
A SmallTalk for Students —

A Giant Leap for Studentkind

Thomas Kühne

University of Kaiserslautern
kuehne@informatik.uni-kl.de

Abstract

We describe desirable properties of a beginner’s object-
oriented programming language and environment. We
then compare, in an educational context, language
concepts and associated environments of Smalltalk

to other more widely used languages. Building on
Smalltalk’s interactive environment and exploiting the
language’s remarkable flexibility we produced VisualEx-
press, a tool that automatically produces object dia-
grams entirely transparent to student code. We conclude
that modern constructivist approaches to education can
in many respects be better realized using Smalltalk

then with typical choices such as Java or Eiffel.

1 Introduction

Recent developments are causing the educational domain
to change. It is becoming increasingly difficult for uni-
versities to keep a sufficient number of qualified staff due
to the reduced amounts of funding available and the bet-
ter paying competing industry. At the same time student
numbers are increasing. Because of these forces certain
pedagogical ideas have recently become very popular.
Terms like learner managed learning [3] and learning con-
tracts have almost acquired buzzword status.

These ideas may resolve the current tensions in ed-
ucation as they shift the emphasize from teaching to
learning. The critical role of experience in learning is
rediscovered and the general idea is to provide real word,
case-based learning environments, rather than predeter-
mined instructional sequences.

If it can be put to work such an approach requires less
instruction and less supervision, hence, providing a solu-
tion to the current problems in education. However, for
self-directed learning to work the appropriate tools, i.e.,
an constructivist learning environment has to be pro-
vided. Furthermore, instruction has to aim at students
being able to help themselves (e.g., through the use of a
debugger).

Accordingly, we describe the desirable properties of a

beginner’s object-oriented language in Sect. 2 and then
elaborate in Sect. 3 how the language Smalltalk and its
environment fulfill the identified criteria. Section 3 also
introduces the VisualExpress project, which is meant to
significantly support student learning. Section 4 investi-
gates areas where other languages are said to excel over
Smalltalk. Section 5 briefly discusses Smalltalk’s
potential beyond beginner courses and we discuss related
work in Sect. 6. Throughout the paper, we draw from
the author’s teaching experiences in order to consider
typical beginner difficulties and common mistakes [18].
Section 7 concludes by summarizing the potential con-
tributions of Smalltalk and VisualExpress for a con-
structivist learning environment.

2 What is a Good Beginner’s
Language?

This section outlines which language and environment
properties we consider important for a beginner’s course.

2.1 No distraction from the main goals

In general a language should cause as little distraction
from the underlying principles to be taught as possi-
ble. After all, even though a first object-oriented lan-
guage has particular significance for the learner, it is
only used as a vehicle to teach the concepts of classes, in-
stances, encapsulation, polymorphism, inheritance, etc.
Undoubtedly, the role of a first language is to communi-
cate these concepts as easily as possible to facilitate the
later comprehension of other object-oriented languages.
If the language chosen has industrial relevance then all
the better, but its primary task must be the establish-
ment of clean concepts in the learner’s mind. As a re-
sult, the language should be clean, simple, and purely
object-oriented. For instance, it should not be necessary
to explicitly specify if dynamic binding of method calls
is required. Also, machine details such as integer over-
flows, basic and non-basic types, and memory manage-
ment should not be exposed to students (see Sect. 2.2).

1

Appeared as a Two-Part Article in the Journal of Object-Oriented Programming, May/June 2001



Eiffel certainly abounds with sound concepts with
a clean syntax [25]. Although it has the best integra-
tion of basic and value types of all the procedurally in-
fluenced languages, it is influenced by procedural lan-
guages, which becomes visible in the treatment of con-
trol structures and the presence of basic types. Although
Eiffel’s solutions to language design have their own
merits we regard them as violating the “no distraction”
rule.

The “one paradigm suffices” approach of Smalltalk

should facilitate the adoption of the object-oriented
paradigm for complete beginner’s. The deviations from
a traditional procedurally influenced style are said to
be disadvantageous for students with some background
knowledge, but can be regarded as a welcome leveling
factor, i.e., equalizing knowledge advantages between
students with varying backgrounds.

2.2 Saving difficult issues for later

The first language should enable students to engage in
interesting (mini-) projects, without demanding them to
master involved problems.

2.2.1 Garbage Collection

Languages without garbage collection are inappropriate,
as manual memory management is too complex and error
prone. Simply ignoring the fact that memory has to
be reclaimed in the absence of garbage collection would
foster a wrong attitude for the particular language. It
would also deprive students of the feeling of “mastering
the situation” and of “doing everything right so far” with
regard to the current requirements.

2.2.2 Pointers

By the same token, an introductory language should not
expose students to raw pointers. Object references and
dynamic binding should be treated as natural and ba-
sic language concepts, without forcing primitive mem-
ory access mechanisms on students. Even better still,
a language should not require a full appreciation of the
difference between value variables and pointer variables.

2.2.3 Hybrid Languages

In general, all hybrid languages, for instance, support-
ing both procedural and object-oriented style are less
appropriate. Although the support of multiple program-
ming paradigms can be advantageous for mature pro-
grammers, there is always a potential of confusion for
the beginner. Beginners do not know which of the sev-
eral ways possible to achieve something to choose and
can not distinguish problems of this kind from general,
“normal” learning difficulties.

2.3 Constructivist Learning

Proficiency with a programming languages can not be
taught it must be learned. As with cooking or other
skills involving the need to have a master plan as well as
being able to master all the details involved, it is best
to practice as much as possible. Accordingly, education
should be a mix of objectivist design (lectures) and con-
structivist design, i.e., project based tutorials.

The constructivist theory puts an emphasis on the
learner rather than the instructor, aiming to achieve a
shift from teaching to learning [13]. For the duration
of a project a learner should be granted autonomy for
self-directed learning. By hypothesizing, experimenting,
and discovering learners can then actively construct their
own understanding of subject matters.

2.3.1 Minimalism

The Minimalist theory of J.M. Carroll is a framework for
the design of instruction [4]. According to the theory

• learning tasks should be meaningful and self-
contained activities.

• activities should provide for error recognition and
recovery.

• passive training should be minimized by allowing
learners to fill in gaps themselves.

• realistic projects should be tackled as quickly as pos-
sible.

Building upon previous learner’s experiences, activi-
ties are to be solved in a learner-directed fashion. Errors
are regarded as learning opportunities.

2.3.2 Learning by Doing

“ There really is no learning without doing.”

– Shank and Cleary [33]

In order to encourage self-directed learning one does not
tell students what to learn but provides them with learn-
ing opportunities [1].

Learning by doing has a good effect on how long last-
ing learning effects are, because newly acquired knowl-
edge can be put in the context of self-made experiences.

In accordance to the minimalist school of thought
project based learning should, therefore, provide

• a task,

• all necessary resources, and

• tools including those for error recovery.

Students should be encouraged to use resources of
their learning environment and ask instructors in case
they are stuck.

2



2.3.3 The Importance of Debugging

The above mentioned learning strategies foster exper-
imentalism and encourage exploration. But what if
things go wrong? Errors are inevitable and, in fact, nega-
tive results are just as important for learning as positive
results. What should be avoided, however, is causing
students to get despondent or agitated by errors over-
whelming them [24].

