
 1

The Role of Metamodeling in MDA
Colin Atkinson

colin.atkinson@ieee.org

Thomas Kühne
Darmstadt University of Technology

64283 Darmstadt, Germany
kuehne@informatik.tu-darmstadt.de

Accepted at International Workshop in Software Model Engineering (in conjunction with

UML ’02), Dresden, Germany, October 2002

ABSTRACT
There is general agreement that metamodeling will
play a pivotal role in the realization of the MDA,
but less consensus on what the precise role of
metamodeling should be and what form it should
take. In this paper we first analyze the underlying
motivation for metamodeling within the context of
the MDA and derive a concrete set of requirements
that an MDA supporting infrastructure should
satisfy. We then present a number of concepts,
which we believe are best suited to providing
technical solutions to the identified requirements.
In particular, we discuss why the traditional
“language definition” view is insufficient for an
optimal MDA foundation.

1 INTRODUCTION
The basic underlying motivation for the MDA [1] is
to improve productivity in software development—
that is, to increase the return derived from a given
amount of effort. It delivers this benefit—

1. by raising the level of abstraction at which
primary software artifacts1 are written.

2. by reducing the rate at which these artifacts
become obsolete.

The first goal aims to improve the short-term
productivity of developers. In the same way that
high-level programming languages increased
productivity in the 60's and 70's by obviating the
need for programmers to write assembler or binary
code directly, modeling languages can further
increase productivity by making it unnecessary for
developers to write programs—i.e., to specify
implementations—at all. Instead, models will

1 Primary software artifacts are developed by
human engineers and are used to mechanically
generate derived artifacts from them.

become the primary artifacts developed by humans,
and code—at the level defined by today’s
programming languages—will be a derived artifact,
generated by tools (i.e., model compilers). This will
allow developers to focus on describing business
logic and problem concepts in as concise and
abstract a manner as possible, leaving tools to
handle the routine implementation issues.

Increasing short-term productivity is only one part
of the overall picture, however. It is also important
to improve long-term productivity by minimizing
the sensitivity of primary software artifacts to
change. We therefore believe that the second and,
in fact, more important goal of the MDA should be
to maximize the useful lifetime of key software
development assets.

To this end, in the following sections we identify
the end user benefits which we believe the MDA
should be designed to deliver, and then distill these
into a concrete set of requirements for an MDA
infrastructure. After criticizing the current
approaches for providing such an infrastructure, we
discuss what enhancements are needed for the full
promise of the MDA to be realized.

2 REQUIREMENTS FOR AN MDA
INFRASTRUCTURE

To increase the useful lifetime of primary software
artifacts it is necessary to reduce their sensitivity to
the inevitable changes that affect a software system.
It is impossible to avoid change, but by managing
changes appropriately their impact on software
development investments can be minimized. Four
mains kinds of change in particular need to be
carefully managed:

I) Deployment Platforms
In today’s rapidly changing deployment
platform market it seems that as soon as
developers have mastered one new platform

 2

technology another comes along to take its
place2. By documenting core business logic in
platform independent artifacts, however, it can
be decoupled from the high rate of change in
platform technology. The key to making this
work is to automate (to the greatest extent
possible) the process of obtaining platform
specific software artifacts from platform
independent ones through the application of
user definable mappings.

II) Development Platforms
If software artifacts are dependent on the
particular development environment and tools
that created them, their lifetime will be limited
by the lifetime of the development platforms.
This implies that artifacts should be decoupled
from development environments by requiring
tools to support high-levels of interoperability.

III) Requirements
Effectively managing requirements changes
has always been a big challenge in software
engineering, but has recently been complicated
by expecting deployed enterprise applications
to be continuously available, even in the
presence of significant changes to the business
logic. It follows, at a technical level, that in
addition to supporting the static addition of
new types at development time, deployed
systems are expected to support the dynamic
addition of new types at runtime.

IV) Personnel
As long as certain vital development
knowledge is only present in the minds of
developers, such information will be lost in the
all too frequent event of personnel fluctuations.
It is therefore not only essential to embody all
such key knowledge within the primary
software artifacts but to also describe them as
concisely and appropriately as possible,
maximizing the ease with which they can be
understood by all interested stakeholders. This
requires that primary software artifacts can be
expressed using a concise and tailorable
presentation.

