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1. Introduction

These notes give explanations and technical details of two suites of
models for open-population capture-recapture, the age-structured
models in Pledger et al. 2009 and the models with individual
heterogeneity of capture and/or survival probabilities in Pledger et
al. 2010.

The models may be fitted using the R code in hetage (to be
turned into an R package).

The models are described in the main part of these notes, while
more technical details of likelihoods and parameter counts are in
Pledger et al. 2009, Pledger et al. 2010, and in the hetage
package notes.
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2. Background: the Schwarz-Arnason Model

Schwarz and Arnason (1996) produced a fully likelihood-based
version of the Jolly-Seber model (Jolly 1965, Seber 1965) for
capture-recapture in open populations.

The capture-recapture study has the simple design, with K
sampling occasions widely spaced through time.
(Not the robust design, which has clusters of samples.)

Each animal has a capture history, a vector of length K with 1 for
capture, 0 for non-capture, e.g.

0 0 0 0 1 0 0 1 0 1 0 0 0 0 0 0
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Jolly-Seber (JS) Model

Jolly, 1965; Seber, 1965. The JS model has parameters

pj = probability of capture for an animal present at sample j ,

φj = probability of survival to sample j + 1 if alive at j ,

The JS model also estimates the expected values of

Nj = number alive in the population at sample j ,

Bj = number entering the population between samples j and j + 1.
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Schwarz-Arnason (SA) model

Schwarz and Arnason (1996) used the idea of a superpopulation N
of all animals available for capture on at least one occasion (from
Crosbie and Manly). They gave a fully likelihood-based version of
the JS model.

The SA model has parameters

N = number in superpopulation, available for capture at least once
βj = proportion of N arriving between samples j and j + 1

(∑
K−1
j=0 βj = 1, β0 = proportion there at start)

φj = Prob(survive to j + 1 given alive at j)
pj = Prob(capture at j)
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Schwarz and Arnason Parameters

 

 

Departures:     

Captures:       

Samples:        

Arrivals:       

Superpopulation:

β0 β1 β2 βK−1

N

1 2 3 K

p1 p2 p3 pK

1 − φ1 1 − φ2 1 − φK−1

. . .
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Basics of SA Model

The SA Model assumes a multinomial distribution, where N
animals are allocated to different capture histories.
That is, there are N trials, with allocation to different cells, where
each cell is a different capture history.
Suppose we observe H different capture histories, and D distinct
animals. There are y1 animals with the first capture history, y2

with the second, ... up to yH with the H th capture history.

H

∑
h=1

yh = D

There are also N−D animals unobserved, even though they were
there for some of the time. They have capture history 0000...000,
a vector of K zeros.
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Data Matrix

Suppose there are D distinct animals observed over K samples.

The D×K capture matrix X has
xij = 1 if animal i is seen at sample j ,
xij = 0 otherwise.

Row i of X is the capture (encounter) history (CH) of animal i .

The data matrix X may be condensed into an H×K matrix with
each row being a different observed capture history. In this case,
there is an associated vector y of length H, where yh is the number
of animals seen with the hth capture history, h = 1,2, . . .H.
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Data Layout

Matrix X Vector y

Sample
1 2 3 4 5 6 7 8 y

Capture 1 0 1 0 1 1 0 0 0 6 Observed
History 2 1 0 0 1 0 0 0 0 2 Data

3 0 0 1 1 0 0 0 0 3
4 0 0 0 1 0 0 1 1 7 Total of
5 0 1 1 0 0 1 0 0 1 D animals
6 0 0 1 1 1 0 0 0 2

The ones that got away:

0 0 0 0 0 0 0 0 N−D Unobserved
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Multinomial Likelihood for SA Model

Details of the construction of the likelihood are in Pledger et al.
2009.

The full likelihood of parameter vector θ (composed of N, β s, φs
and ps), given the data X , y , is

L(θ | X ,y) =
N!

y1! y2! . . . yH ! (N−D)!
×

(
H

∏
h=1

Lyhh

)
× (L0)N-D ,

where Lh is the likelihood of capture history h and L0 is the
likelihood of no captures.
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Individual Likelihoods for SA Model

Suppose capture history h is 0 0 0 0 0 1 0 1 1 0 0 0 (K = 12)
Consider an arrival between samples 2 and 3, and departure
between 11 and 12.

L = β2

(
10

∏
j=3

φj

)
(1−φ11)

[
11

∏
j=3

p
xj
j (1−pj)

1−xj

]
To find Lh, sum over all possible entry times and all possible exit
times. First seen at fh = 6, last seen at `h = 9.

Lh =
fh

∑
b=1

K

∑
d=`h

βb−1

(
d−1

∏
j=b

φj

)
(1−φd)

[
d

∏
j=b

p
xj
j (1−pj)

1−xj

]

12 / 74



Comments on SA model

The Cormack-Jolly-Seber model (CJS) sums over possible exit
times (the χ parameters).

