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Abstract. Java provides a specification for a user-defined general purpose equiv-
alence operator for objects, but collections such as Set have more stringent re-
quirements. This inconsistency breaks polymorphism: programmers must take
care to follow Set’s contract rather than the more general Object contract if
their object could enter a Set. We have dynamically profiled 30 Java applica-
tions to better understand the way programmers design their objects, to determine
whether they program with collections in mind. Our results indicate that objects
which enter collections behave very differently to objects which do not. Our find-
ings should help developers understand the impact of design choices they make,
and guide future language designers when adding support for collections and/or
equality.

1 Introduction

Designing good software is hard. Designing good programming languages is harder
still. Modern programming languages have evolved to include numerous high-level
constructs, and to provide vast libraries of reusable code. Inheritance, polymorphism,
collections and first-class regular expressions are just a few examples. Many of these
constructs have subtle and important effects on the way software is designed.

In this paper we consider the effect of one particular feature of Java on program de-
sign. Java’s Object class provides a specification for defining general purpose object
equality. However, Java Collections such as Set and Map require stronger contracts on
the implementation of object equality than the Object specification provides.

This paper addresses the question, how do programmers satisfy equality contracts?
We examine the behaviour of objects in running Java programs, comparing objects
in different Collections and outside Collections to identify differences in their design.
In particular, we compare objects which enter equality collections such as Set, non-
equality collections such as ArrayList, and objects which do not enter a collection
at all.

The contributions of this paper are:

1. A set of object characterisations, based on equality and state mutability, which can
be measured at runtime.

2. Design and implementation a runtime profiler, called #Profiler, that observes the
way objects behave when they are and are not in collections. #Profiler employs
AspectJ to intercept field reads/writes, constructors and calls to collections.



3. Results from examining 30 real-world Java programs using #Profiler. Our results
indicate:

– Objects which do not enter collections do not change their equality;
– Objects which enter non-equality collections are much more likely than other

objects to change their internal state;
– Objects which enter equality collections are much less likely to change internal

state than objects which enter other collections;
– Objects which enter equality collections and do change their state are no more

likely to change their equality than objects which enter non-equality collec-
tions.

The rest of this paper is organised as follows: Section 2 discusses various contracts
imposed on equality implementations by Java, particularly those imposed by Collec-
tions, and outlines our approach to categorising objects according to the way they ad-
dress these contracts; Section 3 discusses how the object categorisations are measured
with our profiling tool, #Profiler; Section 4 presents our experimental results looking
at the behaviour of objects across 30 open source Java applications; Section 5 covers
related work and, we summarise our findings in the conclusion. An extended version of
this paper is available as a technical report [1].

2 Equality for Collections

Every object is inherently distinguishable by its location in memory and many lan-
guages, like Java, expose this using an equivalence operator. However, it can be useful
for objects to define their own equivalence relation for comparing internal state. In ad-
dition to reference comparisons, Java provides equals(..) — a method defined on
the root of the class hierarchy which subclasses can override to implement their own
equivalence relations. The documentation provided for this method states that it must
be an equivalence relation, but also that it is consistent — that is, it will return the same
result for multiple calls so long as the information it uses does not change [2].

Java also provides the Java Collections API, a group of collections for programmers
to use. Almost all of these collections are capable of storing Objects directly, without
any additional type information, yet several require contracts on equals() which
are stronger than the requirements imposed by Object on the equals method. For
example, documentation for java.util.Set states:

“Note: great care must be exercised if mutable objects are used as set elements.
The behavior of a set is not specified if the value of an object is changed in a
manner that affects equals comparisons while the object is an element in the
set. A special case of this prohibition is that it is not permissible for a set to
contain itself as an element.” [2]

As there is no type constraint to prevent mutable objects from entering a Set, pro-
grammers must take care that they obey this contract or they may encounter subtle bugs
in their programs. This paper attempts to discover how much programmers use mutable
objects in collections and, if they do, how they avoid violating the additional constraints
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that some collections impose. We begin by discussing the collections contracts in more
detail, then introduce two categorisations for objects based on equality and state, re-
spectively. We conclude this section by discussing a unified categorisation for objects
based on both equality and state which is used for the remainder of the paper.

2.1 Collection Contracts

The Java Collections API provides four main interfaces: List, Set, Map and Queue.
There are also implementations provided and, in some cases, there are several each with
different properties.