Beginner’s fate: Action paralysis

When faced with non trivial errors — often causing
the program to crash — students are left without solving
strategies. They helplessly wait for a tutor, who shall
investigate the problem.

Certainly, powerlessness and the passiveness while
awaiting the tutor’s attention is a frustrating experience
for students.

Tutors usually have an advantage due to their experi-
ence with common errors. The most important advan-
tage, however, has to be the knowledge of how to use a
debugger. Tracking down why a program produces the
wrong result or what causes it to crash is much easier if
a debugger is available and one knows how to use it.

It seems only logical that learning environments
should include a good tool for debugging and that stu-
dents should be taught debugging skills as early as pos-
sible. Actually, there is no reason why students should
not be able to trace a piece of software before they are
able to write one themselves! Thoroughly understanding
how selected examples work, is a good preparation for
the construction of self made solutions.

Students equipped with debugging skills require less
supervision. In addition, in a study about introductory
programming it was found that students whose teachers
provided exemplary models and debugging techniques,
scored higher in subsequent tests [21].

2.3.4 Supporting Learning Environment

Constructivist environments do not predetermine a se-
quence of activities. Rather, they seek to provide a sup-
portive learning infrastructure.

“The programming environment provided to

help the program developer use the language

seems to be at least as important as the lan-

guage itself, and probably more so. . . ”

– RogerBailey [24]

Requirements for an object-oriented programming envi-
ronment for software construction, thus, are:

• Access to classes in libraries, including source code.

• Availability of documentation for both language and
libraries.

• Tools for experimenting with code snippets, inspect-
ing results, and debugging software.

Development environments which look and feel the same
as those used for procedural languages are, hence, inap-
propriate.

Even Eiffel’s “ebench” environment carries some
procedural legacies with it, although it is much more
inspired by object-oriented principles than typical envi-
ronments for Java or other languages.

One unfortunate assumption is that there is a single
entry point program that is compiled and run after all
its parts have been provided [16]. Even though this en-
try point can be configured, the correct view would be
that of a collaborating network of objects where an en-
try point loses its meaning. Eiffel’s “ebench” has no
facility to interactively test little pieces of code without
placing them into test programs.

The object-oriented paradigm is truly reflected in an
interactive environment if it is possible to

• evaluate pieces of code on the fly.

• set up object networks without going through the
effort to write main programs.

• make changes to code and immediately see the con-
sequences.

• close a running session and return to the same ob-
ject network later on.

Such an interactive environment can considerably reduce
the complexity of getting the whole system right the
first time. Environments that provide immediate feed-
back and encourage incremental testing also increase the
user’s understanding of the software [31].

3 Smalltalk Supported Learning

The single term Smalltalk refers to a triad of

1. an object-oriented language,

2. a comprehensive class library, and

3. a development environment (see Fig. 1).

3.1 Object-Oriented Language

Smalltalk was developed with child psychology in
mind [14] and was actually used by children during its
development. Programming with Smalltalk was sup-
posed to be a natural extension of thinking. For instance,
the use of keyword parameters instead of a meaningless
parameter list in parentheses testifies this intention. As-
suming a hypothetical font creation interface, compare
the common style of parameter passing, for instance,
Java

3



Smalltalk

C
lass Librabry

Language

En
vi

ro
nm

en
t

Figure 1: An integrated approach to interactivity

f = Font.create("Arial", 16, 8, false, true);

to the Smalltalk version:

f := Font face: ’Arial’ size: 16@8

bold: false italic: true.

Not only do the keywords clarify the meaning of the
arguments but also the font size can be passed as a sin-
gle argument due to the easy creation of an appropriate
point object. Recent environments for Java or C++ help
programmers by popping up explanatory bubbles to flag
the meaning of parameter positions. This kind of as-
sistance is not available, however, when someone simply
reads the code in order to understand it.

Beginner’s fate: Difficulties with traditional syntax.

A common Java error is to forget the empty paren-
theses “()” in the case of argumentless methods. Also,
the ubiquitous semicolon is often forgotten or put at the
wrong places after method definitions or loop headers.

In the case of semicolons after loops or “if” statements
the mistake goes undetected by compilers causing a lot
of confusion due to the unexpected behavior of not loop-
ing the body or always executing the “if” branch. Also,
when concepts like method declarations are still fuzzy it
is not easy to judge whether a closing bracket is followed
by a semicolon or not. Smalltalk browsers provide
templates for class definitions and offer single methods
as the entity for code editing. Thus, the need for decla-
ration syntax (e.g., to separate methods) is almost com-
pletely avoided. The absence of builtin control structures
also minimizes the danger of placing separator symbols
at wrong or dangerous places.

Smalltalk, consequently, surely qualifies as a lan-
guage that offers syntactic simplicity with a few special
cases to remember [7]. Students have understandably
little comprehension as to why the syntax for accessing
arrays in Java is different than accessing other collection
types. Eiffel and Smalltalk allow a uniform syntax
for both cases.

Automatic garbage collection and the dominating
theme to define everything with objects and sending
messages, complete Smalltalk’s picture of a language
for students causing minimal distraction when trying to
convey programming concepts (see Sect. 2.1).

3.2 Comprehensive Library

A standardized library of base classes serves at least three
purposes:

1. There is no need to reinvent the wheel time and
again for standard data structures or deal with a
variety of different competing libraries.

2. Students can write useful software and attack moti-
vating problems from a very early stage on.

3. Browsing the source code of good libraries can re-
veal many tricks of the trade including programming
conventions, language idioms, and design patterns.

Although, the following example is trivial, and makes
minimal use of library functionality —

((1000 factorial) asString) size.

— it, first, demonstrates that the Smalltalk library
makes it easy to calculate an astronomical large number
and then to determine how many digits it has and, sec-
ond, points out how difficult the same task would be in
a different language, say Java.

While the above line can be simply typed in and evalu-
ated in a Smalltalk workspace window, Java requires
a full main program. Now the code excerpt using Java’s
Math class

l = Math.factorial(1000).toString().length();

raises a few issues:

• there is no factorial method in class Math.

• it uses a mixed procedural/object-oriented style.

• it requires funny empty parentheses.

If students were asked to provide an implementation for
factorial their solution using Java integers would pro-
duce an (unnoticed!) overflow during the calculation of
the factorial and, thus, a wrong result. Clearly, the rich
Smalltalk library with its sophisticated handling of
large numbers represents a big advantage here.

In other areas as well Smalltalk’s library is easy to
use, yet powerful. For instance, there is no need to in-
troduce event handling before students can begin to use
graphics. It is just one line of code to get a graphics
window and another two to move and turn a graphics
cursor:

4



Window turtleWindow: ’Tom the turtle’.

Turtle go: 50.

Turtle turn: 90.

The availability of a large number of collection classes
allows instructors to adopt an approach in which stu-
dents uses collection classes to complete interesting
projects before they know how to implement such classes
themselves. The study of the efficient implementation of
data structures is then left to later semesters as opposed
to performing unexciting and inefficient attempts at data
structures before a higher level project can be tackled.