The Schwarz-Arnason model, by using the superpopulation
concept, allows summation over possible entry times as well.

Schwarz and Arnason (1996) give a simplified formula for the
likelihood, as they can separate the entry parameters β from the
exit parameters φ , and rearrange.

However, in our work on age-structured models, arrival times and
departure times are not independent, so we must stay with the
likelihood formulations based on individual capture histories.
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Great cormorant (Phalacrocorax carbo sinensis)
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Cormorant Data

Thanks to Thomas Bregnballe for the data, via Rachel McCrea
and Ruth King.

These are monthly data from February to October 1994, of
cormorants at a breeding site in Denmark.

Using all the D = 317 birds (file corm 1994 BPall.csv), we may
read in the data and fit four models: the JSSA model and simpler
models with φ and/or p constant.
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Practical Session 1

1 Install hetage R files.

2 Have all the files in the same directory.

3 Open R.

4 Using the file corm4models.R, cut and paste the commands
into R to do the analyses.

5 Interpret the output.

MaxLL RD npar AIC relAIC AICc relAICc
phic.pc -318.71 637.41 11 659.41 306.39 659.94 305.53
phic.pt -198.58 397.15 18 433.15 80.13 434.54 80.13
phit.pc -158.51 317.02 18 353.02 0.00 354.40 0.00
phit.pt -153.40 306.80 24 354.80 1.79 357.27 2.86
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3. Age-structured Models

Here we extend the Schwarz-Arnason capture-recapture analysis to
address the question of the age of the animal, if its true age is
unknown.

There are two major applications:

1 Settled population: entry and exit mainly by births and
deaths, little or no migration.

2 Stopovers of migratory birds: entry and exit mainly by arrivals
and departures, no births, few deaths.
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New Questions

The following questions cannot be answered by the JS and SA
models:
1. How can we make the survival probability depend on the age of
the animal, when age is generally unknown? (How long before its
first capture was the animal present?) We must address this
question if we wish to detect and describe senescence.

2. How can we make departure probability depend on how long
since the bird arrived, when its exact arrival time is unknown?
(How long had it been there before it was first seen?) We must
address this question if we want to check whether a major impetus
for departure is having built up adequate body reserves of fat for
the next stage of the migration. If we want departure probability
to depend on stopover duration so far, then it’s somewhat of a
handicap to not know when it arrived.
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Migratory Birds

Birds stop over at a site: feed, build up body condition, fly on.
They have bands for identification.
There are repeated samples, with captures (e.g. mist netting) or
observation of bands.
Not all birds are observed in the sampling.

Questions

How many stopped over?

How long did they spend there on average?

Is departure time related to length of stay? Body condition?
Weather?

Do birds with earlier or later arrivals differ in stopover
duration? Is this related to fitness?
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Notes:

1 The following models work best if sampling covers the whole
stopover period, so most capture histories have leading and
trailing zeros.

2 Sampling must be done at equal intervals (not necessarily
every day).

3 If there are many samples, giving rise to a large number of
parameters, a practical approach is to merge groups of
samples, e.g. daily sampling could be merged into four-day
blocks. At least one capture or sighting during the four days
leads to a one in the new data matrix.
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Assumptions for stopover models

1 Arrivals and departures occur, but no births or deaths.

2 Independence between birds (their arrivals, captures and
departures).

3 Homogeneity of capture probabilities among birds.

4 Bands are read correctly, not lost, etc.

We do not assume independence of arrival and departure time
within birds. With age-structured models, we are interested in
departure time being correlated with arrival time.
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Overview of how the age-structured models work

Details of the probabilities and likelihoods are in Pledger et al.
2009.

We use the feature of the SA models, in which there is a sum over
different possible arrival times. The likelihood for bird i is a sum of
likelihoods over the feasible arrival times for that bird.

Within each term of the sum (i.e. for each possible arrival time),
we modify the survival parameter and/or capture parameter to
take account of both the sample number (j) and the arrival time
(birth cohort, b).
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Modified likelihoods

Suppose bird i is first seen at sample fi , and last seen at sample `i .
Let b (d) be the unknown sample at which bird i is first (last)
present and available for capture.
Schwarz-Arnason:

Li =
fi

∑
b=1

K

∑
d=`i

βb-1

(
d-1

∏
j=b

φj

)
(1−φd)

[
d

∏
j=b

p
xij
j (1−pj)

1-xij

]
Age-structured models: φ and/or p are modified to depend on
age (via the birth/arrival cohort, b) as well as on sample number j .

