instance, a private constructor
and a get-method that returns the singleton-instance. Once
finished, the rule can be exported to the rule library, so that
it may be used to transform a UML class into a “singleton”.

3. CASE STUDY
We now demonstrate the utility of SPin by considering an
example system that simulates a quality control assembly
line. In this example we use the three design-patterns “Sin-
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UMLFactory umlFactory = UMLFactory.get();

// get name of the UMLClass
String className = targetClass.getName();

// prepare singleton-structure
String attributeName = "private static " + className + " singleton = null";
String constructorName = "private " + className + "()";
String getMethodName = "public static " + className + " get()";

UMLAttr singletonAttribute = umlFactory.createAttr(targetClass, attributeName);
singletonAttribute.setCreateAccessMethods(UMLAttr.CREATE_ACCESS_METHODS_NO);

UMLMethod constructor = umlFactory.createMethod(targetClass, constructorName);
UMLMethod getMethod = umlFactory.createMethod(targetClass, getMethodName);

// now implement the structure
UMLStatement constructorStatement = umlFactory.generateEmptyMethodBody(constructor, "");
constructorStatement.setStatement("super();");

UMLStatement getStatement = umlFactory.generateEmptyMethodBody(getMethod, "singleton");
String getImplementation = new String(
"if (singleton == null)\r\n" +
" singleton = new " +
className +
"();\r\n" +
"\r\n"
);
getStatement.setStatement(getImplementation);

Figure 5: Fully implemented ’apply’-method

gleton”, “Observer”, and “Visitor” [3] in order to obtain a
high-level view on the system’s structure (see Figure 6).

3.1 System description
The system has a main quality control unit (QualityCon-
trol) that should be realized as a singleton instance (hence
the corresponding annotation). Quality control is realized as
an assembly line that consists of a variable number of con-
trol stations (class ControlStation). These stations check
items (abstract class Item) passed to them by the assem-
bly line. Our example features only one concrete item type
(class Screw).

Control stations feature a tester which checks the current
item. For each observed item a test report (class ItemTest)
is created. Testers come in two kinds: manual testers, like
humans, that are able to perform very complex tests and
automatic testers, like industry-robots that are specialized
for testing a single property of an item. Here, a robot (class
Scale) is used, that checks an item’s weight.

Let’s have a closer look at the annotations “Observer” and
“Visitor”. Annotation “Observer” is parameterized with two
links. Link “state” binds attribute currentItem:Item of class
ControlStation to the annotation to define which state should
be observed. Link “concreteObserver” binds class Tester
which should observe the specified state. An additional pa-

rameter “observerClassName”of base-type String with value
“ControlStationObserver” has been added to the annota-
tion.2 This parameter specifies the name of the generated
observer interface. Annotation “Visitor” has two links as
well: “element” specifies which class should be the element
of the visitor pattern and “concreteVisitor” specifies which
class should visit the element. For a more detailed descrip-
tion of the rules corresponding to “Observer” and “Visitor”
please see [4].

3.2 Refining the system
We now refine this system, by unfolding annotations step by
step, until we reach the most detailed system description.

After unfolding the “Singleton” annotation we may then un-
fold “Observer”. Note that we have to attach/detach con-
crete observers to/from their subjects (in this case: class
ControlStation), so that observers will be notified of state
changes. As we want these code-fragments to be placed in
method ’setTester(Tester)’ in class ControlStation, we need
to implement this method manually, so it will attach/detach
tester instances accordingly. We also want to specify what
should be done when an observer is updated by its subject.
This is accomplished by adding a call to method ’createIt-
emTest(Item)’ within the method ’update(ControlStation)’
in class Tester.

Finally, we resolve “Visitor”. Of course we need to provide
the code for the visit-methods in each concrete visitor. This
is currently done manually after the transformation step,
but alternatively one may also provide the method bodies
as parameter values to a correspondingly defined “Visitor”
rule.

All other pattern-related method bodies will be automat-
ically generated of by the respective rules. The resulting
system structure is visualized in figure 7.

3.3 Completing the system
After the system has been refined to its most detailed ver-
sion, we now have to complete the implementation by filling
in the missing method bodies.

We only need to deal with two methods in our example: (a)
’process(Item)’ in class ControlStation, which has to notify
its observers, if an item receives the focus of a control station
and (b) ’createItemTest(Item)’ in class Tester, which has to
initialize the visit-process by invoking method ’accept(Item-
Visitor)’ on the passed Item-instance.

Now that the most detailed model has been completed, Fu-
jaba’s codegenerator can be used to generate executable
code from it.

4. INSIDE SPin
The following section describes some of the internal aspects
of SPin, in particular how SPin provides support for the
creation of new transformation rules.