Clearly all these different forms of change can
occur concurrently, so the techniques used to
accommodate them must be compatible with one
another. Historically, one of the most effective
ways of limiting the sensitivity of software to
requirements changes is to structure it according to
the principles of object-orientation. Concepts such
as encapsulation, polymorphism, and inheritance
allow one part of a program to be extended without

2 This is the form of change which is usually
associated with the MDA approach.

other parts being affected. However, in its
traditional form, object-oriented programming is
not well-suited to handle the dynamic addition of
new types (III). To meet this requirement, "meta"
concepts are needed as well. Metalevel description
techniques, in general, are also useful for
supporting the above mentioned user-
defined mappings (I) and interoperability (II)
requirements. All these requirements (I)-(III) are
best dealt with by establishing a definition (or
meta-) layer above the subject of description so that
humans and tools can systematically access and
manipulate it. Finally, as evidenced by the success
of the UML, the technology that has the best record
of supporting concise presentation of information is
graphical modeling. Again, however, it must be
enhanced with metalevel description techniques to
fully support user-tailorability (IV).

Thus, the best strategy for realizing the main goals
of the MDA vision is to leverage the synergy
between object-orientation, metalevels and
modeling—in short, to utilize Object-
Oriented Metamodeling. Based on the above
discussion we can identify the following concrete
list of requirements that an MDA infrastructure
should ideally support. It should define–

1. the concepts that are available for the creation
of models and the rules governing their use.

2. the notation to be used in the depiction of
models.

3. how the elements of a model relate to (i.e.,
represent) real world elements, including
software artifacts.

4. concepts to facilitate dynamic user extensions
to (1) and (2), and models created from them.

5. concepts to facilitate the interchange of (1)
and (2), and models created from them,
between tools.

6. concepts to facilitate user defined mappings
from models to other artifacts (including
code).

Having established a list of such abstract
requirements we are now able to evaluate various
approaches with respect to the extent that they
address these requirements and the elegance they
display in doing so.

3 METMODELING AS LANGUAGE
DEFINTION

Since the MDA is a relatively new vision, the OMG
community is still in the process of adapting its
standards to fully support it. At the heart of this
adaptation process is the impending update of the
UML and MOF modeling and metadata standards.
While most members of the OMG community

 3

would agree that object-orientation, metalevels and
graphical modeling all have a role to play in
supporting the MDA, they do not all agree on the
relative importance of their respective roles and
how they should be integrated.

Historically, the UML and MOF standards have
focused on requirements (1)-(3) identified above,
by viewing the UML metamodel and the MOF as
essentially having the role of defining languages.
The UML metamodel is viewed as defining the
language for creating models, and the MOF as
defining the language for creating metamodels.
While this is understandable, given that the first
three requirements essentially ask for an abstract
syntax (1), a concrete syntax (2), and a semantics
definition (3), i.e., a traditional language definition,
this approach does not scale up to satisfy all the
needs of an MDA infrastructure as characterized by
requirements (1)-(6). In particular, limiting the role
of metalevels to simply defining languages has the
following concrete shortcomings:

First, users need to be able to extend both the
abstract syntax and concrete syntax dynamically
(4). The provision of this feature is best dealt with
by providing a metalevel above the user modeling
level which is not a classical language definition
level (e.g., the M2 level in the four layer
metamodeling hierarchy), but a domain metalevel
containing user metatypes. This level defines the
library of modeling elements available to modelers
including concepts such as TreeSpecies [2], Agent
(e.g., for active classes), Breed, etc. These concepts
all share the property that their instances can be
instantiated (i.e., they are metatypes) and that they
are typically specific to a certain modeling domain.

Second, the traditional language definition
approach does not naturally accommodate the type-
instance duality of elements which manifests itself
as soon as more than two levels are present. When
something (e.g., BorderCollie) has been instantiated
(here from Breed) and can itself be instantiated
(here to e.g., “Lassie”) it has both an instance facet
and a type facet. The traditional approach must then
longwindedly explain how certain features of an
element (belonging to the type facet) have an effect
on some features (belonging to the instance facet)
of elements derived from it.

Third, the language definition metaphor on its own
does not address the need to define mappings (6).
The systematic definition of mappings from user
models to other representations (e.g., other models,
code, storage formats, etc.) requires a meta-meta-
level defining the language used for defining
modeling languages. Yet, for mappings to be
available for both the modeling (M1) and instance
level (M0) such a level would need to play two roles
at the same time. It would need to—

1. be the definition level for M2 concepts, and

2. somehow provide interfaces to elements at
both levels M1 and M0.