The Set interface imposes a particularly strict contract on the objects it contains:
they cannot change while they are in the collection. Map requires the same of key ob-
jects, but not of value objects. Lists do not have additional requirements on the objects
they contain, but they also have a related note of caution:

“Note: While it is permissible for lists to contain themselves as elements, ex-
treme caution is advised: the equals and hashCode methods are no longer well
defined on such a list.” [2]

This aside is because Lists, unlike Queues, implement Java’s equals() and
hashcode() methods which depend on the list’s contents, recursively calling equals
or hashcode on each member. While they do not directly impose a contract on their
members, programmers must be aware that if the list is stored in another collection
which does impose a contract it will transitively apply to the list’s contents.

In the rest of this paper we will refer to objects entering equality and non-equality
collections. Equality collections require that the equality of objects does not change
while they are in the collection. These include subclasses of Set, and the key-sets of
Map and HashTable subclasses. Non-equality collections are Lists, Queues, and
the value-sets of Maps and HashTables.

2.2 Measuring Changes to Equality

An object following the contract for equality outlined by Objectmay change its equal-
ity at any point in its existence. If it is in a Collection, however, this could be an error.
To determine which strategies programmers use to avoid these errors, we track objects
throughout their lifetime to determine when they do change. We have identified three
measurable stages in the life-cycle of an object which we can use to classify objects
based on when they change their equality:
Construction: When an object is created the constructor is invoked to initialise the
object. Even otherwise immutable objects will assign to fields in this phase, as Java al-
lows objects to write to final fields during the constructor; so the first stage we consider
ranges from the beginning to the end of the constructor.
Initialisation: After an object is created and the constructor has run, there may still
be additional initialisation performed on the object which could change its equality. So
long as this happens before the object enters a collection it will not violate any equality
contracts, so our second phase is from the end of the constructor until the object first
enters a collection. Some objects will never enter a collection and thus never leave the
‘initialisation’ phase.
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Type of Object Constructor Initialisation Post-Collection
Identity as Equality
Initialised Equality x
Late-initialised Equality x x
Reindexing x x x

Fig. 1. Four types of objects distinguished by their different behaviours in various parts of their
life-cycle. x denotes possible changes to equality during that phase.

Post-Collection: After an object has entered a collection we consider it to be fully ini-
tialised; any further changes to its hash code could violate the internal consistency of
the collection. A programmer would have to consider the implications of changing an
object which is in, or could still be in a collection. The post-collection phase ends when
the object is garbage collected or the program terminates.

These three measurable phases of an object’s life-cycle lead to the following four
categorisations of objects based on their changes to equality, which are also presented
in Figure 1:

– Identity as Equality: objects in this category do not define a hash code method.
They rely on reference equality for participation in equality-based collections.

– Initialised Equality: these objects define a hash code, but it does not change after
the constructor has completed.

– Late-initialised Equality: late initialisation objects are distinguished by changes to
their hash code after the constructor has completed but before entering a collection.
They may also change their hash code during the constructor.

– Reindexing: finally, objects which change their hash code after entering a col-
lection are called reindexing objects. Examples of reindexing objects are: objects
which leave a hash-based collection, change their hash code, then re-enter a collec-
tion; and, objects stored in collections which do not use equality and change at will.
Potentially, there are also objects which violate collection constraints and, hence,
are erroneous.

These categories of objects are names for distinguishable groups of objects based
on the observation points we have defined. Unless there is a reason to distinguish them,
we will group these categories based on whether they change their equality after the
constructor. Identity as Equality and Initialised Equality are referred to as Immutable
Equality objects. Late-initialised Equality and Reindexing are referred to as Mutable
Equality objects.

2.3 Measuring changes to State

Objects are free to define their equality based on any or all of their reachable state, so it
is interesting to see whether objects change state that is not used by equality when they
are in collections. This will give us further insight into the techniques programmers use
to satisfy the Collection contracts by showing whether the decision to make an object’s
equality mutable is made with the implementation of the object in mind.
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– Immutable State objects do not change their state after the constructor ends. This
may be because it does not have any state, or all of its state is final, or there are no
accessor methods for changing state, but it could also be coincidental — none of
the state happened to change.

– Mutable State objects can be observed to change state after the constructor. This
could be any field of that object or another object which is reachable from fields of
the object.