The comprehensive Smalltalk library and the ease
of its access within the integrated environment helps to
foster two ideas in students:

• There is no main program. Programming means to
pick the right classes and to occasionally create new
ones.

• More often than not one has to (re)use rather than
create, i.e., understand how to use already available
classes.

3.3 Interactive Environment

The Smalltalk class browser allows viewing and
searching in a hierarchy of classes. Methods are pre-
sented for inspection and change only one at a time.
This creates a very local focus of change and is quite dif-
ferent to a view of a single program with some internal
borders called classes each of which stored in a file.

Even when student software (e.g., a video rental sys-
tem) is running a change of code within a method can be
put into immediate effect by just committing the change.
If a method is changed only than is it automatically re-
compiled and used in the running system. If changes are
made to an object’s structure, these must obviously be
deferred until no more of these instances are alive. In
traditional compiled languages, beginners are typically
confused by the need to recompile after making a simple
change. Also, the need for their program to be complete
before it can be run is not obvious to them [6].

As Smalltalk does not impose static correctness for
student software, it will run student code, even if it is in
an incomplete state, until — if at all — code holes are
encountered. This enables an evolutionary approach to
software development where methods are defined as they
are required, for instance, by refinement of an overall
design. This helps to reduce a big complex task into
stepwise small solutions and thus meets the requirement
of a supportive environment (see Sect. 2.3.4).

The absence of a lengthy edit-compile-run cycle makes
programming a much more interactive activity. Even the
smallest programs in traditional languages make con-
siderable use of standard libraries (e.g., input/output)

which take a long time to check or precompile. In
Smalltalk the change of a method is as quick as
opening up a workspace to try and test a few lines of
Smalltalk code. There is no need to create dedicated
test programs in order to verify assumptions and make
observations. Such conditions are clearly better suited
to maintain student curiosity and support an explorative
mode of study (see Sect. 2.3.2).

3.3.1 Builtin Debugging Facilities

An error of some fame is the inevitable “null pointer ex-
ception”, “access violation”, or “feature applied to void
reference” error depending on the language used. The
error occurs when a message is sent using an object ref-
erence that has not been initialized or is set to the null
pointer for a different reason. When this happens in
C++, Java, or Eiffel more or less information is given
as to where the error occurred, i.e., a trace of the exe-
cution stack is printed. The program is aborted and the
student is then left to set breakpoints appropriately in
order to rerun the program in debug mode.

In Smalltalk a “walkback” window appears, ex-
plaining the problem. With a click of a button a de-
bugger is available. It allows all methods in the calling
history to be visited and in each context attribute values
can be inspected. No time is wasted in finding the cor-
rect spot for breakpoints and to (often multiple times)
step through loops until the right moment was tracked
down. Typically, the breakpoint will be at a place where
it is encountered several times before the conditions for
the real error are really met. Instead of recreating the
error in debugging mode, the Smalltalk approach sim-
ply enables direct inspection after the the fact.

The debugger will accept any expression to be evalu-
ated in the current execution context at request. Its con-
trol and inspection facilities make it rarely necessary to
insert special test code into programs. The latter being
a tedious strategy which nevertheless is often adopted
by students using less advanced environments or with
insufficient training in using a debugger.

Student empowering tools such as the readily available
debugger, are a prerequisite for a successful self-directed
learning mode of study (see Sect. 2.3.3).

3.3.2 Persistence Support

Smalltalk’s concept of a system image enables a snap-
shot of the system to be captured and continued with
later. This includes all system and user objects, i.e., af-
ter setting up an example scenario students can simply
preserve it by saving the image. There is no need to
implement file handling first to store, for instance, video
rental data. Again, this is useful to address interesting
projects early without forcing too many implementation
details on to students (see Sect. 2.3.1).

5



3.4 Adaptable Environment

Unlike other languages, Smalltalk does not make a big
difference between the (usually privileged) designer and
the (usually less powerful) user of the language. Likewise
there is no difference between a systems programmer and
the ordinary software programmer. Figure 2 depicts how
programming in Smalltalk works. The class library
is programmed on top of a virtual machine, making it
portable. The development environment simply consists
of additional classes, making use of the class library. Ap-
plications are written the same way. By simply adding
further classes one can either change an existing applica-
tion or adapt the development environment as required.

���������������������������������������������
���������������������������������������������
���������������������������������������������

���������������������������������������������
���������������������������������������������
���������������������������������������������
���������������������������������������������
���������������������������������������������
���������������������������������������������

���������������������������������������������
���������������������������������������������
���������������������������������������������

Environment
Classes

Application
Classes

Class Library

Hardware

Classes
Further

Virtual Machine

Figure 2: Modifying the system by adding classes

Instructors may choose to offer different browsers or
message reporters. Furthermore, Smalltalk already
features different kinds of inspectors depending on the
object type under examination and instructors may want
to add to the list of specialized inspectors. These can
display data in a tailored fashion and also offer a means
to further follow the values contained in an object. In-
structors, hence, may even enhance the suitability of
Smalltalk as a constructivist learning environment
(see Sect. 2.3). There is no reason to accept any en-
vironment shortcomings since it can be moulded to ac-
commodate any need.

3.5 VisualExpress

In our teaching experience, students have difficulty to
relate static program text to the dynamic structures it
creates and manipulates. However, they respond well
to object diagrams, showing the existing objects with
their containment relationships [18]. We have used such
diagrams for set exercises, referring to model solutions.

In addition, however, we feel that the diagrams should
even better reflect the student’s individual solution at
any particular stage. Hence, we started the VisualEx-
press project, which supports the automatic creation of
object diagrams and single step tracing of student soft-
ware under Smalltalk Express.

3.5.1 Why Smalltalk Express?

This particular Smalltalk product easily fits on two
floppy discs including an “html” online tutorial and
a class encyclopedia. Unlike other platform indepen-
dent Smalltalk versions it is tailored to the ubiquitous
Windows platform, the predominate operating system at
student machines. Smalltalk Express is available free of
charge [28] and runs very fast even on older machines
with intel 486 processors. It comes with the complete
software and documentation of a graphical user inter-
face designer tool, which makes it useful for later, more
advanced projects. Smalltalk Express browsers do not
feature the usual Smalltalk categories and protocols,
which are very useful for organizing large software sys-
tems. In an educational context, however, these add
complexity to the system and could be confusing to be-
ginners.

There is an excellent book for Smalltalk beginners
which refers to Smalltalk Express. The book adopts a
discovery approach to learning, i.e., takes the reader
through developments rather than presenting heaven
sent solutions [19]. The product, its documentation, and
the book, therefore, complete each other to provide a
constructivist learning environment (see Sect. 2.3).

3.5.2 Visual Perception and Tangible Control

When young children explore the world they use their
(mostly visual) perception and act by using tangible con-
trols. Likewise, for an intuitive programming environ-
ment it should hold true that

• relevant items should be visualized (e.g., an object
diagram).

• the visual presentations should

– allow closer inspection if desired, and

– provide a means of manipulating the visualized
elements.

We may summarize these principles as offering an object-
oriented programming environment supporting direct
manipulation. Different views (e.g., object diagram or
method code browser) should accommodate the required
viewing context and should also be easily accessible from
each other.