Li =
fi

∑
b=1

K

∑
d=`i

βb-1

(
d-1

∏
j=b

φbj

)
(1−φbd)

[
d

∏
j=b

p
xij
bj (1−pbj)

1-xij

]
.
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Modified survival parameters

Schwarz-Arnason: Vector of survival probabilities,
φj = Prob(survive to sample j + 1 | alive at sample j)

φ1 φ2 φ3 ... φK−1

With age structure: Matrix of survival probabilities,
φbj = Prob(survive to sample j + 1 | alive at sample j ,

for those first present at sample b)
Sample j

1 2 3 . . . K −1
Arrival 1 φ11 φ12 φ13 . . . φ1,(K−1)

Time b 2 φ22 φ23 . . . φ2,(K−1)

(Cohort) 3 φ33 . . . φ3,(K−1)

. . . .

. . .
K −1 φ(K−1),(K−1)
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The unseen

To complete the likelihood calculation, we also need the likelihood
for an unseen animal:

L0 =
K

∑
b=1

K

∑
d=b

βb-1

(
d-1

∏
j=b

φbj

)
(1−φbd)

[
d

∏
j=b

(1−pbj)

]
.

The full likelihood equation, which uses both Li and L0, is on page
11.

For the SA model, let φbj = φj and pbj = pj .
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Connections

We have three indices, j = sample number, b = cohort (sample
when first present), and a = age (or residence time).
We are now assuming equally-spaced samples, so a = j−b+ 1.
(By convention, we say age = 1 at entry.)
If we know any two of birth time, calendar time and age, we can
calculate the other one.

The previous matrix was written using cohort and sample, which is
more familiar to MARK users.
However, we now switch to indexing φ or p by age and sample, as
age is the focus of these models.
The rearrangements are done automatically in the hetage code.
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Can’t be done!

We now have a very general model with φ and p both varying by
sample and age, φaj and paj .

There’s only one drawback, it can’t be fitted.

If we try to allow either φ or p to vary by both age and sample,
there are altogether too many parameters.

See the next page, interactive and additive models.
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Interactive and Additive Models

Interactive model

Can’t estimate all φaj and paj . Simplify.

Additive model (logit scale)

Let log

(
φaj

1−φaj

)
= µ + τj + αa

where
µ = overall mean on logit scale,
τ = “time” (sample) effect, constraint (e.g.) ∑τj = 0,
α = “age” (residence time) effect, constraint (e.g.) ∑αa = 0.

Similarly, model capture probabilities paj as logit-additive.
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Models so far

Label models, e.g. φ(a)p(t) for age effects in survival and time
effects in capture.
c = constant t = time (sample) effect
a = age effect ta = time + age effect (additive on logit scale)

p
c t a ta

φ c φ(c)p(c)* φ(c)p(t)* φ(c)p(a) φ(c)p(ta)
t φ(t)p(c)* φ(t)p(t)* φ(t)p(a) φ(t)p(ta)
a φ(a)p(c) φ(a)p(t) φ(a)p(a) φ(a)p(ta)
ta φ(ta)p(c) φ(ta)p(t) φ(ta)p(a) φ(ta)p(ta)†

* No age effects, so can have unequally spaced samples
† Also unfittable, too many parameters.
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Back to the Example (at last)
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Practical Session 2

Return to the cormorants, and run the analyses for all 15 models.
Use the commands file corm.R Interpret the best model.

maxLL RD AIC relAIC AICc relAICc npar
phic.pc -318.71 637.41 659.41 311.52 659.94 309.42 11
phic.pt -198.57 397.15 433.15 85.26 434.54 84.02 18
phic.pa -210.41 420.81 456.81 108.93 458.20 107.69 18

phic.pta -177.75 355.50 405.50 57.62 408.18 57.67 25
phit.pc -158.51 317.02 353.02 5.13 354.40 3.89 18
phit.pt -153.40 306.80 354.80 6.92 357.27 6.75 24
phit.pa -154.40 308.80 356.80 8.91 359.26 8.75 24

phit.pta -147.16 294.33 356.33 8.44 360.46 9.95 31
phia.pc -183.09 366.19 400.19 52.30 401.43 50.91 17
phia.pt -169.34 338.68 386.68 38.80 389.15 38.63 24
phia.pa -173.67 347.33 391.33 43.45 393.40 42.89 22

phia.pta -168.52 337.05 397.05 49.16 400.91 50.40 30
phita.pc -150.03 300.05 348.05 0.16 350.51 0.00 24
phita.pt -143.94 287.89 347.89 0.00 351.75 1.24 30
phita.pa -145.60 291.20 349.20 1.31 352.81 2.30 29
phiW.pc -187.94 375.89 399.89 52.00 400.52 50.00 12
phiW.pt -171.25 342.49 380.49 32.60 382.04 31.52 19
phiW.pa -174.59 349.17 385.17 37.29 386.56 36.05 18

phiW.pta -150.10 300.21 352.21 4.32 355.10 4.59 26
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How to estimate stopover duration?

Recall the likelihood for capture history i :

Li =
fi

∑
b=1

K

∑
d=`i

[
βb-1

(
d-1

∏
j=b

φbj

)
(1−φbd)

][
d

∏
j=b

p
xij
bj (1−pbj)

1-xij

]
.