2.4 Classifying Objects

State and Equality measurements together will give us the four broad categories of
objects listed below:

Equality

Immutable Mutable

State
Immutable Immutable Mutable Equality

Mutable Mutable State Fully Mutable

– Immutable is by far the simplest approach to ensuring the collection contracts are
preserved. In this case, the programmer simply ensures that the state of any object
placed into an equality-dependent collection never changes during its lifetime.

– Mutable State requires that an object’s equality never changes after the construc-
tor, but allows other state to change. This is simple to implement if the object uses
Identity as Equality, but more challenging to maintain if the object uses Initialised
Equality: one strategy would be to use immutable objects to determine equality and
annotate the fields containing them as final.

– Mutable Equality would occur if the object changed its equality but not its state.
This cannot occur because the equality is based on state.

– Fully Mutable objects change their state and their equality after the constructor.
These objects must still obey collection contracts, so this category includes Late-
initialised Equality and Reindexing objects, both of which satisfy the contracts for
equality collections, though each requires more care on the behalf of the program-
mer than objects with immutable equality.

The collections library itself provides examples of each of the three valid categories:
Sets, Lists and Maps are Fully Mutable, while Queues are typically Mutable State
objects. With appropriate care, Collections.unmodifiableSet() can provide
an Immutable set.

In this paper, we are interested in exploring how these strategies are used in practice.
We have implemented a profiling system designed to examine the way in which real
programs operate and, hence, give insight into this issue. The next section discusses the
profiling system and its implementation.
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3 #Profiler

Detecting direct changes to object equality at runtime is difficult. Equality is inher-
ently a binary operator, so changes to the equality of an object can only be detected
by invoking the equals() method with another object which was previously equal.
Detecting that equality has not changed would require comparing with all other objects,
or knowing all possible execution paths and reachable objects, which are not feasible
for a runtime profiler.

Instead of using the equals() method to detect changes to equality, we use
hashCode() as a proxy. The hashCode() method is a unary operator which can
be called without reference to other objects. This is a compromise because Java does
not enforce any relationship between hashCode() and equals(). Java’s documen-
tation for developers does however specify that if two objects are equal then they must
have the same hash code:

“If two objects are equal according to the equals(Object) method, then calling
the hashCode method on each of the two objects must produce the same integer
result.”[2]

That is, if the hash code of a correctly implemented object changes then the equality
of that object to other objects has changed also. There are tools available to developers
to ensure that they do this correctly [3].

Even if it is correctly implemented, the hash code is not a perfect proxy for equality.
It is possible that a change to an object will cause its equality to change but not affect
its hash code. However, this is unlikely in practice because good hash code methods are
designed to avoid this kind of collision. Thus, hash code serves as a good lower-bound
measure of equality changes.

3.1 Detecting Changes to Hash Code

Our strategy for detecting changes to an object’s hash code has two parts; computing
and recording the previous value, and tracking changes to objects which could cause the
hash code to change. First, we compute the object’s hash code. We track all method calls
during this invocation, and record the objects on which methods have been invoked.
This gives us a set of dependencies for computing the object’s hash code. Once the
hashCode() method completes we record the value returned.

Detecting changes requires calling the hashCode() method again to see whether
the returned value has changed. We track all field and array writes, and when they
occur we re-compute the hash code of each object which depends on the object which
contains the field or array. If the hash code has changed we record the change, and if
re-evaluating hashCode() invokes methods on objects which haven’t already been
encountered by that object we register the objects as dependents.

3.2 Detecting Changes to State

In addition to tracking changes to hash code, we also track changes to objects’ fields
and arrays. Tracking changes to an object’s hash code requires that we monitor changes
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to fields and arrays, so we mark objects whose fields and arrays change after their con-
structors have completed. Classes for which all instances do not change are recorded
as having immutable state. The detected immutability is not deep immutability, which
would require traversing all reachable objects (which is beyond the scope of our pro-
filer); a class marked as immutable state is simply shallow-immutable for the set of
instances and the run of the program that we encountered.

As a consequence, it is possible that Mutable Equality objects will be incorrectly
detected. That is, objects which appear to change their equality but not their state. This
is because a change to an object’s deep state may occur without triggering the profiler’s
mutability detection. We detect and report this when it occurs.

3.3 Profiler Implementation

Our profiler is implemented using the AspectJ load-time weaver to add code around
method calls, field accesses, and array accesses. In addition, we have implemented re-
placement classes for common Java collections which are backed by the standard imple-
mentations, but record more information than would be possible using woven versions
of the standard collections.