However, just as we do not expect young children to
use complicated tools — such as microscopes with the
need too adjust focus and other parameters — if all they
want is to take a closer look at an object, we should not
ask students to deal with complicated mechanisms if all
we want is to provide them with additional views. The
provision of a direct manipulation interface should be
completely transparent to students and their code. In

6



Figure 3: VisualExpress

particular, students should not be asked to insert addi-
tional lines of code which may be required to produce
any of the views.

3.5.3 Why Object Diagrams?

Programming novices often literally do not know where
argument values come from and where return values go
to [18].

Beginner’s fate: Lack of context awareness

Although methods offer all necessary data via param-
eters, students still try to get the data by explicit user
console input. Results are often printed instead of being
returned as method return values. Sometimes variables
are assumed to be globally accessible as if there were no
object boundaries.

As a consequence of this problem, some students wonder
for instance, why it is necessary to assign constructor ar-
guments to object attributes. Furthermore, the binding
of argument values to method parameter is a new and
alien concept for most students. Often they assume that
the variable names have to be identical for this to work.

All these are symptoms of one problem: The big pic-
ture is missing. The latter can easily be provided by

presenting object diagrams which depict how objects are
connected to each other. By stepping through the pro-
gram while updating the diagram, (e.g., object attribute
values) a lot of the above misconceptions can be clarified.

Object diagrams should reflect the individual student
code, but can be hard to construct for students by them-
selves. This is why VisualExpress automatically creates
an object diagram during software execution. If desired,
the execution can be done in a stepwise fashion allowing
each method call to be followed and causing the diagram
to build up gradually.

3.5.4 Diagrams for Free!

Figure 3 shows a screen shot from a sample Visual Ex-
press session. The lower right window is a workspace
where a student started up an experimental bank sce-
nario with the first two lines of code. The top right
window shows controls that were used to trace the exe-
cution in single step mode. The big window at the top
left shows each method call with source, target, message,
and parameters. The object diagram at the lower left is
the graphical display of the resulting object structure.
A double click with the mouse on the customer object
invoked an inspector window at the middle right for the
customer object. The last line in the student code win-

7



dow shows an alternative way of achieving the same goal.
The inspector not only shows object details but can also
be used to alter them respectively.

In accordance with the remarks made in the previous
section, no additional student code is required for all this
to work. The sole action students are required to take is
to derive their classes from class Visual instead of class
Object. No further conventions need be obeyed. As
a welcome side effect deriving from a single class other
than Object causes all student classes to be available at a
single spot through the browser. Normally, the browser
would otherwise sort all student classes alphabetically
into the large list of already available library classes.

The graphical object diagram naturally complements
the code view on the software. Both code or even class
diagrams present a static picture of a system. The ob-
ject diagram, in contrast, shows the dynamic picture of
software execution, i.e., it rolls out time into space, and
can be exploited for animation effects (e.g., gradually
building up the diagram or showing data travel between
objects).

Activating single stepping through the VisualExpress
monitor control has an effect on student classes only.
Any use of library classes, such as collections, will be
performed as atomic actions. This nicely confines the
focus of investigation to a student class universe, pre-
venting them to get lost in system implementations.

The VisualExpress prototype could be regarded as a
visual debugger. For instance, it could be easily ex-
tended to even support switching single stepping on and
off for each student class individually. Yet, the main
purpose of this prototype is to provide the visualization
of the object network for free.

The resulting diagrams may aid group work by pro-
viding a map to point to and talk about. They also tie
the modeling view of objects (e.g., Crc cards) with the
object-oriented model of execution.

3.5.5 Visual ADTs

Instructors may want to provide special graphical repre-
sentations for certain classes, such as queues and stacks.
They could be visualized in the same way as they are pic-
tured in textbooks or the classroom, dynamically chang-
ing the display of their visual representation whenever,
for instance, an element is added.

Instructors could either alter existing Smalltalk

data structures (see Sect. 3.4) or ask students to use
specially provided ones. Again, without further display
or animation code required by students, the object could
be displayed either stand alone or as part of the object
diagrams.

4 Where Other Languages (Are

Thought To) Do Better

In the following sections we discuss several issues which
have been used to argue against Smalltalk.

4.1 Where pureness hurts

The “all objects and messages” approach of Smalltalk

has a slightly unfortunate effect on the way arithmetic
expressions are interpreted. The expression

1 + 2 * 3

is evaluated to 9 as no precedence rules are applied but
just message sending is interpreted from left to right.

On the other hand, Smalltalk is one of the most
faithful languages with respect to faithful arithmetic.
Consider multiplying the number 1 ten times with the
number 2

3
. Then multiply the result ten times with 3

2
.

In C++ or Java the trouble starts with the expression
2/3 which is evaluated to zero because of integer arith-
metics. Eiffel fares better but calculates a result which,
like the former languages when helped by using 2.0/3,
is close to but not exactly 1. Smalltalk, on the other
hand, automatically uses fractions and computes the ex-
act result. Similar observations hold true for very large
numbers which cause most languages to produce incor-
rect results. Smalltalk will convert number types into
each other (e.g., infinitely sized integers) whenever nec-
essary or forced by the user. According to an anecdote,
financial Apl and Smalltalk systems were the only
ones which allowed their banks to continue making busi-
ness while others were left without any means of action
in a stock exchange crash.

The flip side of treating traditionally basic types as
objects is that any initialization errors cause “message
not understood errors”. If a Java student forgets to set
a variable sum to zero, the code will still work using the
default initialization value for the respective type. In
Smalltalk any arithmetic operations will be sent to
“nil” causing the mentioned error to happen. At least
forgotten initialization is discovered this way but much
better are default values in combination with compiler
warnings.

Normally the Smalltalk keywords syntax is very
natural and parentheses are optional as in

(myPane pen) color: ClrBlue.

Sometimes, however, parentheses are required as in

(GraphPane openWindow: ’Fresh air’) pen.

Without the parentheses message pen is sent to the title
string of the window. Similarly, the expression

window backColor: ClrBlue foreColor: ClrRed.

8



yields “no such selector” although message backColor

yields the modified window object. In this case,
Smalltalk reads one message with two keyword pa-
rameters instead of two messages with one parameter
each. The correct expression is easily obtained by using
parentheses or a “;” after the first message. This will
cause the second message to be sent to the same window
object.

Although, there seem to be some stepping stones there
are, nevertheless, only four simple stages of evaluation
order which can be easily memorized and applied. In
general, the positive effects of Smalltalk’s syntax out-
weighs the few particularities. For instance, compare the
Smalltalk code to draw a rectangle with a turtle

4 timesRepeat: [

turtle go: 50;

turn: 90;

flash

].

to the equivalent Java code:

for (int i=0; i<4; i++) {

turtle.go(50);

turtle.turn(90);

turtle.flash();

}

While there are more similarities than differences, the
Smalltalk version has a syntactically simpler looping
mechanism and enables multiple messages being sent to
one object in a single expression.

4.2 Efficiency

Clearly, there are languages with a more efficient run-
time model than Smalltalk. Yet, for an educational
context raw execution speed is not a consideration and
has not prevented Java, which relies on interpreted byte
code as well, to be widely used as a first language. For
instance, both Smalltalk and Java can be used to pro-
duce quick interactive animations as motivating exam-
ples for students.