2However, this parameter is not visible in figure 6. It may
only be seen or changed through the annotation editor (see
figure 2).
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Figure 6: Most abstract system version of our example

4.1 Dynamic Rule Additions
Once a rule is created and added to the library, it can im-
mediately be used in models without requiring manual shut-
down, recompilation, etc. This is achieved in the following
way: After creating or modifying a rule in the form of a UML
class, the rule developer asks SPin to export the rule. SPin
thereupon first employs Fujaba’s code generator to generate
the corresponding Java-code and then the Java compiler to
create the respective Java bytecode. Subsequently, all new
generated files are moved into the rule library directory and
finally the library is reloaded.

4.2 Modifying Activity Diagrams
Often rules need to transform behavior in the form of method
bodies. In Fujaba, method bodies are specified with story-
diagrams, a combination of activity and collaboration dia-
grams [6].

In order to support the analysis and modification of such
storydiagrams SPin introduces a standard mechanism (avail-
able through class UMLActivityDiagramModifier) that en-
ables rule developers to visit each element of a storydia-
gram. It simply iterates over each element and invokes
element-specific code on a visitor (class UMLActivityDia-
gramVisitor) that performs operations on those elements.
This mechanism can easily be adapted by rule developers
through implementing their own visitor classes and passing
them to the diagram modifier. For instance, rule developers
may use it to modify text within method bodies.

4.3 Element Creation and Initialization
A common activity of rules is the creation of new model
elements. SPin provides factories (see UMLFactory in Fig-
ure 4), whose task is to reduce the effort for creating model

elements to a minimum. In the ideal case just one function
call is required to create and initialize an element and then
add it to a diagram. SPin provides two factories: One sup-
porting the creation of transformation rules and the other
to create elements of the annotation metamodel.

One aspect of these factories—creation of elements—will be
obsolete with Fujaba 5, when the creation of UML elements
through factories will be natively supported. Yet, the other
aspect—initialization of elements—will still be useful, since
Fujaba 5 will still require manual initialization, requiring
potentially many function calls. Hence, SPin’s UML factory
may even proof to be useful in Fujaba 5.

4.4 Metamodel Synchronization
One way to specify transformation rules is to use the SDM
approach available in Fujaba [2]. Figure 4 shows how a
story diagram is used to check the applicability of a rule.
The transformation process itself may also be specified us-
ing SDM (instead of using Java).

However, in order to be able to employ SDM in this man-
ner, Fujaba requires a UML classdiagram containing the ap-
propriate metamodel to be present in the current Fujaba-
project. The challenge is hence how to get this metamodel
into a Fujaba-project, since one clearly does not want to do
it manually. This would not only be a very time-comsuming
but also a very error-prone task.

One solution to automate this process is the JavaParser-
plugin (see also Figure 1). It can be used to generate a UML
classdiagram from the Java sourcecode which represents the
metamodel. If the source code and the actual metamodel
built into Fujaba differ, though, e.g., because of a version
mismatch, incompatibilities will arise.
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Figure 7: Most detailed system version of our example

SPin therefore uses a Virtual Machine synchronizer (VM-
synchronizer) [4]. It takes the actual—and thus guaranteed
to be of the correct version—Java bytecode of the respective
part of Fujaba as input, extracts structural information us-
ing a Java classloader in conjunction with the Java reflection
API and generates a UML model from the extracted infor-
mation using a UML factory. Finally a post processing step
detects associations between UML classes and adds them
to the metamodel which then can subsequently be used by
SDM.

5. RELATED WORK
Most MDA tools specialize on generating code from a model
or migrating models in one modeling language to another,
i.e., exogenous transformations [5]. Tools that support model
refactorings can—according to [5]—be classified as support-
ing horizontal endogenous transformations. In contrast, ar-
chitecture stratification realizes vertical endogenous trans-
formations. In other words, refactorings maintain the same
level of abstraction whereas architecture stratification cre-
ates different levels of abstraction expressed in the same
modeling language.

Only few commerical tools, such as Together Architect3 and

3http://www.borland.com/us/products/together/

ArcStyler4 provide basic support for defining vertical en-
dogenous transformations as well.

Together Architect provides an extendable template-based
mechanism for creating patterns. This mechanism can be
used to create rules that perform vertical endogenous trans-
formations. A pattern manager is used to apply patterns to
class diagram elements. In contrast to SPin, however, this
way transformations are executed in a step by step fashion,
whereas SPin automates the transformation of all annota-
tions of one kind and will eventually support a fully auto-
mated application of all applicable transformations from top
to bottom.