AspectJ is not able to add code to the standard libraries, so changes that occur within
the standard libraries are not recorded (except in the case of collections, which we re-
place with our own implementations), but standard library objects are still observable
when used in user code. For this reason we provide results both including and with-
out standard library classes. We are also unable to profile certain applications which
use their own class loaders (like Eclipse) or applications which are close to the limit
on method size: AspectJ does not support breaking up methods to avoid overflowing
method size limit, and as our profiler adds a lot of tracking code, this can result in
invalid class files.

4 Results

To test our hypotheses we ran our profiler on a sample of applications from the Qualitas
Corpus developed at Auckland University, NZ [4]. The Qualitas Corpus brings together
a large number of open source Java applications to aid empirical research on Java. How-
ever, as the corpus was designed primarily for static analysis, not all of the applications
could be profiled. Some were libraries or platforms which could not run independently,
while others could not be profiled due to limitations in the profiler (Section 3.3). Of the
100 projects in the Qualitas Corpus, we chose a sample population of 30 which could be
profiled relatively easily. These included compilers, command-line utilities, graphical
tools, sample applications for libraries, and test suites. The complete list of applications
profiled, with a short description of each, is presented in Figure 2.

4.1 Experimental Method

Each Java program was run within a standard Java HotSpot(TM) Server VM (build
1.5.0 15-b04, mixed mode) on an Intel machine running NetBSD 5.0 RC2. The pro-
grams were loaded using AspectJ’s class-loader which weaves our profiler code written
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Application Synopsis
ant Ant is a Java build system. Benchmarked building ant, included javac.
antlr Antlr is a compiler-generator. Tested compiling Java grammar.
aoi Art of Illusion, a 3D editor with raytracer. Built a simple model and rendered it.
columba Java mail client. Connected to an imap server, browsed mail and sent a message.
derby Java database. Ran tutorial on in-memory DB.
drawswf SWF animation editor. Generated a small animation and exported to SWF.
fitjava Testing framework. Ran tests distributed with framework.
freecs Chat server. Ran server and connected several clients.
ganttproject Graphical tool for task management.
hsqldb Database tool. Created in-memory database and run various test scripts.
itext Collection of tools for PDFs. Ran several tools.
jFin DateMath Date math library. Ran tests.
jasml Java assembly compiler. Bootstrapped.
javacc Java Compiler Compiler. Compiled JavaCC grammar.
jchempaint Graphical molecule editor. Created and edited simple molecules.
jedit Text editor. Created Java class, edited, searched, saved etc.
jfreechart Graphical tool for creating charts. Tested UI.
jgraph Library for drawing graphs. Ran several examples.
jgraphpad Uses jgraph for drawing graphs. Created small graphs.
jgrapht Views graphs, uses jgraph.
jhotdraw Graphics framework. Tested sample application.
jmoney Personal finance. Created sample accounts. Tested import/export, saving, editing,

and reporting.
nekohtml HTML parser. Ran samples.
pmd Source code analyser. Tested on various projects.
pooka Java email client. Tested connecting to IMAP server, reading mail, sending mail.
velocity Templating engine. Ran sample application.
weka Data mining tool. Ran sample application.
xalan XSLT processor. Ran some examples.
xerces XML parser. Ran some examples.
xmojo JMX implementation. Ran sample application.

Fig. 2. Profiled applications. A selection of 30 applications from Qualitas Corpus release
20080603 [4]. Where multiple application versions were available the most recent was used.
Where relevant, the table lists the application behaviour that was profiled.

in AspectJ into the classes as they are loaded. For each application we chose a suitable
set of input designed to exercise as much functionality as possible, but without consult-
ing source code or profiling coverage. For compilers, build tools and similar we tried
to use samples distributed with the application or the application itself, while for GUI
tools we run simple workflows, and attempted to use all available features, within rea-
son. The profiler introduces significant overhead to the applications, so some interactive
programs were difficult to use, while some autonomous programs ran for several hours.