This may be seen as

Li =
fi

∑
b=1

K

∑
d=`i

[Prob(PH = (b,d))]× [Prob(CHi | PH = (b,d))]

where PH = presence history, specified by (b,d), the arrival and
departure times, and CH | PH = probability of this capture history
given this presence history. (Zero probability if fi < b or `i > d.)
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Stopover duration for one bird

For each bird, we know the capture history but not the full
presence history.

Bayes’ theorem gives the probability of each feasible presence
history, given the capture history, Prob(PH = (b,d) | CHi ).

Hence the expected stop-over duration for bird i is:

Ei (dur) = Ei (d−b+1) =
fi

∑
b=1

K

∑
d=li

(d−b+1)×P (PH = (b,d) | CHi )

Similarly the variance is

Vi (dur) = Ei

[
(d −b+ 1)2

]
− [Ei (d −b+ 1)]2 .
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Stopover duration over all birds

Averaging over the N birds (assuming N = N̂), the expected
stopover duration is

E (dur) =
1

N

[
D

∑
i=1

Ei + (N−D)E0

]
and assuming independence of birds, the variance is

V (dur) =
1

N2

[
D

∑
i=1

Vi + (N−D)2V0

]
.
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Time-dependent survival, φ(t)

(i) We have used time as a factor: φaj = φj (j = 1, 2, . . . K −1).
Survival depends only on the particular sample, a calendar time
effect (e.g. weather related survival).
This model for survival is well established in the capture-recapture
literature, as part of the CJS and JS models.

(ii) To reduce the number of parameters, we could, for example,
assume a trend over time: φaj = φj with

log

(
φj

1−φj

)
= α + γ tj

where tj = calendar time at sample j . A quadratic curve could be
used, if a maximum or minimum may be present partway through
the study.
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Age dependent survival, φ(a)

(i) We have used age as a factor: φaj = φa (a = 1, 2, . . . K −1).

(ii) To reduce the number of parameters and see broad trends,
assume survival is related to age using some line or curve.

A model with

log

(
φa

1−φa

)
= α + γ tj

has a steady trend, or we could use a standard survival curve.
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Continuous Time

We’ve modelled age as a factor, one parameter per sample, in
discrete time.

However, continuous-time survival models use fewer parameters
and show any general trends or patterns over time.

There are four commonly-used shapes of survival (retention) curve,
depending on four types of hazard curve (instantaneous departure
rate).
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Hazard Functions
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Survivorship Curves
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Mathematical Connections

X = random variable for lifetime (stopover duration).
Survival Curve:

S(x) = Prob(X ≥ x) = 1−F (x)

Density Function:

f (x) =
d F (x)

dx

Hazard rate:

h(x) =
f (x)

S(x)

Discrete survival probability from Sample j to Sample j + 1:

φaj =
S(xj+1)

S(xj)

where xj = age at sample j .
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Types of Survival Curves

Type II Curve, constant survival probability
Exponential survival time, constant hazard. Special case of Weibull
with shape parameter = 1.

Type I Curve, Weibull, shape parameter > 1
Ageing model - the hazard function increases with age. Useful for
populations with senescence (animals tend to have similar
lifetimes), or for stopovers where departure is driven by length of
stay so far (birds tend to have similar stopover times).

Type IV Curve, Bathtub
Higher hazard at beginning and end of life. For stopover data, may
pick up difference between transients (high hazard when
newly-arrived) and residents (more like J-shaped Type I hazard).
(Five or six parameters, though.)
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Continuous time assumptions

Assume birds in arrival cohort b arrived halfway between samples
b−1 and b.
(Sample 0 was before any birds arrived.)

Sample times: t1 t2 . . . . . tK
| | |

| | | |
Arrival times: T1 T2 T3 . . . TK

For arrival cohort b, age at time t = t−Tb
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Weibull models for the cormorants - anything new?

Earlier table - φ(W ) is Weibull survival.

maxLL RD AIC relAIC AICc relAICc npar
phic.pc -318.71 637.41 659.41 311.52 659.94 309.42 11
phic.pt -198.57 397.15 433.15 85.26 434.54 84.02 18
phic.pa -210.41 420.81 456.81 108.93 458.20 107.69 18

phic.pta -177.75 355.50 405.50 57.62 408.18 57.67 25
phit.pc -158.51 317.02 353.02 5.13 354.40 3.89 18
phit.pt -153.40 306.80 354.80 6.92 357.27 6.75 24
phit.pa -154.40 308.80 356.80 8.91 359.26 8.75 24

phit.pta -147.16 294.33 356.33 8.44 360.46 9.95 31
phia.pc -183.09 366.19 400.19 52.30 401.43 50.91 17
phia.pt -169.34 338.68 386.68 38.80 389.15 38.63 24
phia.pa -173.67 347.33 391.33 43.45 393.40 42.89 22

