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Abstract In stopover duration analysis for migratory birds, models with the prob-
ability of departure dependent upon time since arrival are useful if the birds are
stopping over to replenish body fat. In capture—recapture studies, the exact time of
arrival is not generally known, as a bird may not be captured soon after arrival, or it
may not be captured at all. We present models which allow for the uncertain knowl-
edge of arrival time, while providing estimates of the total number of birds stopping
over, and the distribution and mean of true stopover times for the population.
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1 Introduction

Many migratory bird populations stop over at predictable sites en route, replen-
ishing body reserves before flying on. The total number of birds using the staging
site is important when studying the population (see e.g. Routledge et al. 1999;
Fredericksen et al. 2001; Ydenberg et al. 2004), and detection of trends in popu-
lation size uses comparisons of these totals over the years. Individual residence
time at stopover sites is also an important variable in the biology of migratory
birds for at least three reasons. First, if there is turnover of the population during
staging, with some birds leaving before others have arrived, a snapshot estimate
of the number of birds will underestimate the total throughput. Second, individual
residence times, together with rate of refueling, shape overall migration strategies
(Alerstam and Lindstrom 1990). Migrating birds typically spend more time and
energy at stopover sites than aloft (Wikelski et al. 2003); the total time spent on
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stopovers and the number of stopover sites visited largely determine the spatiotem-
poral course of migration. Effective conservation and management of migratory
birds therefore depends on a fundamental understanding of stopover behaviour,
including time spent resting and refuelling. Finally, stopover duration is a critical
component in models of optimal bird migration (Alerstam and Lindstrom 1990;
Alerstam and Hedenstrom 1998). Testing models of bird migration and reducing
parameter uncertainty requires accurate estimates of stopover duration.

In stopover duration analysis, the key problem is estimating residence time before
first capture and after last encounter (recapture or resighting). If birds are individu-
ally marked and uniquely identified at a stopover site, frequent sampling during the
stopover provides a record of dates when caught (a capture history) for each bird
which was caught or seen at least once. A capture-recapture analysis may then be
used, with “age” meaning residence time (time since arrival). A Cormack—Jolly—
Seber (CJS) model (Cormack 1964; Jolly 1965; Seber 1965) provides estimates of
the probabilities of “survival” (retention at the site) from one sample to the next, and
the probability of recapture at each sample. In the basic CJS model, these probabil-
ities are assumed to depend on time (sample). This model was extended to multiple
age classes by Pollock (1981). Lebreton et al. (1992) produced a comprehensive
framework of likelihood models based on the CJS. They extended the basic CJS
model to allow for multiple groups and covariates, and allowed survival and/or
capture probabilities to be constant, to depend on time, known age and/or group
(e.g. sex or site). They also introduced the idea of selecting from a wide class of
models using Akaike’s Information Criterion (AIC, Akaike 1973). The basic CJS
model has been used to estimate stopover duration (Kaiser 1995; Dinsmore and
Collazo 2001; Rice et al. 2007). In these studies, the estimated daily probability
of retention was used in the life expectancy formula of Seber (1982), stopover
duration = —1/log.(daily retention probability). The life expectancy method is
not unbiased however because the CJS model is conditional on first capture. If
the “age” (time since arrival) is known at the time of first capture, CJS models
provide estimates of “age-related survival”, where the probability of retention at
a particular sample is assumed to be related to the duration of stopover so far. If,
however, exact arrival times are unknown, assuming each newly caught bird has just
arrived biases the estimates of the parameters of interest. It is necessary to estimate
how long the bird was in residence before its first capture. Schaub et al. (2001)
used Pradel’s (1996) recruitment parameters to get an overall estimate of stopover
time, but see Efford (2005) and Pradel et al. (2005) for the limitations of this
model.

We present new capture-recapture models which use information from each indi-
vidual capture history to estimate the arrival times, and hence provide estimates of
retention probabilities (which are dependent on time since arrival). The Jolly—Seber
(JS) model (Jolly 1965; Seber 1965) provides estimates of the population size at
each sample, and from these an estimate of the total number of birds stopping
over may be obtained. Schwarz and Arnason (Schwarz and Arnason 1996; Schwarz
2001) provided a fully likelihood-based variant of the JS model, which we call
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JSSA. This makes available maximum likelihood estimates of all the parameters,
likelihood ratio tests and model comparisons based on AIC. The JSSA model also
directly estimates N, the total number of birds stopping over, which is an advantage
for our application. The likelihood framework gives profile likelihood intervals for
N and other parameters (Cormack 1992).