On termination, the profiler output dumps were captured and stored. The raw results
were then run through various scripts to extract the results presented in this section.
Additional results are available in the technical report version of this paper [1]. The raw
profiler output, and the profiler itself can be obtained by contacting the authors.
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36%

60%

4%

All Objects

Fully Mutable
Immutable
Mutable State

17%

83%

Context

44%

53%

4%

All User Objects

Fully Mutable
Immutable
Mutable State

Fig. 3. An overview of all of the objects profiled. These are shown split into three categories:
objects which change their equality and their state (fully mutable), which never change their state
(immutable), and objects which don’t change their equality but do change their state (mutable
state). The large chart on the right shows the same distribution excluding Java standard library
classes, and the small chart indicates how many of the objects in the chart on the left are also in
the chart on the right (83%). This figure summarises 8,140,239 objects in 5,577 classes and 30
applications.

4.2 Experiment I: General Observations

This experiment provides a general overview of the objects profiled in the 30 sample
applications. Figure 3 presents a summary of all objects encountered split into the cat-
egories defined previously: fully mutable, immutable and mutable state. These graphs
account for the incorrectly detected mutable equality objects discussed in Section 3.2 by
adding them to the fully mutable segment. See the error section below for a discussion.

The graph on the left of Figure 3 reports the data for all objects profiled, while that
on the right only considers user-defined classes (i.e. excluding those from the standard
libraries). The smaller pie-chart indicates what proportion of objects were user-defined
(e.g. 83% of all profiled objects were user defined).

Discussion. Our conclusions from the data in Figure 3 are fairly straightforward: very
few objects change their equality at all, and there are more objects with immutable state
than mutable. This is fairly consistent between user-defined objects and the standard
library objects which were profiled.

Error. Each segment of the charts in Figure 3 may include an extremely small error
due to some objects which have immutable state (shallow) and mutable equality (deep).
As we could not determine the exact number of objects in this category from the raw
results, we included the error in the fully immutable segment and calculated an upper
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10%

85%

5%

Objects in Equality Collections

Fully Mutable
Immutable
Mutable State

91%

9%

Context
28%

60%

13%

User Objects in Equality Collections

Fully Mutable
Immutable
Mutable State

96%

4%

Context

53%
32%

15%

Objects in non-Equality Collections

Fully Mutable
Immutable
Mutable State

81%

19%

Context

77%

4%

19%

User Objects in non-Equality Collections

Fully Mutable
Immutable
Mutable State

84%

16%

Context

Fig. 4. An overview of all of the objects profiled, split into those which enter equality-dependent
collections and those which enter non-equality dependent collections. Again, each chart splits into
three categories: objects which change their equality and their state (fully mutable), which never
change their state (immutable), and objects which don’t change their equality but do change their
state (mutable state). Equality collections include hash and tree sets, and the key-sets for maps
and tables. Non-equality collections include lists, vectors, and queues, as well as value-sets for
maps and tables.

bound for the error using the breakdown of classes by program. For all the results pre-
sented in this paper, this error never reached one hundredth of a percentage point (197
objects of 5403518 total in the worst case).

4.3 Experiment II: Collection Contracts

This experiment examines the behaviour of objects which enter collections, comparing
equality collections such as Set with non-equality collections like List. Figure 4 pro-
vides the same categorisations as before for these two categories. The top row of the
figure illustrates data for those objects which do enter equality dependent collections,
while the bottom row shows data for those which do not. Again, the smaller pie-charts
illustrate the relative proportion to all objects (respectively, all user-defined objects).
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Thus, we see that only 9% of all objects enter an equality-dependent collection. Like-
wise, only 4% of all user-defined objects enter an equality-dependent collection.

Discussion. The results from Figure 4 demonstrate a clear difference between the be-
haviour of objects which enter equality collections and those that enter non-equality
collections. We surmise that programmers prefer to use immutable objects in equality
collections, even though the Collections contract permits them to change fields which
do not affect the equality of the object. In particular, there is a large distinction between
the number of immutable objects from standard libraries and user code. Further analysis
of the results shows that most of these are Integer or String objects.

When we consider only user-defined objects, the bias towards immutable objects
in equality collections is much lower; closer to the proportion in the whole population.
This was surprising because these objects are a very small percentage of the whole
population, and we expected most of them to be immutable, to easily satisfy the Col-
lections contracts. While this is not the case further analysis of the results showed that
objects did not change their equality at all after entering an equality collection. This
is not so surprising, but this leads us to conclude that almost all Fully Mutable objects
are actually the Late-initialised Equality strategy outlined in Section 2. This could pose
a problem for researchers developing type systems for immutability: they will need to
support late initialisation, or demonstrate that it can be removed without substantial bur-
den to programmers. There were no broken objects — no objects changed their equality
while in a collection.