phia.pta -168.52 337.05 397.05 49.16 400.91 50.40 30
phita.pc -150.03 300.05 348.05 0.16 350.51 0.00 24
phita.pt -143.94 287.89 347.89 0.00 351.75 1.24 30
phita.pa -145.60 291.20 349.20 1.31 352.81 2.30 29
phiW.pc -187.94 375.89 399.89 52.00 400.52 50.00 12
phiW.pt -171.25 342.49 380.49 32.60 382.04 31.52 19
phiW.pa -174.59 349.17 385.17 37.29 386.56 36.05 18

phiW.pta -150.10 300.21 352.21 4.32 355.10 4.59 26

For this data set, the φ(a) models were not chosen, as there
seemed to be both age and time variation in the survival rates.
Hence the Weibull model, by ignoring those time effects, is also
not chosen. 43 / 74



Estimating Mean Stopover Duration

If a fitted curve, e.g. Weibull, is chosen for the model of survival,
we may use the mean and variance of this fitted distribution.

If the estimated Weibull parameters are a = shape parameter and
b = scale parameter, the mean is

µ = E (X ) = b Γ

(
1 +

1

a

)
and the variance is

σ
2 = Var(X ) = b2 Γ

(
1 +

2

a

)
,

where Γ is the gamma function.
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Practical Session 3

Continue with the cormorant data. Do the last plot and
calculations in corm.R, using Model phiW.pta.
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Comments on age-structured models

It is advisable to start sampling before arrivals, and continue
until after departures. We can still do the analysis using only
part of the time when the birds are occupying the area, but
the age-structured models carry an implicit assumption that
the birds first present at sample 1 have arrived recently, and
the birds still present at sample K are about to depart.
This second assumption is also implicit in the CJS model,
where it is assumed that φ(K ) = 0.
We need more data than for JSSA analysis, because of
estimating arrival times.
We have allowed for a certain type of heterogeneity of survival
by including the age effects in the models. However, we did
not allow for individual heterogeneity of survival, with some
animals intrinsically more likely to survive than others. Also, if
there is individual heterogeneity of capture probability,
models which fail to allow for for this will underestimate N. 46 / 74



4. Models with Heterogeneity

See Pledger et al. 2010.
We now extend the JSSA model to cover the case of individual
heterogeneity of capture and survival probabilities.

The heterogeneity of survival now is not assumed to be related to
duration of stay, as with the age-structured models.

We now suppose both types of heterogeneity (survival and capture
probabilities) are due to unknown causes, and we wish to allow for
this in a general way which is not tied to any particular covariates
or other extra information (e.g. age, weight of animal, location of
home range in relation to trap placement).
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Why model this heterogeneity?

The major reason is to reduce the bias in abundance estimates.
Unmodelled heterogeneity of capture probability gives
underestimates of population size, whether the superpopulation N
or the JS sample-specific population sizes Nj , j = 1,2, . . . K .

There is also some bias in survival estimates caused by unmodelled
heterogeneity of capture probability, but this is not a very severe
problem.

Another source of bias is caused by estimating survival using only
data from the animals actually caught. Much work using CJS
models takes this approach. However, if there is individual
heterogeneity of survival, the short-lived animals have a lower
probability of at least one capture, so there is an overestimation of
survival probabilities because these short-lived animals are
systematically ignored. A model combining information from the
uncaught animals circumvents this problem.

48 / 74



How is it done?

We now introduce finite mixture models, where the animals are
assumed to come from different classes, although we don’t know
which classes they are from. These are hidden or latent classes.

There are C animal classes with membership unknown (a latent
effect); each animal comes independently from class c with
probability πc (∑πc = 1).

An animal from class c , if present at sample j, has probability pjc
of capture in sample j , and probability φjc of survival to the next
sample (with φKc assumed to be zero).
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Data and parameters

As before, there are D distinct animals seen, with xij = 1 if animal
i is caught in sample j , otherwise xij = 0. Animal i ’s capture
history, CHi , is the row vector xi .

The N−D uncaught animals each have capture history CH0 = 0,
a K -vector of zeros.

There are nh animals with capture history h, h = 1,2, . . .H. We use
the data in grouped form: matrix X is H×K , with rows all
different, and vector y gives the frequency for each row.
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Likelihoods

Writing the parameters N, β , π, p and φ as a parameter vector θ ,
the full likelihood is

L(θ | data) =
N!

(N−D)!Πhnh!
×

D

∏
i=1

Li ×LN−D0

where h indexes the different observed capture histories.