4.3 Resemblance to Languages Used in
Industry

Although there should be no doubt that a university’s
role is to teach concepts as clearly as possible rather than
training students for an industrial setting, it can be ar-
gued that Smalltalk’s syntax has little resemblance
to any of the main stream languages used in industry.
The languages C, C++, Eiffel, Java, Pascal, etc.
all share a similar Algol-like procedural syntax with
builtin control structures. On the one hand, with any
of these languages as a background it becomes easier

to learn any of the other. On the other hand, there is
quite a substantial industrial demand for Smalltalk

programmers as well, especially in the United States.
Moreover, Smalltalk’s way of treating control struc-
tures conforms to object-oriented concepts rather than
inheriting procedural solutions from earlier languages.
This can help to teach objects right from the start as
opposed to exercising loops and arrays for the main part
of the course and using some objects at the end, time
permitting. Also, as students learn to use blocks (snip-
pets of code passed as parameters) right from the start,
they will have no difficulty to understand and appreciate
advanced designs involving patterns like Command [9] or
Function Object [17].

4.4 Visibility Levels

In Smalltalk, visibility rules are simple. Attributes
are protected and methods are public. Methods are of-
ten marked as private with comments but there is no
tool support. Classes always see everything of their su-
perclasses, i.e., in C++ terminology there is no private

modifier.

We consider it an advantage to teach the basic, object-
oriented rules of attribute encapsulation without dis-
tracting keywords such as public, protected, and
private or even an implicit modifier package as in
Java. Optimization strategies and software engineer-
ing in the large as supported by Eiffel’s selective client
export can be left for later semesters. Nothing wrong
needs to be unlearned, anyway, as one could argue in
the case of Java which rather doubtfully gives access to
attributes by default.

4.5 Genericity

Genericity (also known as parametric polymorphism) is
required in statically typed languages only. Eiffel has
generic classes, C++ offers templates, and Java rather
unfortunately still has no support. With a dynamically
typed language such as Smalltalk there is no case for a
genericity mechanism. Collections, for instance, work for
all object types right away. There is no need to instanti-
ate a class template for a certain element type. The loss,
however, is that it is not possible to enforce monomor-
phic collections, for instance, ensure that only persons
and no toasters wait in a queue. Java and Smalltalk

share the same problem when encountering a toaster: A
runtime error would occur. In Java a “class cast ex-
ception” occurs in any event and in Smalltalk a “mes-
sage not understood” would be issued in case the toaster
does not understand the message meant for a person. Of
course, it is no problem to first dynamically check the el-
ement type and omit sending message if not appropriate.
At least, no explicit casting as with Java is required for

9



code to work that would never create problems anyway.

In general, we believe that it is not a real problem in
practice to avoid wrong object types being put into col-
lections, especially considering the typical size of student
projects. Eiffel, with its clean albeit not perfect type
system, again offers itself as a follow up language to in-
vestigate how monomorphic collections can be statically
enforced in later semesters.

4.6 Static Typing

A static type system is regarded as an indispensable fea-
ture of a modern well designed programming language.
While we agree in principle, the following sections shed
some light on dynamic and static type systems in an
educational context and the need to get static type sys-
tems as modern and well designed as the programming
language aims to be.

4.6.1 Dynamic versus Static Typing

Although Smalltalk has no static type system it, of
course, has a dynamic type system. The only difference
is that Smalltalk

1. does not require students to annotate the software
with types and

2. type errors are caught at runtime rather than com-
pile time.

The benefits of additional documentation within the
code due to type declarations is often emphasized as
an advantage of static typing. We agree that it helps
students clarify their thoughts and to understand their
programs if they explicitely think about the object and
variable types involved. Yet, we consider it an advantage
to make type annotations optional in order to avoid typ-
ical beginner mistakes with static typing.

Beginner’s fate: Confusion between declaration and use
of variables

When passing parameter values students often prefix
them with their type, just as the method declaration
suggests. Variables are also often redeclared instead of
simply being used, sometimes causing attributes to be
shadowed by local variables.

Our teaching experience suggests that the notion of
static types is an unfamiliar one to students and, worse,
interferes with other difficulties such as learning the envi-
ronment, syntax, algorithmic thinking and problem solv-
ing in general. Therefore, we consider it to be advantage
of a first language not to impose static typing on stu-
dents.

4.6.2 Other Ways to Record Type Information

Many functional languages facilitate programming by
not insisting on explicit type annotations [11]. These lan-
guages still allow static type checking, something which
is not possible with Smalltalk. Notwithstanding, there
are ways to document software with type information,
using so called secondary notation.

Examples are the usage of comments as in

"dispose a vending machine item"

mc dispose: nextItem.

or an often applied convention to name variables accord-
ing to their type. For instance,

library lend: aBook to: aCustomer.

An even more helpful convention is to use a more elab-
orate naming scheme for keyword selectors as in

library lendBook: item toCustomer: borrower.

It is true that secondary notation can not replace proper
tool support. For instance, if a student forgets to put a
return caret “^” in front of the value to be returned from
a method, the method will return the receiver object in-
stead. With a static type system the declared return
type can be checked against the actual result type, sav-
ing the student the trouble to chase a chain of returns
in order to find the error source. At least, Smalltalk
Express prevents assignment to variables which refer to
classes. The code

OrderedCollection := 2.

would otherwise be legal with dramatic conse-
quences [12].

4.6.3 When Static Typing Becomes a Nuisance

Students sometimes reflect the desired static type of vari-
ables in their variable names but do not keep that con-
sistent with the declared types. Consider the following
Java example:

String num;

num = Console.readInt("Enter a number:");

Given the error message “incompatible types; found: int,
required: java.lang.String” a first year student was un-
able to correct the problem. Although the method name
readInt gives away its return type — which is not nor-
mally the case — and the String declaration is clearly
visible, the student had to wait for assistance. Interest-
ingly, had it not been for the erroneous String declara-
tion the program would have run correctly, since all uses
of num were referring to integer operations only.

10



We already hinted at typical problems with basic types
in procedurally influenced programming languages (see
Sect. 4.1). One of the most common beginner mistakes is
to declare integer variables and subsequently try to cal-
culate, for instance, an average. The result will simply
not be correct due to integer division semantics. Clearly,
students have to make these experiences in order to learn
these issues in such languages. The question is “When?”.
When they struggle with other beginner problems and
could do without further complications? Or later, when
they have already mastered other initial hurdles (see
Sect. 4.6.1).

A drastic example of how static typing can ruin all
attempts to run an almost correct student project is the
following Java bug:

Beginner’s fate: Declaring a constructor with return
type “void”

In an attempt to provide a correct type signature for
a constructor method students declare its return type
as void. This has the dramatic effect of making the
constructor an ordinary method which will not be called
upon object initialization.

This bug will cause very nasty runtime(!) errors includ-
ing crashes. It is quite hard to find for instructors but
next to impossible to correct for students.