Objects in non-equality collections show very different characteristics to the general
population. The vast majority are not immutable, particularly when standard libraries
are excluded, and there are a surprising number which both define and change their
equality. The correlation between the relatively large number of objects changing their
equality may indicate that programmers make a decision to define equality based on
whether an object enters a collection at all, rather than whether the object will enter an
equality collection specifically.

4.4 Experiment III: Objects in Collections

This final experiment contrasts objects which enter a collection with objects which do
not. Figure 5 presents objects which enter a collection on the top row, and objects which
do not on the bottom row. Again, the left column contains all objects, while the right
column excludes standard library classes, and the small charts indicate the number of
objects in each category as a fraction of the whole program.

Discussion. These figures show even more clearly the distinction between objects
which enter collections and those which do not. The number of immutable objects in the
no-collection set is close to the proportion in the general population, while the number
of objects which modify their equality disappears completely. This was a very surpris-
ing result for us because we expected to see at least some types of objects defining
equality unnecessarily. Note that the 1% of mutable state objects in the non-collection
graph on the left does not appear on the right; further inspection of the raw results re-
vealed that these are almost exclusively collection objects which define their equality
recursively on their contents.
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39%

49%

12%

Objects in Collections

72%

28%

Context

Fully Mutable
Immutable
Mutable State

Fully Mutable
Immutable
Mutable State

67%

15%

18%

User Objects in Collections

80%

20%

Context

34%

65%

1%

Objects not in Collections

Fully Mutable
Immutable
Mutable State

28%

72%

Context

38%

62%

0%

User Objects not in Collections

Fully Mutable

Immutable

Mutable State

20%

80%

Context

Fig. 5. An overview of all of the objects profiled, split into those which enter any collection and
those which never do. Again, each chart splits into three categories: objects which change their
equality and their state (fully mutable), which never change their state (immutable), and objects
which don’t change their equality but do change their state (mutable state).

The conclusion that we draw from these results is that programmers design their
objects differently when they are going to enter a collection. This does not seem to
be related to the contracts imposed by collections, because the trend is much more
pronounced in non-equality collections. We do not have a clear understanding of why
this should be. It is possible that the sample of applications has introduced some bias, for
example a large proportion of objects were contributed by non-interactive programs like
Ant. It would be interesting for future work to split applications by type to see whether
the trend is consistent. Even so, programming language designers might consider ways
to indicate that particular objects are designed for use in collections, as there seem to be
large differences in the way they are used. Authors of optimising compilers could use
these results to implement caching policies: the likelihood of an object in a collection
changing is much higher than the full population, while objects which do not enter
collections are extremely unlikely to change their equality, if they define it at all.
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5 Related Work

We will now discuss various works of relevance to this paper, split into those relevant
to object equality, and those related to profiling.

5.1 Object Identity and Equality

Object identity and equality has been studied since the first OOPSLA conference [5].
In the beginning, SIMULA provided only support for identity comparison [6], written
==, while Smalltalk provides two operators to compare objects: == (identity compari-
son) described as testing “whether two objects are equal”, and = (equality) described as
testing “whether two objects represent the same component” [7]. Smalltalk’s == is gen-
erally not overridden by programmers while = certainly can be overridden. These two
operators have survived essentially unchanged as Java’s == and equals() — leading
to all the issues we have identified earlier.

MacLennan [8] first described the distinction between values and objects in pro-
gramming languages: that objects have identity and mutable state, while values are im-
mutable and any identity they possess is merely an implementation detail. Khoshafian
and Copeland [5] then provided one of the earliest definitions of object identity, shallow
equality, and deep equality. Aiming to encompass databases as well as programming
languages, their definitions explicitly incorporate sets and tuples.

Baker [9] presents a very comprehensive conceptual discussion of equality in im-
perative languages: although phrased in terms of Lisp his discussion is directly relevant
to all object-oriented programming languages. Common Lisp, of course, has at least
five different equality functions: eq, eql, equal, equalp, =, along with a range of
type specific functions such as char-equal, string-equal, and tree-equal
[10]. Baker suggests replacing all these separate notions of equality with single EGAL
predicate, which is a recursive equality for immutable state terminating with identity
comparison for mutable objects.