This paper extends the JSSA model, providing a new collection of models in
which capture and retention probabilities may depend on the residence time so far,
even if arrival times are unknown. The models may also be applied to true births and
deaths in populations with no migration, giving estimates of frailty and senescence.

Section 2 sets out the assumptions and notation of these models, Section 3
describes models in discrete time, and Section 4 introduces retention curves in
continuous time. Statistical methods are in Section 5, Section 6 illustrates the models
with real data, and Section 7 reports a simulation study. Evaluation and discussion
are in Section 8.

2 Assumptions and Notation

2.1 Assumptions

Assumptions 1-6 are those of the JSSA model, but interpreting “birth” as arrival,
“death” as departure, “survival” as retention at the site, “age” as time since arrival or
residence time, and “lifetime” as stopover duration. We assume there are no actual
births or deaths during the study.

1. K samples are taken at intervals which are large in relation to the time needed
for the sample, so that samples may be regarded as instantaneous.

2. Arrivals and departures occur between samples, and departure is assumed to be

permanent.

. Each individual bird is uniquely and correctly identified.

4. There is a superpopulation of N birds, each available for capture on at least one
sampling occasion.

5. Proportions By, Bi, ... Bx—1 of the N birds enter the population and are first
available for capture at times 1, 2, ... K respectively (}_ S i =1).

6. Capture and departure events are independent between birds and between
samples, and the birds are independent in their arrival times.

7. Sampling covers all the time when birds are present.

(O8]

The extra assumption 7 prevents boundary effects from biasing estimates. Early
birds arriving long before the first sample and late lingerers after the last sample
would have their stopover durations underestimated.

The discussion to follow also assumes the samples are equally spaced in time,
although unequal intervals may be modelled by adjusting all retention probabilities
to a standard time unit.
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2.2 Data

The data come in the form of a D x K capture matrix X, where D is the number of
distinct birds caught. Element x;; is 1 if bird i is captured on occasion j, otherwise
x;j = 0. Row i of X is the capture history (CH;) for bird i, i = 1,2,...,D.

Thus there are N — D birds never caught, each with capture history 0, a K-vector
of zeros. N is an unknown parameter.

2.3 Parameters

We use the JSSA N and §; parameters, while the retention and capture parameters
are extended to allow dependence on time since arrival as well as calendar time
(sample). A bird which arrived a time units ago and is present at sample j is assumed
to have probability p;, of capture at sample j and ¢ ;, of retention from sample j to
J + 1. These simplify to ¢; and p; (the JSSA models) if there is no dependence on
residence time, to ¢, and p, if there is no calendar time dependence, and to ¢ and p
if the probabilities are constant over both residence time and calendar time.

3 Models in Discrete Time

3.1 Capture Histories and Their Likelihoods

We now develop likelihoods for open population models which allow both time
since arrival and calendar time to affect the capture and retention probabilities of
the birds. Modelling individual capture histories in the JSSA framework enables us
to allow for different possible arrival and departure times for each bird via random
variables BB and D. If bird i is first present and available for capture at sample b;, and
is last available for capture at sample d; before departure, we denote its presence
history PH; by {b;, d;}. The ordered pair (b;, d;) is an unobserved realisation of
the joint distribution of 5, D. If retention is related to residence time, 5 and D
are correlated. Suppose a bird has capture history CH; with first capture at sample
fiandthe lastat ¢; (1 < b; < f; < {; < d; < K). Then the probability of this
capture history, conditional on this presence history, is (omitting the i subscripts on b
and d)

d
P(CH; | PH; = {b.d}) = [ [ »]
j=b

U1 = pja)' T (1

where a is the time from arrival to sample j, e.g. if time is measured in days, a =
j— b+ 1 assuming “age” 1day at arrival time. However, the JSSA model provides
the probability of this presence history, allowing retention to depend on time since
arrival:
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d—1

P(PH; = {b,d}) =P(B=0band D =d) = f_ 1_[¢>ja (I —=¢aa) ()
Jj=b

where, if b=d, the empty product ]_[?;; is taken to be unity.