4.6.4 Learning from Experience

With static typing students are forced to get the overall
structure right before they can start experimenting with
the system. On the one hand, this provides motivation
to approach the construction of software with a clean
and thought out plan, but on the other hand, it can be
frustrating for beginners to satisfy all typing problems –
urgent or not – before they can start to use and explore
their solutions. Students forced to wait for an instructor
before they can get a grip on the problem are unlikely to
enjoy programming for the hours necessary to develop
proficiency [5].

A type error reported early may save difficult debug-
ging sessions required to find the source of the mismatch-
ing types. However, exactly such intense explorations
may be instrumental in developing a desirable degree of
program comprehension [22]. With static type errors the
student still has to identify which of the two – or maybe
both – type declarations need to be changed.

It seems much more helpful to let beginners experience

their errors by running into them, rather than warning

of potential problems by reporting type errors. In other
aspects of education we also prefer the “see for yourself”
approach over the “Not yet right” attitude.

Especially in the case of more complex type errors,
the required program comprehension and the cognition

as to why the error occurs, can be much better acquired
if it is at least possible to step through the execution
until the error occurs. In a controlled experiment it was
found that reporting static type errors can improve pro-
ductivity and remove a certain type of errors in final
programs [32]. However, these advantages came only
into effect after most other problems had been mastered.
It was found that static typing had no effect on defect
prevention (as opposed to defect removal). Most impor-
tantly, it was furthermore found that type checking is
unlikely to help gain a better understanding.

Hence, we conclude that tools for production code in
industry have different requirements, i.e., quick error re-
moval in final programs, than environments in an ed-
ucational context. In the latter case the more natural
error removal cycle and bug tracing process fostered by
dynamic typing is to be preferred since it enables an
evolutionary software development with a deeper under-
standing of introduced bugs.

4.6.5 Understanding Error Messages

How do languages and environments behave if erroneous
code is entered? In the following example a student sends
message init to class Apple instead of to the freshly
created apple object.

Apple new; init.

Will the student understand the Java message “Error
(17) non-static method init cannot be referenced from
a static context.”? Or is the C++ message more help-
ful: “Improper use of typedef ‘Apple’ ”? Or is it better
to choose “debug” from the walkback window and ex-
perience where the message init is sent to? The lat-
ter investigation makes it easy to recognize the problem
and remove the superfluous “;” in the code. At least in
this example static typing does not present an advantage
whatsoever, as the reported messages are next to useless
for students.

4.6.6 How To Specify Conformance?

One advantage of static typing is that the type hierar-
chy serves as a conformance hierarchy. All subclasses
of a class promise to behave in a compatible manner.
Any accidental structural conformance between classes,
i.e., when a relevant subset of the method signatures is
identical but semantically large differences exist, is ruled
out by tying the type hierarchy to polymorphic substi-
tutability. With a statically typed language a program-
mer, thus, can ensure that only semantically conforming
classes can be substituted for each other.

In fact, the difference to a dynamically typed language
again boils down to checking at compile time or at run-
time. It is a very simple matter of checking an object’s

11



position in the Smalltalk class hierarchy and to raise
an exception if required.

Although it is nice that a developer can state the se-
mantic intent of a class by putting it into certain place in
the class hierarchy, there is no guarantee that it will ac-
tually conform. Even if a sophisticated assertion mecha-
nism as in Eiffel is available, this is more akin to clev-
erly integrated test code and leaves a lot to be desired
compared to proofing semantic properties.

Needless to say, the requirement for a class to sit in
a certain hierarchy is sometimes a hindrance for using
perfectly suitable classes which happen to come from a
different source.

In Smalltalk the class hierarchy is used to realize
subclassing, i.e., code reuse. As objects can freely be
substituted for each other as long as they structurally
conform this does not compromise the degree to which
polymorphism can be exploited. Statically typed lan-
guages typically are forced to unify all subclass, sub-
typing, and “is-a” hierarchies, therefore, diminishing
the power of each individual choice [20]. The language
Sather is an exception, featuring both a code and a
type hierarchy respectively [27].

4.7 Programming by Contract

Eiffel advocates a “programming by contract” style
of software engineering which assigns responsibilities for
client and server classes respectively. While clients make
sure that the preconditions of their servers are met,
servers in turn guarantee to fulfill their postconditions.

This idea is a very useful principle especially if sup-
ported by the programming language as in Eiffel. We
feel, however, that it is not crucial to enforce this soft-
ware engineering principle from the very start. Students
could be told how to reasonably distribute responsibil-
ities but should not be expected to formulate pre- and
postconditions to be included in the code.

Although, Smalltalk traditionally does not feature
language support for programming by contract, its re-
flection capabilities should make it possible to provide
one. In any case, Eiffel could again fill this gap in
later semesters.

4.8 Multiple Inheritance

Smalltalk is a single inheritance language, as is Java.
Java’s multiple interface inheritance does not gain any
advantage over Smalltalk, which accomplishes the
same with unrestricted polymorphism.

Other languages do feature multiple inheritance, al-
though it is not a generally accepted concept. It has been
argued that more dynamic software is possible with ob-
ject composition (see the Beta language [23] or a range
of design patterns such as the bridge pattern [9]). In any

event, multiple inheritance is not a crucial feature for a
beginner’s language. On the contrary, most languages
have complex multiple inheritance semantics and, hence,
are not suitable as a introductory language (Eiffel be-
ing a noteworthy exception).

4.9 Exception Handling

Although there are no keywords in Smalltalk to deal
with exceptions, there is a sophisticated exception mech-
anism available. Again, by using an “all objects” ap-
proach and exploiting some reflective properties of the
Smalltalk system — such as access to the calling stack
— the resulting system is simple but powerful and very
elegant. It can be guaranteed that certain code will be
executed whether exceptions occur or not. It is possible
to specify exception sets and filters. Some exceptions can
be resumed and all can be translated to other exceptions
if desired.

Smalltalk exceptions do not make themselves visi-
ble in student code. With Java as early as basic input
is concerned one has to deal with explicit exceptions.
These either have to be hidden with non-standard li-
braries or have to be explained at an unacceptably early
stage.

5 A Beginner’s Language Only?

In the preceding section we argued that a few concepts
missing in Smalltalk can be left for later semesters.
This begs the question: Is there a life for Smalltalk

after the first semester? Luckily, Smalltalk lends itself
to use for a variety of advanced topics:

Operating Systems The reflective architecture as well
as the exception mechanism could be subjects of in-
vestigation in operating system courses. Also, the
multitasking capabilities and synchronization mech-
anisms are viable topics.

Software Engineering

• There is no better choice than Smalltalk to
illustrate the RAD (rapid application develop-
ment) process.

• A so called refactory browser is available al-
lowing students to restructure software which
evolved into ill-structured designs.

• The meta modeling aspects in Smalltalk are
becoming increasingly important in the era of
component based software development.

User Interfaces A freely available graphical user in-
terface builder can be used to enable the easy pro-
duction of fancy interfaces and to learn about the
underlying event handling mechanisms.

12



Internet applications There are Smalltalk web
servers as well as Smalltalk web clients and ap-
plets. Programming can be performed at any level,
down to low-level socket handling.