Grogono and Sakkinen [11] discuss equality in conjunction with object-copying in
a C++ like language. There is clearly a relationship here that we have not addressed:
a copy of an object should be equal to the object from which it was copied. Grogono
and Sakkinen survey equality operations across a range of language and propose four
different equalities: identity; shallow (one-level) equality; infinite deep equality; and a
structural equality that distinguishes between cycles and their unfoldings as trees.

Vaziri et al [12] describe Relation Types, special kinds of classes whose equality
and hash codes are automatically computed based on their “key” fields, which must be
final. Relation Types use hash-consing to ensure that each of their instances are unique
as far as values for these key fields are concerned. The resulting equality operation is
quite similar to Baker’s EGAL: objects are equal up to mutable state.

Hovemeyer and Pugh [3] show how very straightforward checks can detect Java
equality bugs (such as an incorrect covariant signature for equals or a missing defi-
nition of hashcode) along with many other types of bugs, and report the results of an
automatic static study of six Java applications. Rupakheti and Hou [13] present an ob-
servational study of the use of equality across five Java applications. Working within the
existing Java equality contract (and generally not considering issues of mutability) they
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identify a number of recurring problems in the definition of equality. The study pre-
sented in this paper is both significantly larger, and focused explicitly on the mutability
aspects of Java’s equality contracts.

5.2 Object Initialisation and Immutability

Various OO languages have support for immutability via, for example, final or const
fields. CLU [14] also supports immutable versions of primitive data structures — al-
though clusters (classes) are always mutable. A similar design has been adopted in
Scala, where the library provides mutable and immutable versions of most collec-
tions [15].

More recently, Zibin’s IGJ language [16] provides explicit support for both object
and class level immutability, and allows code to be parameterised in mutability. So
for example, an IGJ map class can require its keys to be immutable, but could permit
its values to be either mutable or immutable, and these restrictions will be statically
enforced by a generic type system. Östlund et al. [17] use an ownership type system to
obtain similar flexibility.

Immutable objects must be initialised before they can be used. Fähndrich and Xia’s
Delayed Types [18] use dynamically nested regions in an ownership-style type system
to represent this post-construction initialisation phase, and ensure that programs do not
access uninitialised fields. Haack and Poll [19] have shown how these techniques can be
applied specifically to immutability, and Leino et al. [20] show how ownership transfer
(rather than nesting) can achieve a similar result. Qi and Myers’ Masked Types [21]
use type-states to address this problem by incorporating a list of uninitialised fields
(“masked fields”) into object types. Gil and Shragai [22] address the related problem
of ensuring correct initialisation between subclass and superclass constructors within
individual objects. Given that our profiling has shown that the initialisation phase of an
object is not bounded by the execution of its constructor, these kinds of type systems
should be of benefit to real programs.

Rather than concentrating on whole object immutability, Unkel and Lam [23] con-
sider individual fields: a Stationary Field is one where all writes precede all reads —
that is, where a field is initialised (perhaps multiple times, during or after the construc-
tor) but is not modified thereafter. They present a static corpus analysis study of 26 Java
applications, backed by a dynamic analysis of 9 programs, and find that 40-60% of Java
fields are stationary. Earlier, Porat et al. [24] conducted a similar analysis looking for
“deeply immutable” fields (where neither the field itself nor any object reachable from
that field is modified after the object’s constructor completes) and found that around
60% of static fields were immutable. These results compare with our (dynamic)
profile finding that a large fraction of Java objects are immutable after full construction.

Finally, Joshua Block [25] advises programmers to “prefer immutability”, that is
to use immutable objects wherever possible, and to ensure constructors create objects
fully initialised. While we found many immutable objects in our study, we also found
many objects whose life-cycle includes a post-construction initialisation stage, which
breaches the letter (if not the spirit) of these guidelines.
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5.3 Profiling

Numerous works have focused on profiling object lifetimes for pretenuring in virtual
machines (e.g. [26–29]). Hirzel et al. studied a suite of benchmarks and concluded that
object connectivity correlates strongly with object lifetime [30]. Contrasting with this,
others have shown how stack state at the point of object allocation correlates with ob-
ject lifetime [31]. Singer et al. studied a small benchmark suite in an effort to identify
good predictions of long-lived objects [29]. Chen et al. consider the lifetime of object
fields, rather than whole objects, since a field may not be active for the duration of its
enclosing object’s life; thus, fields with disjoint lifetimes can occupy the same mem-
ory, thereby reducing object footprint [32]. Similar work studied field lifetimes for the
SpecJVM98 benchmark suite, and found on average a 14% reduction in heap space was
possible [33]. Shankar et al. profiled Java programs in an effort to identify short-live
objects suitable for stack allocation [34]. Dieckmann and Hözle performed a detailed
study of the allocation behaviour of the SpecJVM98 benchmarks [35]. Pearce et al.
evaluated AspectJ as a profiling platform by considering different case studies [36].
They considered profiling execution time, heap usage, object lifetime and more.