Hence the unconditional probability of bird i’s capture history with unknown
arrival and departure times is found by summing P (CH; | {b, d}) x P ({b, d}) over
all possible presence histories, using equations 1 and 2:

P<CH>—ZZ Bo 1"[¢,a (1 = ¢ua) ]‘[pm_ I )

b=1 d=t;

Similar reasoning gives the unconditional probability of no captures, denoted by
CH()I

K K d—1 d
P(CH) =Y > 1Bt |[]0ie | A=t [[JO=Pid | {- @
b=1 d=b j=b j=b

The summation over possible departure times in equations 3 and 4 is an extension
of the use of the parameter y; = probability not seen after sample j in the JS model.
The JSSA model’s entry parameters, §;, allow us to do a similar summation over
the entry times before the first sighting.

Let 4 index the different observed capture histories, with n; being the number of
birds with capture history 4, and write the parameters N, 8, p and ¢ as a parameter
vector 6. Then a multinomial model to allocate the N birds to their capture histories
gives the full likelihood of 6 given the capture matrix X as

_ N! > N-D

where L; = P(CH;) (equation 3) and Ly = P(CHj) (equation 4). If the a subscripts
are dropped from equation 5, some algebra reduces the formula to the full likelihood
for the JSSA model.

3.2 Linear Logistic Models for Retention and Capture Probabilities

The full model above may be labelled {B(¢), ¢(t x a), p(t x a)}, to indicate Bs
dependent on time (sample), while ¢ and p both allow for time and age effects in an
interactive way. However, there is not enough information in capture-recapture data
to estimate the interactive parameters, and so we propose simplifications of ¢ and
p with fewer parameters. An additive or main effects model on the logistic scale
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(which is preferable to a raw scale for normality of estimators and avoidance of ¢
or p estimates outside [0,1]) could have ¢;, reparameterised as

1%<ﬁ%r>:q+% @ j=12...(K-1) (6)
ja

where 7 is the time effect and « is the age effect. A constraint is needed on «,
perhaps a sum-to-zero constraint () _ «, = 0) or a corner-point constraint (e; = 0).
Similarly capture probabilities may be modelled with additive time and age effects
on the logistic scale:

l%(ﬁ%%>=w+g @ j=1,2,...(K—-1) )
ja

Suitable notation for labelling these additive models would be ¢(t + @) and

p(t + a).
Further simplifications could have

e ¢(a)or p(a), with probabilities depending on residence time but constant through
calendar time,

e (1) or p(t), with probabilities independent of residence time but varying through
calendar time, or

e ¢ or p constant over changing residence time and calendar time, denoted by ¢(.)
and p(.) in the model specification.

If all 2X observable capture histories are actually seen, the models above are
feasible, except for some minor parameter redundancy in early or late p or ¢
parameters (Catchpole and Morgan 1997). If no individual birds have a presence
history with f; = 1 and ; = K, there is virtually no information about parameters
beyond a certain maximum observed duration of stay (M = max (/; — f; + 1)), and
there is near-singularity of models (Catchpole et al. 2001); in this case param-
eters from ‘“age” M +1 onwards are not estimated. Also sparse data, with few
different capture histories observed, can give substantial parameter redundancy.
Schwarz and Arnason (1996) suggested various options for dealing with the two
redundant parameters in the Jolly—Seber model {8(¢), ¢(¢), p(#)}, including setting
p1 = px = 1. However, as this gives an underestimate of Sy, leading on to
overestimates of the later 8s (Jim Nichols, pers. comm.), we have set such end
parameters to the mean of the estimable ones, on a logistic scale. For example,
our JS model has logit(p;) = logit(px) = mean{logit(p,), ..., logit(px_1)}.
Table 1 shows the numbers of estimable parameters in the models proposed
so far.
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Table 1 Numbers of independent parameters with K samples, an observed maximum stopover
duration of M < K, and a large enough set of different capture histories to make the estimates
feasible

p(.) p(t) pla) pt +a)
#() K+2 2K * K+M—1 2K + M
®(1) 2K 3K — 3%t 2K+ M —2% 3K + M — 4%
o(a) K+M 2K+ M —2% K +2M — 2% 2K +2M — 4 %t
ot +a) 2K+ M —2 3K+ M — 5%t 2K +2M —4 % 5K — 9 *f

All models assume S(¢). Some parameters are not estimable. Models marked * must have p; or its
logistic equivalent assigned, and models marked { must have pg or its logistic equivalent assigned.