6 Related Work

Kölling et al. analyze the requirements for a first
year object-oriented teaching language [15]. Al-
though they propose a new language, their ideal lan-
guage/environment pair basically describes Smalltalk.
The only criticism they raise against Smalltalk are the
unusual syntax, the size of the class library and dynamic
typing. We already discussed in Sect. 4.6 that in an ed-
ucational context it is beneficial not to complain about
errors until runtime to encourage experimentation and
self-directed learning. Also, the fact that errors may not
be discovered at all due to the lack of testing coverage
is an advantage in our view. Programs by first year stu-
dents do not need to be “cleanroom developments”. A
bug left sleeping alone in a dark corner is better than
an annoying type error causing the student to seek help
from an instructor.

The authors also claim that the big size of the library
poses a problem because it has to be extensively used
from the start. We do not understand why the use of an
integer should be any different if it is part of the language
or the library. For all intents and purposes students do
not need to care about the difference.

It is true that, for instance, iteration is dealt with
through the Smalltalk library instead of with plain
language features. But this is how it should be. Any in-
structor serious about teaching object-orientation should
not set exercises asking students to write loops over ar-
rays. Iteration is a matter of containers and should be
offered as a service. The Smalltalk notation required
is minimal and the conceptual simplicity of its iteration
approach compares favorably to the more complex dedi-
cated iterator abstractions necessary in Java or Eiffel.

Apart from the fact that learning to use existing code
is a desirable thing, there are means to hide the richness
of the Smalltalk library from students. A class hierar-
chy browser can easily be opened on an arbitrary subset
of classes. This way only relevant classes can be brought
to a student’s attention.

It is true that learning Smalltalk involves learning a
language, a library and an environment at the same time.
If not approached properly this can be an overwhelming
experience. One can, still, exploit the fact that the three
parts facilitate the understanding of each other:

• The environment helps to understand the library.

• Library browsing helps understanding the language.

• Inspectors help understanding objects.

• The debugger helps understanding language seman-
tics (e.g., method lookup).

Employing the “spiral pattern” [2] one can introduce a
number of topics early without going into depth. This
allows students to work on interesting problems, though
they are not masters of any of the tools. Each topic is
then repeatedly visited in order to achieve depth as well.

The last point of criticism from Kölling et al. concerns
the unusual syntax. From a beginner’s point there are
no crucial differences between,

Java: and Smalltalk:.

if (x>y) { x>y ifTrue:

max = x; [max := x]

} ifFalse:

else { [max := y]

max = y;

}

The Smalltalk code could be considered more intu-
itive and object-oriented, especially if the examples are
correctly coded using library features. In Smalltalk —

biggest := x max: y.

— one uses the max method in class Magnitude. With
Java —

biggest = Math.max(x,y);

— the code can not be object-oriented because int is a
basic type and, thus, a procedural style must be chosen
for the mathematical library.

Recent pedagogical proposals suggest a top-down cur-
riculum as opposed to the traditional bottom-up ap-
proach. Both Meyer’s inverted curriculum [26] and
Callaghan’s “Model and Implement” pattern [29] sug-
gest the syntax-driven, bottom-up teaching track to be
abandoned. The ability to directly start manipulating
objects and reusing other people’s code from day one
in Smalltalk makes it an ideal medium for this kind
of curriculum. As a result, software can be understood
as a tool for solving real world problems rather than an
instruction set for a machine.

There have been a number of approaches to facilitate
teaching Smalltalk. The LearningWorks environment
developed by Goldberg is used for the Open Universities
course M206 entitled ”Computing: An Object Oriented
Approach”. By their own account it is the world largest
computing course with over 5000 students. Learning-
Works builds on the VisualWorks Smalltalk product
and uses learning books to guide students from small to
larger sections of the Smalltalk world [8].

Another environment, “Rehearsal World” is based on
a theater metaphor [10]. Smalltalk objects are visual-
ized as actors and programmers can invoke messages by

13



inserting code into cue sheets. While this seems to be an
excellent metaphor to introduce object-oriented concepts
and could well be used as a demonstration in lectures,
we feel that it is best for students to work with the real
language and environment from the start. According to
the minimalist theory (see Sect. 2.3.1)) authentic tasks
should be approached as early as possible [13]. Students
should feel that they accomplished something of value
in the real world. It is certainly motivating to consider
that an employer would have paid them money to do a
similar task.

Moreover, proficiency with a language also includes
knowledge of its libraries and tools [30]. To “know your
way around”means knowing where to find things, how to
react to certain problems, etc. Hence, proficiency with
a language can not as readily be acquired by learning in
“sandboxed” environments.

7 Conclusions

We have demonstrated that the language, library, and
environment triad called Smalltalk can be used as a
student enabling environment. Even better, it can be
easily enhanced to improve its support for self-directed
learning.

We presented the VisualExpress project as an example
of how to improve exploration facilities without compli-
cating the environment or student code. Useful dynamic
visual diagrams are created without requiring students
to write a single extra line of code. The browser’s lo-
cal code view on single methods and the visual, ani-
mated object map created by VisualExpress object di-
agram complement each other to provide a big picture
where detail is readily accessible. The VisualExpress fea-
tures, including single stepping student code and special
instructor provided data structure visualization classes
are completely non-intrusive in terms of student code.
As a result, students get educational support but still
use a real environment to perform authentic tasks. If
such a student enabling approach also helps to answer
the global phenomenon of having more and more stu-
dents to teach with less and less resources then all the
better. But primarily, constructivist learning should be
adopted due to its higher learning potential for students.

We identified a number of issues that students can
be spared with when choosing Smalltalk as the first
language. Manual memory management, pointers, in-
teger overflow, arithmetic precision problems, etc. are,
of course, worthwhile studying. The point we are try-
ing to make is that there is room for all this in lessons
two, three, and four. Lesson one, though, should provide
a gentle introduction in order to avoid despondency or
agitation at early stages.

We also investigated a number of alleged disadvan-

tages of Smalltalk. The quintessence of Sect. 4 is that
some points of criticism can be regarded as advantages
with a constructivist stance to learning. Furthermore,
those features that are really missing from Smalltalk

have been identified as non-essential for a first contact
with object-orientation.

The Smalltalk Express product is available free of
charge to students and instructors. In combination with
the accompanying documentation, tools, and possible
additions such as VisualExpress it constitutes a con-
structivist learning environment where learners use a va-
riety of tools and information resources in their aim to
achieve a goal.

We found it refreshing to discover how a seemingly
old language and environment provides perfect answers
to modern educational ideas.

8 Acknowledgments

The author would like to thank Colin Atkinson for his
helpful comments.