Röjemo and Runciman introduced the notions of lag, drag and use to describe the
lifetime of objects during execution [37]. Under this terminology, lag is the time be-
tween creation and first use, drag is that between last use and collection, while use
covers the rest. They focused on improving memory consumption in Haskell programs
and relied upon compiler support to enable profiling. Building on this, Shaham et al.
looked at reducing object drag in Java programs [38].

Perhaps the most relevant work to this paper, is that of Marinov and O’Callahan who
considered object equality profiling [39]. Essentially, their aim was to expose situations
where two identical objects could be reduced to one, thereby saving memory by avoid-
ing redundant objects. To do this, their tool profiles the heap activity of a program, and
then applies a post-mortem analysis once execution is complete. This analysis essen-
tially examines the object graph, searching for sub-graphs which are structurally equiv-
alent (i.e. isomorphic). They applied their tool to several programs from the SpecJVM
benchmark suite, and found that several exhibited large numbers of equivalent objects.

Mitchell presented a novel approach to compacting the typically huge amounts of
data generated during profiling [40]. His approach exploits the dominates relation for
objects in the heaps. Finally, Potanin et al. used the JVMPI interface [41] to profile
object graphs in Java programs, concluding that these exhibit the property of being
scale-free [42]. In particular, they observed a power-law distribution for edge degrees
in the object graph of large programs: some objects were very highly connected, whilst
most had low connectivity.
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6 Conclusion

ALL OBJECTS ARE EQUAL
BUT SOME OBJECTS ARE MORE

EQUAL THAN OTHERS

(after George Orwell, [43])

Every Java object, one way or another, must participate in equality: it must imple-
ment the equals and hashcode methods according to a relatively straightforward
contract. Objects may either inherit the default behaviour from class Object, and use
their identity as their equality, or can override these methods to provide a more rarefied
notion of equality. Objects that will participate in equality dependent collections — in
hash sets, as keys in hash maps, or in their close cousins the sorted collections — must
fulfil a more arduous contract: that their equality, their hashcode, their comparability
must never change while they are within such a collection.

In this paper, we present the results of a study of Java programs with respect to
these contracts. We hypothesized that programers could adopt a range of approaches
to fulfilling these contracts, from using equality as their identity; via full immutability;
or equality immutability, or ensuring their equality is immutable after construction; or
finally to removing and reinserting changed objects in their collections. To test these
hypotheses, we built a dynamic analysis tool, #Profiler, that determines when and how
objects are constructed, initialised, and how they fulfil these equality contracts.

Using #Profiler to investigate 30 applications, we discovered that objects’ equality
generally does not change: with a few exceptions, objects which do not enter collec-
tions either do not change or do not define their hash code. Of objects which do enter
collections, 19% changed their hash code after the constructor completed.

Surprisingly, objects which enter collections exhibit a strong tendency to change
fields which are not used to determine hash code: 77% of user objects do this. Combined
with the objects which do change their hash code, only 4% of objects which enter non-
equality collections do not change; a huge difference to the general population where
well over half are immutable. It is heartening though to find that none of these objects
change their equality while actually in an equality collection, as such a change would
be a bug in the programs we studied!

Equality, then, does seem important to Java programmers. More to the point, pro-
grammers make good use of equality in collections, and (at least in our sample) gener-
ally navigate Java’s equality contracts successfully: equality is generally based on fully
initialised immutable state, and collections can safely rely on stable equality. Proposals
such as Baker’s EGAL [9], Relation Types [12], and the various schemes for managing
object initialisation [18, 20, 21] may well provide good language support for objects
which enter collections, so long as they can cope with the relatively high number of
objects performing delayed initialisation; while objects which do not enter collections
seem to be adequately served by object identity, as they do not change their equality.

The exception to this rule — oddly enough – seem to be the collection objects
themselves, whose equality changes whether or not they are in collections. Collections,
indeed, are simultaneously more equal than other objects — because they all provide a
specialised definition of equal — and less equal — because they change more often.
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