3.3 Using Covariates

Covariates in calendar time may be incorporated into this scheme, as shown in
Lebreton et al. (1992). For example, a time effect in the probability of capture due
to weather or varying search effort could be accounted for by modifying equation 7 to

Pja _

log
1 - Pja

Ca +AX; + 0w,

where x; is search effort and w; is a relevant weather covariate at sample j. The
parameters A and & are logistic regression coefficients. An example for retention
parameters could use a measure of weather between samples (w; = weather between
samples j — 1 and j) as a covariate. One such modification of equation 6 is

¢/’a

1- ¢ja

=0, +3,w;.

The different slopes (8, rather than §) provide for a differential effect of severe
weather conditions on retention — perhaps birds which arrived more recently are
more likely to delay departure if the weather is poor.

3.4 Comparing Different Groups of Birds

The data may come from two or more populations which are separated spatially,
temporally, taxonomically or sexually. These groups are modelled as in Lebreton
et al. (1992) but using the full likelihoods of Sections 3.1 and 3.2. The joint
likelihood is formed as the product of the individual likelihoods for each group.
Comparison between groups of retention and/or capture probabilities is effected
by starting with a global model allowing each group its own parameters, and then
fitting submodels with various constraints on parameters. For example, we could
compare the residence time-related retention probabilities of different groups, while
still allowing each group its own N, 8 and p parameters. The constrained model
would have the same retention parameters across the groups. These groups could
be females and males, or populations at different locations, or different sub-species.
With migratory birds, we may look for changes over the years in the total number
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stopping over, by comparing a constrained model with equal N over different years
with a model having N fluctuating, or on a linear trend over time.

4 Retention Curves in Continuous Time

Traditional survival curve analysis and lifetime modelling provides a method of
smoothing the discrete retention probabilities into a retention curve depending on
the time since arrival, using fewer parameters.

Suppose a continuous random variable X for the stopover duration of an indi-
vidual has distribution function F(x) = probability of departure by age x, and prob-
ability density function fix) = % (x > 0). The retention function, probability
of retention for at least x time units, is S(x) = 1 — F(x), and the hazard function
(instantaneous departure rate) is h(x) = jsc((g

The retention probabilities from discrete-time capture-recapture may be
constrained to lie on such curves, using

Sx+1)

S ®)

¢, = P(duration > x + 1 | duration > x) =

Standard survivorship (retention) curves of Types I, II and III (see, e.g. Richter
and Sondgerath 1990) may be modelled with a Weibull distribution for the stopover
duration random variable X (X > 0). The distribution function F(x) = 1 —

K
exp {— (%) } has scale parameter y > 0 and shape parameter k > 0, and gives

retention function S(x) = 1—F(x) = exp {— (%) } and hazard rate (instantaneous

departure rate) u = J;g; = (’”}‘/—[]> The value of k gives the type of retention
curve, with ¥ > 1 for a Type I retention curve (high retention rate until near the end
of the stopover, then high departure rate, a J-shaped hazard curve), & = 1 for Type
II retention (constant hazard rate), and ¥ < 1 for Type III (lowest retention soon
after arrival, a reverse J-shaped hazard curve). The case x = 1 with an exponential
retention curve and constant hazard rate 1/y is implicit in all models, such as the
JS, where departure probability is assumed to be unrelated to time since arrival. If
the « estimate from the data gives a rejection of Hy: k = 0 in favour of Hy: k > 1,
there is evidence for high retention soon after arrival and lower retention later.

K K
The connection with discrete time data is ¢, = exp {— (”%1) + (%) ] where

@, is the probability of retention from “age” a to a + 1. The assumed arrival time
for a bird first available for capture at sample b is midway between samples b — 1
and b, and for those present at the first sample it is the time of the first sample minus
half the average interval between samples.

Type IV retention has highest departure rates when either recently arrived or after
staying a while with high retention, a “bathtub” shaped hazard curve (Richter and
Sondgerath 1990). One example is the 6-parameter Siler curve (Siler 1979), which
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also allows for a trend in retention over time to be tested. The retention probability
from “age” a (at time f) to a +1 is

¢at = exXp I:& {e*m(aﬂ) _ efyla} _ ﬂza _ & { —ys(a+1) eﬂ/sa} . '34{| C))
Y1 V3

If the data select a bathtub curve in preference to a Weibull, there is evidence for
two types of bird, transients which depart soon after arrival, and stayers with high
retention before ultimate departure.