The MDA tool ArcStyler supports both model-to-model and
model-to-code transformations, which are defined in so called
cartridges5. A cartridge defines a source and target meta-
model (or inherits the UML metamodel) and the transforma-
tions from the source to the target. UML stereotypes may
be used to guide the transformation process. In addition so
called marks are used to allow further parameterization of
the model, e.g. for different target platforms. Transforma-

4http://www.interactive-objects.com/
5http://www.interactive-objects.com/support/doc/
doc/Carat_Guide.pdf

http://www.borland.com/us/products/together/
http://www.interactive-objects.com/
http://www.interactive-objects.com/support/doc/doc/Carat_Guide.pdf
http://www.interactive-objects.com/support/doc/doc/Carat_Guide.pdf


tions are described using the script language JPython. This
is supplemented by the concept of blueprints which are simi-
lar to model templates. ArcStyler follows the MDA approach
where a platform independent model (PIM) is completely
parameterized and then transformed to a new platform spe-
cific model (PSM). If this approach is used in a staged, in-
cremental manner, it very much resembles the abstraction
level stratification approach of SPin.

Neither Together Architect nor ArcStyler support Fujaba’s
Story Driven Modeling, which is very useful for the semi-
graphical specification of transformation rules as used in
SPin.

6. FUTURE WORK
The current version of SPin offers a limited set of transfor-
mation rules. Although these are user extensible, the utility
of SPin would be increased if it came with a rich set of
ready-to-use rules. By applying the stratification process
to big and complex software systems it will be possible to
extract useful rules which can then be added to SPin.

Employing stratification in its intended form with SPin is
currently hindered by the fact that only manual, stepwise
initiations of transformations are supported. In order to
fully automate the generation of a complex system from a
given simple and abstract view, it is necessary to automate
the process of unfolding annotations. This includes the spec-
ification of the order in which annotations are to be unfolded.
However, this ordering is neither difficult to work out, nor
should it be part of an automated process. Annotations ex-
hibit natural dependencies and lend themselves to generate
levels of system concerns [1]. It is therefore the task of the
system architect to select which of the annotations are ad-
dressed at each specific abstraction level. As a result, future
versions of SPin should provide a configuration system that
allows users to specify and store their annotation processing
orders.

SPin will significantly benefit from the new features of Fu-
jaba 5. For instance, the then available support for multiple
projects will enable developers to create rules in one project
and immediately apply them in another. Moreover, users
then might be able to easily navigate back and forth be-
tween different levels of abstraction.

Moving up in the hierarchy of abstraction levels is already
possible as long as the more detailed versions were generated
by SPin. This is accomplished by using Fujaba’s built in
“undo” mechanism.

In the current release of SPin the transformation rules are
expressed using arbitrary Java code. This implies that there
is no way to execute them “backwards” or to automatically
generate inverse rules. The “reverse application” of forward
directed generation rules is, however, an attractive facility
for reverse engineering systems. This way, one may start
from a complex system and simplify the system by either
creating and applying “abstraction rules” or by using refine-
ment rules in the“reverse”direction. This, however, requires
rules that can either be transformed into their inverse or
rules that work bi-directionally. Hence, we are planning to
investigate replacing Java for specifying transformation rules

with an approach that supports bi-directional rule applica-
tion from the start, e.g., Triple Graph Grammars [7].

7. CONCLUSION
SPin is the result of a diploma thesis conducted at the meta-
modeling department of the Darmstadt University of Tech-
nology [4]. Although it currently provides only basic support
for architecture stratification, it represents a starting point
that can be extended into full stratification support.

Even the current SPin version, however, already demon-
strates the feasibility of transforming both model elements
and associated code in sync with each other, in order to
obtain a fully specified complex system from a simple sys-
tem, after a number of transformation steps. Current rule
definitions sometimes require manual edits to the generated
models—for user code, such as implementations of “visit”
methods for the visitor pattern—however, this is no prin-
ciple limitation of the approach. More sophisticated rules
and corresponding annotation dialogs will allow the contin-
uous and fully automated generation of models from top to
bottom.

Transformation rules are user-definable, typically using a
convenient mix of SDM (for pattern matching) and Java
(for an unconstrained definition of transformations). Since
SPin is able to dynamically integrate new rules, the devel-
opment of the main system model and corresponding rules,
can proceed in an interleaved and very interactive manner.

The creation of new rules in SPin is heavily assisted by a
number of convenient utilities, such as support for modifying
method bodies, element creation, and the synchronization of
the UML metamodel.

In addition, the work on SPin resulted in a pattern-like no-
tation for refinement annotations that enable transforma-
tion parameters to be specified both graphically (through
labeled links) and non-graphically (through primitive pa-
rameter types entered into a corresponding dialog). This
way one achieves fine grained control of the transformation
process, using a concise notation.

We believe that SPin already represents an interesting start-
ing point for supporting architecture stratification, but as we
have outlined in the previous section on future work, we are
convinced that it has an even higher potential for further
development.
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