This is the dilemma that the MOF is currently
facing. On the one hand it is trying to act as the
UML meta-metamodel and on the other hand it is
supposed to standardize modeling repositories,
potentially containing elements from all levels,
including M1 and M0. These two roles cannot be
reconciled with each other if one assumes the usual
premise that each level exclusively defines just the
level below it.

Fourth, traditional language definition does not
address the need for interoperability (5). Again, an
additional meta-metalevel is required. While
multiple metalevels are certainly not incompatible
with the traditional language definition approach,
the resulting combination is not very economical in
terms of concepts and techniques required and the
individual level contents needed. Time and again
each level has to establish basic concepts such as
classification and instantiation giving rise to the
replication of concepts problem [3].

In summary, while the language definition
metaphor is the most established way of meeting
MDA requirements (1)-(3), it does not scale up well
to meet the remaining requirements (4)-(6). The
basic problem is that exclusively using the
“language definition” metaphor yields an extensive
use of meta description techniques at the expense of
object-oriented techniques and graphical modeling
concerns.

Unfortunately, despite these problems, the currently
prevailing view in the UML/MOF revision process
is to strengthen the “language definition” emphasis
of the UML metamodel and the MOF, and to
further weaken the role of object-orientation and
graphical modeling at these levels. Indeed, some
proposals go so far as to suggest that the UML
metamodel should essentially be just a graphical
rendering of the traditional elements of language
definition technology (i.e. abstract syntax, concrete
syntax, semantic domain and semantic mapping)
[4]. Although this approach does in a sense
introduces “more model” at the meta level it does
so by graphically rendering a lot of detail which
would be more appropriately be expressed
textually. In contrast, the real benefit of graphical
modeling is to provide high levels of abstraction,
allowing essential information to be presented in a
concise manner. This implies that one does not
obtain a language definition model by just
graphically rendering a very detailed language
definition.

We believe that overemphasizing the “language
metaphor” in this way is heading in the wrong

 4

direction. The other key foundations of the MDA
(graphical modeling and object-orientation) should
be given a much greater role to play and should be
integrated uniformly across all levels of the MDA
infrastructure. The following section discusses
some keys ideas which we believe are needed to
achieve this.

4 TOWARDS A SYNERGISTIC MDA
INFRASTRUCTURE

In order to address MDA requirements (4)-(6) we
believe that the language metaphor needs to be
augmented by the “library metaphor”. The latter
concept originates form the observation that object-
oriented programming languages support two ways
of creating and composing programs—by use of
language mechanisms, and by use of the class
library, which offers predefined types for users to
use and extend. Instead of exclusively focusing on
defining and using language mechanisms in the
definition and application of the UML/MOF both
approaches should be exploited.

Supporting the library metaphor (as describe above)
becomes most natural once fundamentally different
flavors of instantiation are distinguished [5]. We
refer to these as logical instantiation versus
physical instantiation [3]. A certain modeling
concept (e.g., BorderCollie) is both a logical
instance of a modeling library concept (e.g., Breed)
and a physical instance of a modeling language
element (e.g., Class). Although this distinction of
instantiation forms is never made explicit in the
OMG four layer metamodeling hierarchy, it must
exist in some form for it to be sound. Consider the
user level concept C as an instance-of the
metamodel element Class and O as an instance-of
Object. These instance-of relationships (going from
M1 to M2) then represent inter-level (physical)
instantiations while the (user modeled) relation
between C and O represents an intra-level (logical)
instantiation.

Once physical and logical instantiation have been
explicitly distinguished, it is easy to handle the
dynamic addition of types. The logical metalevel
(L2) enables the definition of new user level type
properties that can be created without implying a
change to the language definition (physical
metalevel, P1). The physical metalevel is thus put in
a position to provide a fixed and immutable
definition of the notion of classifiers and
instantiation, thereby making it unnecessary for the
logical metalevels to repeat this exercise time and
again. Each individual logical metalevel can then
make the natural assumption that all its elements
possess the type-instance duality, i.e., are instances
from the logical metalevel above and give rise to
instances at the logical metalevel below. Explaining
the effects of instantiation is then

1. only required once at the physical metalevel,
and

2. very simple, when using the concept of deep
instantiation [6].