The individual likelihoods are found by summing over the classes
and all feasible birth and death times (b and d respectively,
samples when first and last available for capture):

Li = P(CHi ) =

fi

∑
b=1

K

∑
d=`i

C

∑
c=1

[
πcβb−1

(
d−1

∏
j=b

φjc

)
(1−φdc )

{
d

∏
j=b

p
xij
jc (1−pjc )

1−xij

}]
,

(where the empty product ∏
d−1
j=b φjc = 1 if b = d).
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Yet another likelihood

Similarly for an uncaught animal,

L0 = P(CH0) =
K

∑
b=1

K

∑
d=b

C

∑
c=1

[
πcβb−1

(
d−1

∏
j=b

φjc

)
(1−φdc)

{
d

∏
j=b

(1−pjc)

}]
.
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Reparameterise!

For computational effectiveness and the provision of more
appropriate confidence intervals, we reparameterise the model,
expressing the parameters φjc and pjc on a logit scale, and N on a
log scale.

Using τ for time and η for heterogeneity,

logit(pjc) = log

(
pjc

1−pjc

)
= µ + τj + ηc + (τη)jc (1)

with constraints ∑τj = 0, ∑ηc = 0, and each row and column of
(τη)jc adding to 0. Similarly logit(φjc) may be modelled with main
effects and interaction.
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Remove the interactions

Models with interactive time or heterogeneity effects may be more
complicated than necessary, and have too many parameters for
successful model fitting. A simpler model for pjc with additive
effects of time and class has logit(pjc) = µ + τj + ηc with
constraints ∑τj = 0 and ∑ηc = 0.

Similarly survival could be modelled as additive on the logit scale.

Further simplifications have capture and/or survival probabilities
dependent only on time (e.g. logit(pjc) = µ + τj), only on
individual heterogeneity (logit(pjc) = µ +ηc), or constant over time
and animals (logit(pjc) = µ), with similar simplified versions of φjc .
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Possum Example

Murray Efford provided data from live trapping of the Australian
brushtail possum (Trichosurus vulpecula Kerr) on a study grid in
the Orongorongo Valley, near Wellington, New Zealand. There
were D = 270 animals from K = 9 samples taken in February
1980-1988. Table of relative AIC from Pledger et al. 2010:

φ model p(.) p(t) p(h2) p(t+h2)

φ(.) 39.0 34.9 13.1 4.1
φ(t) 29.4 37.6 0.0 2.6
φ(h2) 43.0 30.2 15.0 5.7
φ(t+h2) 33.4 41.6 1.6 4.2

Note the dichotomy of AIC values between models with and
without heterogeneity of capture.
Selection of the model {φ(t),p(h2)} accords well with other
knowledge of this population. There is spatially-induced
heterogeneity of capture, as the traps are always set in the same
location on a grid, and possums with a home range including a
trap are more likely to be captured.
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Practical Session 4

Run the possum example using the file possums9.R.
Consider the different models, and their N estimates.
Find and interpret the best model.
Find the places where hetage is giving higher likelihoods than
those found in Pledger et al. 2010 (where the model fitting was
much slower, and laborious searches were done by hand).
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Incorporating Extra Information

It is usual to allow for losses on capture (Pradel 1996, Schwarz and
Arnason 1996), where some animals are known to die or are
removed at sample j .

We see such “deaths” as just one of four processes which are easily
incorporated into our individual-based models. These are natural or
unnatural death (e.g. death on capture, or removal), and natural
or unnatural arrival (e.g. translocation from another population).

No extra parameters (e.g. probability of loss on capture) are
needed, as we simply modify the likelihood equation for that
animal.

Is there much use for this development?
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5. Combining Heterogeneity and Age Structure

There is now an obvious development, the combination of
age-structure for survival probabilities with heterogeneity of
capture probabilities.

This work is not yet published, but we have some working code.

The likelihoods still have summation over b, d and c (for the
mixture classes or groups), but the φ parameters are subscripted
by age and/or time, while the p parameters are subscripted by
heterogeneity and/or time.
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Practical Session 5

See the end of the file possums9.R for adding four new models,
with age structure and heterogeneity combined in two of them.

maxLL RD AIC relAIC AICc relAICc npar
phic.pc -238.75 477.51 499.51 38.95 500.04 37.77 11
phic.pt -229.73 459.47 495.47 34.91 496.85 34.59 18
phic.ph -223.83 447.67 473.67 13.11 474.40 12.13 13

phic.pth -212.32 424.63 464.63 4.08 466.34 4.08 20
phit.pc -226.98 453.95 489.95 29.40 491.34 29.07 18
phit.pt -225.06 450.12 498.12 37.57 500.58 38.32 24
phit.ph -210.28 420.55 460.55 0.00 462.26 0.00 20

phit.pth -205.55 411.11 463.11 2.55 466.00 3.74 26
phih.pc -238.75 477.51 503.51 42.95 504.24 41.97 13
phih.pt -225.40 450.79 490.79 30.24 492.50 30.24 20
phih.ph -223.78 447.57 475.57 15.02 476.42 14.15 14

phih.pth -212.14 424.29 466.29 5.73 468.17 5.91 21
phith.pc -226.98 453.95 493.95 33.40 495.67 33.40 20
phith.pt -220.90 441.80 493.80 33.25 496.69 34.43 26
phith.ph -210.10 420.20 462.20 1.64 464.08 1.82 21

phith.pth -205.39 410.78 464.78 4.22 467.90 5.64 27
phia.pc -224.60 449.21 485.21 24.66 486.60 24.33 18
phia.pt -218.98 437.96 487.96 27.40 490.63 28.37 25
phia.ph -210.56 421.12 461.12 0.56 462.83 0.56 20

phia.pth -205.94 411.88 463.88 3.33 466.78 4.51 26
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Comments on the combined models