The Weibull curve may also be adapted for time trends by allowing the shape
parameter to vary by calendar time, y = yp + y1¢. A significantly non-zero y; could
show if, say, later arrivals spend less time at the site.

5 Statistical Analysis

5.1 Model Comparison and Parameter Estimation

Model selection among these likelihood-based models may be done using Akaike’s
Information Criterion (AIC) or some variant of that (Lebreton et al. 1992; Burnham
and Anderson 2002). For confirmatory studies, all the models have the usual likeli-
hood ratio tests ()2 tests) available for comparing two models or for testing parame-
ters. Maximum likelihood estimates of parameters arise from the model fitting, with
estimated standard errors available from the inverse of the estimated Hessian matrix.

Following Lebreton et al. (1992), the models are fitted using the logits of the
retention and capture probabilities. This gives better convergence properties, and
more appropriate confidence intervals. The greater normality of the estimators on
the logit scale means the associated symmetric confidence intervals (£ 1.96 stan-
dard errors) are realistic. The centres and endpoints of the logit confidence intervals
are back-transformed to the [0,1] scale to give asymmetric confidence intervals for
the original probabilities. Similar advantages result from using log(N) as a param-
eter in the optimisation, with back-transformation giving an asymmetric confidence
interval for N.

Profile likelihood intervals (PLI) are also strongly recommended for interval
estimation with these models (Cormack 1992). They also provide the asymmetric
intervals appropriate to the data.

5.2 Stopover Duration Estimation

For specific models, estimates of mean stopover duration have been used in the
past. If a model with ¢ constant has been selected, mean stopover duration may be
estimated by

1

log, ¢
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(Seber 1982). If a fitted stopover duration curve (e.g. Weibull or Siler) was selected,
the mean of that distribution may be used. If a discrete-time model with ¢, was
chosen, with the final ¢ = 0 (valid if sampling continued to the final departures),
a probability branching diagram gives estimates of the mean and standard deviation
of stopover duration.

However, for any of the models in this paper, the parameter estimates and equa-
tion 2 provide estimates of the joint distribution of arrival and departure times,
P (B =b and D =d). To obtain the (discrete) derived distribution of stopover dura-
tion S = D — B + 1, the probabilites of histories with a common duration are
summed. With unequal spacing of samples the support of the distribution has irreg-
ular spacing, but fitting a retention curve in continuous time will give a distribution,
mean and variance for the stopover duration.

6 Real Data Example

At the Cabo Rojo salt flats in Puerto Rico, 113 previously-banded semipalmated
sandpipers (Calidris pusilla) were sighted over 18 weeks in 1992-3. These data
represent overwintering residency rather than a short stopover.

Analysis of resightings by Rice et al. (2007) using CJS models (Lebreton et al.
1992) selected as the best models ¢(fat) p(z) (with a covariate of body fat, AAIC, =
0), and ¢(.)p(t) (AAIC, = 0.66).

Our models differ by including estimation of arrival time, and by using first
sighting information more fully. The model selected by AIC was {B(¢), (¢t +
a, Weibull), p(a)} (Table 2), where a Weibull model for retention has its scale
parameter on a linear trend over time. This allows for later cohorts to be on a longer
or shorter stopover duration, while keeping the shape of the curve constant.

In this example, the parameter estimates indicate that the later arrivals are staying
longer. This model choice is being driven by a number of early arrivals being seen
only once, while a large group arriving about the middle of the study were seen
frequently until the end.

The distribution of stopover time was found for the best four models, giving the
means and standard deviations shown in Table 3.