With the deep instantiation approach, defining the
effects of instantiation is much simpler since the
mapping exercise (e.g., mapping from attributes to
slots) can be replaced by a simple decrement
operation on meta-attributes (“level” and
“potency”) [6]. However, the mechanism’s main
advantage from a user’s perspective is the ability to
specify element properties across more than one
level of instantiation. Such a mechanism becomes
necessary, as soon as more than two user levels
(i.e., the classic type & instance levels) are present.
Odell’s powertype concept [2] is such a mechanism
but is not as concise and scalable as the deep
instantiation approach. Taking everything into
account it hence becomes possible to elegantly
meet requirements (1)-(4), most notably by the use
of a metamodeling infrastructure with a two-
dimensional approach to instantiation relationships
[3].

With regard to the two remaining requirements—
interoperability (5) and mappings (6)—it is useful
to view them as two sides of the same coin. The
format used for enabling tool interoperability could
be regarded as the target of a mapping, or taking the
opposite viewpoint, the various target formats could
be regarded as yet another way of representing
models, i.e., model formats. Moreover, even the
notation (2) (i.e., the presentation of models) could
be interpreted as yet another model representation.

Since the presentation of modeling elements is best
defined at the next higher logical metalevel, this
could also be the location for various user defined
mappings. For both purposes it makes sense to
predefine default (re-)presentation forms and
mappings, and override these for special elements
accordingly.

5 CONCLUSION
Although there is general agreement that object-
orientation, graphical modeling and metalevel
description techniques are all key ingredients of a
comprehensive MDA infrastructure, there is no
consensus about how they should be integrated to
maximum effect. The currently prevailing view is
to emphasize the metalevel dimension at the
expense of graphical modeling and object-
orientation, and to essentially view the design of the
UML metamodel and MOF as language definition
problems. While language definition techniques
certainly have a role to play, we believe that
focusing on this to the exclusions of the needs and
capabilities of the others is suboptimal and cannot
elegantly satisfy all the fundamental requirements
for a comprehensive MDA infrastructure

 5

To support this position, in this paper we first
identified the fundamental forms of change (I)-(IV)
that the MDA approach can help manage. In doing
so, we postulated that the most valuable role of the
MDA approach is to improve long-term
productivity by maximize the useful lifetime of
primary software artifacts. We then used these
forms of change (I)-(IV) to derive a concrete set of
requirements (1)-(6) that a comprehensive MDA
infrastructure should support. We also identified the
“library metaphor” as a powerful complement to
the traditional “language metaphor” for organizing
the MDA infrastructure. Finally, in the last section
of the paper we described the key ingredients which
we believe are needed to provide support for all
MDA infrastructure requirements (1)-(6)—

• a two-dimensional metalevel hierarchy,
arranging modeling elements in multiple
logical metalevels, next to one physical
metalevel.

• the explicit recognition of the instance-type
duality of modeling elements.

• deep instantiation as a mechanism to control
element properties across more than one level.

• unifying the requirements of model
presentation, representation, and mappings as
user-defined transformations from a model to
another target (i.e., graphical notation, storage
formats, other models, respectively).

We believe that MDA infrastructures based on
these concepts, exhibiting a synergetic interplay of
object-orientation, metalevels, and graphical
modeling, will be cleaner and simpler, yet more
flexible and powerful.

6 REFERENCES
1. R. Soley, Model Driven Architecture, White

paper, November 27, 2001.

2. J. Odell, Power Types, Journal of Object-
Oriented Programming, May 1994.

3. Colin Atkinson and Thomas Kühne,
Rearchitecting the UML Infrastructure
Submitted for the ACM journal "Transactions
on Modeling and Computer Simulation", 2002.

4. Andy Evans and Stuart Kent, Meta-modeling
semantics of UML: the pUML approach,
Proceedings of the 2nd International
Conference on the Unified Modeling
Language, editors Bernhard Rumpe and Robert
B. France, 1999.

5. Jean Bézivin and Richard Lemesle, Ontology-
Based Layered Semantics for Precise OA&D
Modeling, Proceedings of the ECOOP'97

Workshop on Precise Semantics for
Object-Oriented Modeling Techniques, editors
Haim Kilov and Bernhard Rumpe, 1997.

6. Colin Atkinson and Thomas Kühne,
The Essence of Multilevel Metamodeling
Proceedings of the 4th International
Conference on the UML 2001, Toronto, 2001.