With the nine-year possum data set, the model (phia,ph) is almost
the best. With a longer time span, which better covers all the
possums’ lifetimes, this becomes a better model, with (phita,ph)
taking over with more data.
The age-structured models need to have long-term data sets
(compared with the lifetime of the animal).
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6. User-defined functions

The file newts.R has an example of a user-defined model. It goes
with the newt example to follow.

It is necessary to construct the wrapping and unwrapping files for
the particular model.
The wrapping file, “v.to.f”, takes the vector of independent
parameters and wraps it up into a full list of parameters suitable
for feeding to the minus likelihood function mLL.

The unwrapping file, “start”, takes a full list of parameters and
turns it into the minimal set of independent parameters needed for
the model.
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Great crested newts (Triturus cristatus)

A collaboration with the Durrell Institute of Conservation and
Ecology at the University of Kent.

Data on great crested newts (Triturus cristatus) have been
collected every year since 2002 in a small study area in Canterbury,
UK.
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The area consists of 4 small ponds which were artificially created in
1998 and were left to be colonised naturally.

Each pond is 2m by 1m with the deepest end being approximately
0.7m into the ground.
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The newts use the ponds during the breeding season, March-July.

Samples are taken every Friday morning using bottle traps.

The newts are individually identified by the unique patterns on
their bellies.
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The sample sizes every year are very small, varying between 10 and
17 newts.

However, individuals stay for a number of weeks at the ponds
(about 20 samples are taken each year) and almost all of the newts
in the sample are caught several times each year.

Because of the very small number of newts colonising the ponds,
the biologists have given them individual names instead of
individual numbers.

The biologists coordinating the study believe that they capture all
of the newts that visit the ponds during the breeding season each
year. Is this true?

65 / 74



2002 data set

Arnie 0 1 0 0 0 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 4
Brad 0 1 0 1 0 0 0 1 1 1 1 1 0 0 1 0 0 0 0 0 0 0 8
Bruce 0 0 1 0 0 0 0 0 1 0 1 0 0 0 0 0 1 0 0 0 0 0 4
Clint 1 1 1 1 1 1 1 1 1 1 0 0 1 1 1 1 1 0 0 0 0 0 15
Dustin 0 0 1 1 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 4
Mr T 0 1 0 0 1 1 1 1 0 1 0 0 0 1 0 0 1 1 0 0 0 0 9
Hugh 0 0 0 1 1 0 1 1 0 1 1 0 0 1 0 0 0 0 0 0 0 0 7
John 1 0 0 0 0 1 0 1 1 0 0 1 1 0 0 1 1 0 0 0 0 0 8
Leonardo 1 1 1 0 1 1 0 0 0 1 0 1 1 0 0 0 0 0 0 0 0 0 8
Nicholas 0 1 1 1 0 0 0 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 6
Sean 1 0 1 0 0 0 0 0 1 1 0 0 1 1 0 0 1 0 0 0 0 0 7
Vin 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 3
Gwyneth 0 0 0 1 1 0 1 1 0 1 0 1 1 0 0 1 0 0 0 0 0 0 8
Julia 1 1 1 1 1 0 1 1 1 1 0 1 1 1 0 1 0 0 0 0 0 0 13
Marilyn 0 0 0 1 0 1 0 1 1 1 1 1 1 0 0 1 0 0 0 0 0 0 9
Patricia 0 0 0 0 0 1 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 3
Robin 0 0 0 0 0 1 0 1 0 0 1 1 1 0 1 1 1 0 0 0 0 0 8
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The number of captures varies between individuals. The differences
could be due to the different stop-over duration of individual newts
but it could also be a sign of individual heterogeneity in capture
probability.

Not accounting for heterogeneity in capture probability is known to
bias significantly the population size estimate.

In this case it could mean that individuals that are caught several
times are more active and move around the pond more, therefore
they are more likely to get caught and that there might be a
number of newts that avoid the bottle traps on every sampling
occasion.
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The likelihood

L(N,βββ ,φφφ ,ppp,πππ|XXX ) =
N!

