HETAGE Workshop, 5 July 2010

Canterbury, ISEC 2010.

Topics in the Workshop

Introduction

Background - the Jolly-Seber and Schwarz-Arnason models
Practical Session 1

Age-structured models - the discrete case
Practical Session 2

Age-structured models - the continuous case
Practical Session 3

Models with heterogeneity

Practical Session 4

Incorporating extra information

Combining heterogeneity and age structure
Practical Session 5

User-defined functions

Great crested newts example

Structure of the hetage R code

Likelihood function

The cornerstone is one function, mLL, which evaluates minus the log like-
lihood, based on a list of parameters:

N = superpopulation size

beta = a vector of entry parameters

phi = an array of survival probabilities

p = an array of capture probabilities

pi = a vector of proportions in each group of a finite mixture.

There is only the one likelihood function, and for fast evaluation it was
written in C. It has been compiled, and is labelled hetageLL.d11

Different models

There is a suite of models which may be fitted to the data. Each model has
two wrapper functions. Suppose we have a generic model called “this-
model”. (They are actually called (phic,pc), (phic.pt) etc.)

The function v.to. f.thismodel takes a minimal vector of independent
parameters and expands it into a full list of parameters (hence v.to.f for
vector to full). This wraps up the parameters in a way which is usable by
the likelihood function.

The function start.thismodel is used in obtaining suitable starting
points. It unwraps a list of parameters and turns them into a minimal
vector of independent parameters needed by that model.

Preparing the data

The function hetage.process.data takes the data frame, derives as-
sorted constants, and turns the data into an x matrix (x.mat) with one
row per unique capture history, and a y vector (y.vect) which specifies
the number of copies of each row of x .mat.

Model fitting function

The function hetage. fit .model fits one model. It uses the current data
setin x.mat and y.vect, and the user names the model to be fitted. Op-
tionally, the user may provide a starting list of parameters, but if this is not
done the function starts with a primitive set of constants for the parame-
ters.

Methods used

A likelihood is maximised, using the R function optim on the set of in-
dependent parameters. For speed and computational accuracy, N is fitted
on the log scale, and all proportions and probabilities are on the logistic
scale. Within the function opt im, the appropriate v.to.f function is used to
expand the input vector in order to feed it to the likelihood for evaluation.
The hessian matrix is calculated, in order to provide standard errors for N
and other parameters.

Troubleshooting

Warnings:

For some models, the Hessian may not be able to be inverted. This is only
a warning, not an error. It does not halt the sequence of calculations. The
model has been fitted, but the variance-covariance matrix VC is NULL.
Possible causes include gaps in the data - not enough different capture
histories.

Errors:

If a model fails to fit, try starts from a different point. The default starts
may be fairly hopeless.

Starting from a similar model which has successfully converged may be
useful.

Example: To fit the model phi(t)p(h) we could use the parameter list out-
put from model phi(c)p(h). The code might be:

phit.ph.out < — hetage.fit. model(”phit.ph” start=phic.ph.out$parameters)