However, this real data set has high capture probabilities, around 0.8 per sample,
leading to an estimate of N, N=113= D, which is the number actually seen. This

Table 2 Relative AIC values for semipalmated sandpipers (Calidris pusilla) at Cabo Rojo

p(.) p(t) pla) pt +a)
o(.) 13.90 19.25 10.39 9.34
@) 15.62 21.79 9.43 9.96
d(a) 21.52 22.94 17.84 15.11
¢(t + a) 20.43 24.85 14.53 14.62
¢(a, Weibull) 15.69 20.66 11.98 9.31
¢(a, Siler) 21.58 26.36 18.02 16.15
¢t + a, Weibull) 10.99 20.26 0.00 9.99

¢(t +a, Siler) 20.43 24.92 15.28 14.17
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Table 3 Means and standard deviations of estimated distributions of stopover times (weeks) for
Cabo Rojo semipalmated sandpipers (Calidris pusilla), using the best four models

Model AAIC Mean Duration Standard Deviation
¢(t + a, Weibull), p(a) 0.00 10.09 3.50
¢(a, Weibull), p(t + a) 9.31 9.97 343
¢(c), p(t + a) 9.34 10.04 3.59
(1), p(a) 9.43 10.33 3.69

data set is not providing a good test of the value of these models for estimation
of N. It is also not really necessary to distinguish true arrival time from time of
first capture, as most birds were seen very soon after arrival. The simplest model,
@(.)p(.), gave stopover time estimates fairly similar to those from the four models
above.

Because of the differences in the analyses, detailed comparisons with the model
of Rice et al. (2007) are not meaningful.

7 A Simulation Study

A simulation study was run to evaluate the model selection procedure, estima-
tion of N and estimation of stopover duration. Three scenaria were tried, encom-
passing low and high K values (either 5 or 10) and different patterns of entry
probabilities, with details given in Table 4. All simulations used n = 200 birds and
the generating model {¢(a)p(.)} with constant capture probability 0.4 and reten-
tion probabilities 0.9, 0.8, 0.2, 0.1, 0. This gave high retention for two intervals,
followed by low retention. No birds were retained for more than four intervals (five
samples).

At each replication, a population was simulated to give a capture matrix of
observed birds, which was then analysed with all 16 discrete-time models. A model
fit was ruled inadmissible if any parameter estimate was at the boundary of the
parameter space, which happened sometimes with sparse generated data. Table 4
gives an overview of model selection and estimation of N from the simulations.

In all three scenaria, the generating model was selected by AIC more times than
any other, with improvement of the proportion of times selected as K increased.
Overall, the best two models were the generating model {¢(a), p(.)} and the model
{#(.), p(a)}. Strong correlations between ¢ estimates and adjacent p estimates intro-
duce “leakage” of parameters (see e.g. Sidhu et al. 2007); if we insist on constant ¢,
the failure to observe long-staying birds is attributed instead to capture probabilities,
and the p(a) estimates become zero from a certain “age” onwards. In this case,
common sense would dictate that birds do not suddenly become uncatchable when
they have stayed for a certain time — a far more reasonable explanation is that they
have departed. Models with constant ¢ or ¢ dependent on time only are unrealistic
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Table 4 Simulation Study Results. The generating model was ¢(a), p(.)}, and in each replication
the 16 models were fitted. All scenaria had the same retention probabilities ¢(a) = (0.9, 0.8, 0.2, 0.1,
0), and constant capture probability 0.4. Entry probabilities g were (.3,.2,.2,.2,.1) for Scenario A,
(.15,.15,.1,.1,.1,.1,.1,.1,.05,.05) for Scenario B, and (.05,.1,.1,.15,.15,.15,.1,.1,.05,.05) for Scenario
C. Coverage is from a 95% log-based confidence interval for n, back-transformed

Scenario A B C
Number of samples, K 5 10 10
Number of birds, N 200 200 200
Entry pattern (details in caption) low-high low—low high-low
Retention probabilities 9.82.10 9.8.2.1,0 9.8.2.1,0
Capture probability 0.4 0.4 0.4
Number of replications 100 100 100
Model selection results:

% reps, correct model 1st choice 33 45 38

% reps, correct model 2nd choice 38 30 36

% reps, correct model 3rd choice 24 16 22
Analysis by correct model:

Coverage for N 0.95 0.94 0.93
Average % bias of N —0.07% —2.71% —1.58%

for stopover duration analysis. If the unrealistic model {¢(.), p(a)} is excluded, the
selection of {¢(a), p(.)} improves considerably.

The coverage of the nominal 95% confidence intervals for n (log based and back-
transformed) was acceptable with analysis by the true (generating) model (Table 4),
and was almost always nearer 0.95 than coverage from the other 15 analysing
models.