∏h nh!(N−D)!
×

D

∏
i=1

[
m

∑
g=1

πg

{
fi

∑
b=1

K

∑
d=li

(
βb−1

(
d−1

∏
j=b

φja

)
(1−φda)

(
d

∏
j=b

p
xij
gja(1−pgja)1−xij

))}]

×

[
m

∑
g=1

πg

{
K

∑
b=1

K

∑
d=b

(
βb−1

(
d−1

∏
j=b

φja

)
(1−φda)

(
d

∏
j=b

(1−pgja)

))}]N−D
,

where now, πg is the probability that an individual belongs to group g ,

∑
m
g=1 πg = 1, and pgja represents the probability of capturing an individual

that belongs to group g which is alive at sample j and has been at the
study area for a samples.
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Constraints for the parameters

The β probabilities are generated using βj−1 = aβ j +bβ , j = 1 . . .K
and then transformed into a vector of length K −1 with elements
β ∗j where,

β
∗
j−1 =

βj−1

∑
K
k=j βk−1

, j = 1 . . .K −1,

in order for their sum to be equal to 1.

Correspondingly, φj =
exp(aφ j+bφ )

1+exp(aφ j+bφ ) , j = 1 . . .K −1, to ensure that

the φ estimates are always between 0 and 1.

Capture probability is assumed constant within each year. Only the
cases of m = 1 and m = 2 are examined.
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Model selection is performed using AIC within the models
considered from the two different likelihoods. Because of violation
of regularity conditions, comparisons between the homogeneous
and heterogeneous models using traditional model-selection criteria
are not meaningful.

In these cases (when comparing between models with m = 1 and
m = 2), the LRT statistic will be distributed, under the null
hypothesis of homogeneous capture probability, according to a
50 : 50 mixture of 0s and the χ2

1 distribution (Self and Liang
(1987)).

Because of issues of multimodality of likelihood surfaces when
using finite mixtures, 100 random starting values for parameters p
and π are generated for the heterogeneous model and the best fit
is selected in terms of the maximised likelihood value.
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AIC values

Model λ 2002 2003 2004 2005 2006 2007

H
om

og
en

eo
u

s βcφcpc 3 91.828 37.885 33.452 35.410 47.218 24.415
βcφlpc 4 52.191 13.095 22.714 22.458 18.480 12.469
βcφalpc 4 62.452 18.786 26.880 26.388 34.192 6.453
βlφcpc 5 38.259 24.235 10.607 12.668 27.823 17.745
βlφlpc 6 0.000 1.012 0.000 0.000 0.000 6.092
βlφalpc 6 1.164 0.000 3.243 1.264 13.796 0.000

H
et

er
og

en
eo

u
s βcφcp2g 5 94.453 38.839 34.049 33.457 47.218 24.415

βcφlp2g 6 54.375 14.076 23.895 20.911 18.480 12.469
βcφalp2g 6 64.920 19.040 27.495 25.137 34.192 6.453
βlφcp2g 7 38.860 25.178 9.937 12.265 27.823 17.745
βlφlp2g 8 0.000 1.992 0.000 0.000 0.000 6.092
βlφalp2g 8 0.148 0.000 1.457 2.112 13.796 0.000
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Year Model max(logL) LRT p-value

2002
βlφlpc -169.802

11.176 0.0004
βlφlp2g -164.214

2003
βlφalpc -88.499

0.980 0.1611
βlφalp2g -88.009

2004
βlφlpc -166.641

4.631 0.0157
βlφlp2g -164.326

2005
βlφlpc -97.728

7.777 0.0026
βlφlp2g -93.839

2006
βlφlpc -76.256

0 1
βlφlp2g -76.256

2007
βlφalpc -111.992

0 1
βlφalp2g -111.992
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Estimation of N

Model 2002 2003 2004 2005 2006 2007

H
om

og
en

eo
u

s βcφcpc 18.44 11.89 14.34 10.45 13.24 10.16
βcφlpc 19.85 12.47 14.45 10.94 14.32 10.41
βcφalpc 17.33 11.29 14 10 13 10
βlφcpc 17.45 11 14 10.04 13 10
βlφlpc 17 11 14 10 13 10
βlφalpc 17 11 14 10 13 10

H
et

er
og

en
eo

u
s βcφcp2g 18.92 11.93 14.45 10.62 13.24 10.16

βcφlp2g 20.23 12.47 14.76 11.11 14.32 10.41
βcφalp2g 17.48 11.34 14.16 10 13 10
βlφcp2g 17.69 11 14 10.08 13 10
βlφlp2g 17 11 14 10 13 10
βlφalp2g 17 11 14 10 13 10
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Estimation of p

Year 2002 2003 2004 2005 2006 2007
p1 0.835 0.434 0.604 1.000 0.718 0.455

p2 0.392 – 0.238 0.457 – –

π 0.118 – 0.822 0.100 – –

π ·p1 + (1−π) ·p2 0.444 – 0.539 0.511 – –
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Expected stop-over duration

Can calculate expected stop-over duration for newt i as:

fi

∑
b=1

K

∑
d=li

(d −b+ 1)×P ({b,d} | CHi )
E

st
im

at
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