References

[1] H. Barrows. The tutorial process. Southern Illinois
University, 1988. 2

[2] J. Bergin. Spiral pattern. In The Pedagogi-

cal Patterns Project: Successes in Teaching Ob-

ject Technology. Project leaders: http://www-
lifia.info.unlp.edu.ar/ppp/, July 1999. 13

[3] D. Boud. Researching learner-managed
learning: Seminar response part II,
http://www.lle.mdx.ac.uk/iclml/response.html.
In The International Centre for Learner Managed

Learning. Middlesex University, October 1998. 1

[4] J.M. Carroll. The Nurnberg Funnel. MIT Press,
Cambridge, Massachusetts, 1990. 2

[5] S. M. Carver. Learning and transfer of debugging
skills: Applying task analysis to curriculum design
and assessment. In R. E. Mayer, editor, Teaching

and Learning Computer Programming: Multiple Re-

search Perspectives, pages 259–297. Lawrence Erl-
baum Associates Inc, NJ, 1988. 11

[6] B. du Boulay. Some difficulties of learning to pro-
gram. In E. Soloway and J. C. Spohrer, editors,
Studying the Novice Programmer, pages 283–299.
Lawrence Erlbaum Associates, Hillsdale, NJ, 1989.
5

[7] B. du Boulay, T. O’Shea, and J. Monk. The
black box within the glass box: Presenting com-
puting concepts to novices. In E. Soloway and J. C.

14



Spohrer, editors, Studying the Novice Programmer,
pages 431–446. L. E. Assoc., Hillsdale, NJ, 1989. 4

[8] A. Goldberg et al. The learning works development
and delivery framework. Communications of the

ACM, pages 78–81, October 1997. 13

[9] E. Gamma, R. Helm, R. E. Johnson, and J. Vlis-
sides. Design Patterns: Elements of Object-

Oriented Software Architecture. Addison-Wesley,
1994. 9, 12

[10] L. Gould and W. Finzer. Programming by rehearsal.
Technical report, Xerox Palo Alto Research Center,
May 1984. 13

[11] Hudak, Peyton-Jones, Wadler, Boutel, Fairbairn,
Fasel, et al. Report on the programming language
Haskell: A non-strict, purely functional language
v1.2. ACM SIGPLAN Notices, 27(5):Section R,
May 1992. 10

[12] R. E. Johnson. Classic Smalltalk Bugs.
University of Illinois at Urbana-Champaign,
http://st-www.cs.uiuc.edu/ftp/pub/Smalltalk/st-
docs/classic-bugs, 1998. 10

[13] D. H. Jonassen. Objectivism vs. constructivism:
Do we need a new philosophical paradigm? Ed-

ucational Technology: Research and Development,
39(3), 1991. 2, 14

[14] A. Kay. The early history of Smalltalk. In T. J.
Bergin and R. G. Gibson, editors, History of Pro-

gramming Languages 2, pages 511–578. Addison-
Wesley, 1996. 3

[15] M. Kölling, B. Koch, and J. Rosenberg. Require-
ments for a first year object-oriented teaching lan-
guage. SIGCSE Bulletin, 27(1):173–177, March
1995. 13

[16] M. Kölling and J. Rosenberg. An object-oriented
program development environment for the first
programming course. In Proceedings of the 27th

SIGCSE Technical Symposium on Computer Sci-

ence Education, pages 83–87, March 1996. 3

[17] T. Kühne. The function object pattern. C++ Re-

port, 9(9):32–42, October 1997. 9

[18] T. Kühne. Teaching java for first years: Typical dif-
ficulties and common mistakes. Recorded personal
experiences, Staffordshire University, 1998. 1, 6, 7

[19] W. LaLonde. Discovering Smalltalk. Benjamin /
Cummings Publishing, 1994. 6

[20] W. LaLonde and J. Pugh. Subclassing 6= Subtyping
6= Is-a. Journal of Object-Oriented Programming,
3(5):57–62, January 1991. 12

[21] M. C. Linn and J. Dalbey. Cognitive consequences
of programming instruction. In E. Soloway and J. C.
Spohrer, editors, Studying the Novice Programmer.
Lawrence Erlbaum Associates, Hillsdale, NJ, 1989.
3

[22] F. J. Lukey. Comprehending and debugging com-
puter programs. In M. J. Coombs and J. L. Alty,
editors, Computing Skills and the User Interface.
Academic Press, 1981. 11

[23] O. L. Madsen, K. Nygaard, and B. Möller-Pedersen.
Object-Oriented Programming in the BETA Pro-

gramming Language. Addison-Wesley and ACM
Press, 1993. 12

[24] J. L. Martin. Is Turing a better language for teach-

ing programming than Pascal? B.sc. computing sci-
ence and education honours dissertation, University
of Stirling, January 1996. 3

[25] B. Meyer. EIFFEL the language. Prentice Hall,
Object-Oriented Series, 1992. 2

[26] B. Meyer. Toward an object-oriented curriculum.
JOOP: Education & Training, May 1993. 13

[27] S. Murer, S. Omohundro, and C. Szypersky. En-
gineering a programming language: The type and
class system of Sather. In Joerg Gutknecht, editor,
Programming Languages and System Architectures,
pages 208–227. Springer Verlag, Lecture Notes in
Computer Science 782, November 1993. 12

[28] Smalltalk Express: A free Smalltalk/V
and WindowBuilder Pro/V. Object Share,
http://www.objectshare.com/products/smalltalk/
se/seinfo.htm, 1999. 6

[29] A. O’Callaghan. Model and implement pat-
tern. In The Pedagogical Patterns Project:

Successes in Teaching Object Technology.
Pedagocial patterns project leaders, http://www-
lifia.info.unlp.edu.ar/ppp/, July 1999. 13

[30] D. N. Perkins. Preface: Minds in the hood. In
B. G. Wilson, editor, Constructivist learning envi-

ronments: Case studies in instructional design. En-
glewood Cliffs NJ, 1996. 14

[31] D. N. Perkins and F. Martin. Fragile knowledge
and neglected strategies in novice programmers. In
E. Soloway and S. Iyengar, editors, Empirical Stud-

ies of Programmers, pages 213–229. Ablex Publish-
ing Corporation, Washington DC, 1986. 3

[32] L. Prechelt and W. F.Tichy. A controlled experi-
ment to assess the benefits of procedure argument
type checking. IEEE Transactions on Software En-

gineering, 24(4):302–312, April 1998. 11

15



[33] R. Shank and C. Cleary. Top ten mistakes in ed-
ucation. In Engines for Education, pages 181–213.
The Institute for the Learning Sciences, Lawrence
Erlbaum Associates, 1994. 2

16


	Introduction
	What is a Good Beginner's Language?
	No distraction from the main goals
	Saving difficult issues for later
	Garbage Collection
	Pointers
	Hybrid Languages

	Constructivist Learning
	Minimalism
	Learning by Doing
	The Importance of Debugging
	Supporting Learning Environment


	Smalltalk Supported Learning
	Object-Oriented Language
	Comprehensive Library
	Interactive Environment
	Builtin Debugging Facilities
	Persistence Support

	Adaptable Environment
	VisualExpress
	Why Smalltalk Express?
	Visual Perception and Tangible Control
	Why Object Diagrams?
	Diagrams for Free!
	Visual ADTs


	Where Other Languages (Are Thought To) Do Better
	Where pureness hurts
	Efficiency
	Resemblance to Languages Used in Industry
	Visibility Levels
	Genericity
	Static Typing
	Dynamic versus Static Typing
	Other Ways to Record Type Information
	When Static Typing Becomes a Nuisance
	Learning from Experience
	Understanding Error Messages
	How To Specify Conformance?

	Programming by Contract
	Multiple Inheritance
	Exception Handling

	A Beginner's Language Only?
	Related Work
	Conclusions
	Acknowledgments