To evaluate the estimation of stopover duration, we compare the true distribu-
tion of duration (from the generating model) with the estimated distribution from
the analysing models, averaged over the 100 simulated populations. The compar-
isons of true and estimated stopover duration distributions are shown for Scenario B
(K = 10) in Fig. 1. The probabilities from fitting the correct model {¢(a), p(.)} are
much closer to the true probabilities than those from analysis by three competing
models {¢(.), p(.)}, {¢(.), p(a)} and {¢(a), p(a)}. The simulated populations were
also analysed using the correct {¢(a), p(.)} model but with a simplified likelihood
model using only the birds seen at least once; no attempt was made to estimate N
or allow for the unseen birds in the likelihood. Arrival and departure times were
estimated only for the seen birds, and ¢ and p parameters were estimated from
this incomplete data set. The estimated stopover duration probabilities were calcu-
lated, averaged over the 100 simulations, and the trace of this “seen” model is
also shown in Fig. 1. The resulting overestimation of stopover duration probably
occurs because the unseen birds are largely those with short stopovers, so estimation
without allowing for them gives a positive bias.

The means and standard deviations of these generating and analysing distribu-
tions are in Table 5. Note the 23% overestimation of the mean stopover duration
which results from considering only the seen birds.
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Fig. 1 True and estimated distributions of stopover duration, Scenario B. The true (generating)
model is {¢(a), p(.)}. Five analysing models were fitted for each simulated population, and the
probabilities estimated from averages over the 100 simulations. Analysis by the true model gives a
close fit. The “seen” model ignored the unseen birds

Table 5 Means and standard deviations of the true stopover duration distribution and the estimated
distributions

Model Mean Standard deviation
True model

{d(a), p(D} 2.63 0.79

Analysing model:

Seen birds only 3.23 0.59

{#C), p()} 2.17 1.43

{#(), p(a)} 2.93 1.78

{d(a), p(D} 2.49 0.88

{¢(a), p(a)} 2.79 1.59

8 Discussion

We have introduced new models, aimed at improving accuracy of estimation of the
total number of birds using a stopover site, and the duration of stopover. Likelihood-
based models are employed, bringing a range of benefits: AIC comparisons, likeli-
hood ratio tests, and the estimation of the distribution of stopover duration rather
than just a mean and standard deviation. The use of joint likelihoods allows for
comparisons of different groups of birds, perhaps two sexes, different species, or the
same species over different years. Tests may be constructed to see if, for example,
there is a trend over the years of the numbers stopping over.

In the survival literature, it is known that individual heterogeneity of survival, if not
allowed for in a model, has consequences for the estimation of survival parameters
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(Burnham and Rexstad 1993; Pledger and Schwarz 2002; Efford 2005). In stopover
applications, the birds with intrinsically longer stopover times provide the information
about the upper end of the retention curve. Since they are not representative of the
whole group, an increasing instantaneous departure rate for the whole population
can be masked. Our models allow for heterogeneity of retention via an “age” effect,
using the (unknown) true time since arrival rather than the time since first capture.

It is necessary to sample over the whole time of the stopover, to eliminate
boundary effects. If the sampling starts late, and some birds have already been
present a long time before a first opportunity for capture, their arrival times are
underestimated. Similarly if sampling finishes too soon, birds still present at the last
sample will be assumed to depart soon, when in fact they may stay much longer.

The models are performing well, as shown by a simulation study with substan-
tial turnover in the population. Compared with existing models (with constant or
time-dependent retention and capture probabilities), the new models allowing for
retention to depend on residence time give a much more accurate estimation of
distribution, mean and variance of stopover duration.

These models may be extended in various ways. Allowance can be made for
unequal spacing of samples, using smoothing or “lifetime” curves in continuous
time. Adaptations are possible to allow for some occasions which have resighting
only, with no attempt to capture new birds. Also, the capture-recapture data may
be combined via likelihoods with count data of unmarked birds, using joint multi-
nomial models for the capture-recapture and Poisson models for the counts. Joint
likelihoods also allow the inclusion of extra information such as some birds having
known arrival and departure times, perhaps from radiotelemetry information.

These models also apply to population dynamic studies, where age and survival
have their true meanings, and are not interpreted as residence time and retention.
With studies which are long in relation to the lifetime of the animal, and where
there is little or no migration, the distribution of lifetimes may be estimated and the
detection of senescence in animals of unknown age is possible.
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