
Abstract
Korz is a new computational model that combines implicit
arguments (constituting context) with multiple dispatch, in
a slot-based model. Slots from a multidimensional space are
drawn together into “objects” subjectively, in different ways
in different contexts. The combination of these few con-
cepts powerfully supports evolution and contextual varia-
tion along multiple dimensions. Korz holds promise as a
foundation for future languages that deeply integrate object-
oriented, aspect-oriented and context-oriented capabilities.
Nonetheless, a number of issues remain to be resolved.

1. Introduction
 Korz [Unga14] introduces a new computational model that
combines implicit arguments, which serve as context, and
multiple dispatch, designed to address multidimensional
contextual variation. In addition, rather than a fixed organi-
zation of method and data slots into objects, a Korz pro-
gram fundamentally consists of a multidimensional space of
slots, and slots can be drawn together into “objects” subjec-
tively, in different ways in different contexts. There is no
dominant decomposition, and no dimension holds sway
over any other. At each computation step, multiple dispatch
involving both implicit arguments (context) and explicit
arguments is used to find the appropriate slot to evaluate.

Though these base concepts individually have been
known and used for many years, this particular combination
is novel and seems especially powerful: early experience
shows that it enables the writing of software that supports
contextual variation along multiple dimensions, and grace-
ful evolution of that software to support new, unexpected
dimensions of variability, without the need for additional
mechanism such as layers [Hirs08] or aspects [Kicz97].

The goal of this paper is to provoke consideration and
discussion of the position that the Korz model is a good
foundation for future work on languages that deeply inte-
grate object-, aspect-[Elra01] and context-oriented [Hirs08]
capabilities. The next section briefly outlines the Korz
model, and is followed by discussion of some of the most
challenging issues that remain outstanding. More details of
Korz, and analysis of related work, are in [Unga14].

2. Overview of Korz Concepts
This section introduces basic Korz concepts and terminol-
ogy using a simple point drawing example shown in Fig-
ures 1 through 3.

In place of an object that constitutes identity as well as a
set of slots, Korz has a coordinate that is solely a value that
constitutes an identity; and instead of being contained by a
single object, a slot pertains to a number of coordinates, as
indicated by part of its slot guard (the slot guard also in-
cludes a selector and a list of explicit positional parame-
ters).

In the example shown in Figures 1 through 3, examples
of coordinates include: that referred to by the literal 20.0,
the contents of the constant slots true and pointParent, and
the contents of the variable slot point1. In Figure 2, an
example of a slot guard is: { rcvr ≤ screenParent, grayScale
≤ true } drawPixel(x, y, c) , which indicates that the method
being defined is contained in a slot with selector drawPixel,
has explicit positional parameters x, y, and c, and pertains
to coordinate screenParent (which we say is “in the role of”
rcvr, or “along the dimension” rcvr) and coordinate true
(along the grayScale dimension); that is, the slot is con-
strained to only be accessible (eligible for selection by the
dispatch algorithm) from contexts in which the coordinate
in the rcvr dimension is screenParent, or a descendant
thereof, and the coordinate in the grayScale dimension is
true (any additional dimensions of the context are irrelevant
to the accessibility of this slot).

In Korz, a message send occurs in a context consisting of
a number of coordinates, each in a particular role (or “along
a dimension”). The context, selector, and explicit positional
arguments of the message send determine the slot to be
evaluated. In Figure 1, { rcvr: point1 }.display is an exam-
ple of a message send (which has no explicit arguments).
The context for the message send will include the coordi-
nate point1 in the rcvr dimension, and depending on the
chain of sends leading up to this send, the context might
also implicitly include a coordinate in the device dimen-
sion: stdscreen for example. In this case, syntactic sugar can
reduce the code for this message send to point1.display. A
message send can add bindings to the context that is being
implicitly passed along the call chain, as in { rcvr: f1, de-
vice: s, location: australia }.display in Figure 3, which adds
three bindings to the context before finding and evaluating
a display slot; and a message send can remove bindings
from the context, as in
{ -location }.drawPixel(x, -y, c) in Figure 3, which removes
any binding of the location dimension to a coordinate.

A slot whose guard has no constraints on context, as in {}
pointParent in Figure 1, is globally accessible; i.e., the
pointParent slot is not constrained at all with respect to the
contexts from which it is accessible, so it is accessible to

A Simple, Symmetric, Subjective Foundation for
Object-, Aspect- and Context-Oriented Programming

Harold Ossher David Ungar Doug Kimelman
IBM Research

Yorktown Heights, NY, USA
{ossher,davidungar,dnk}@us.ibm.com

messages sent from any context. Further, note that if a di-
mension is mentioned in a guard, but is not constrained to
any particular coordinate, as for the device dimension in the
guard for the display method in Figure 1, then that dimen-
sion must be present in the context for that slot to be acces-
sible, but any coordinate binding is acceptable. As well, in
the body of a method, the coordinate to which a dimension
is bound may be referred to using the dimension name, as in
device.drawPixel(x, y, color) in Figure 1.

The code in the figures is structured using a pattern pio-
neered in Self [US87], in which prototype objects define
data slots, and new objects are created by copying proto-
types, which gives them their own data slots. Method slots
are defined in the parent of the prototype, which also be-
comes the parent of the new objects when the prototype is
copied. The methods are thus inherited by all the copies.

Please see [Unga14] for a more detailed walk through of
the example code, including the steps by which it evolved,
as well as a Korz language definition.

3. Discussion: Power and Challenges
Multi-dimensional, symmetric models are powerful, but
pose some interesting challenges. Many are due to the prin-
ciple that dimensions be treated equally: none should be
dominant or special, and they should be unordered. The
following subsections suggest how the power of the funda-
mental approach might be applied to dealing with some of
the most vexing of these challenges. We feel that these pos-
sibilities constitute intriguing directions for future research.

Dimensions for Interpreter Control

A number of the challenges highlighted below can be ad-
dressed by providing some direction to the interpreter. One

def {} pointParent = newCoord;
def {} point = newCoord extending pointParent;
var {rcvr ≤ point} x;
var {rcvr ≤ point} y;
var {rcvr ≤ point} color;
method {} makeAPoint(x, y, c) {
 var x, y, c, p;
 p = point.copy;
 p.x = x; p.y = y; p.color = c;
 return p;
}
method {
 rcvr ≤ pointParent,
 device //dimension required but can be anything
 }
 display {
 device.drawPixel(x, y, color)
};

def {} screenParent = newCoord;
def {} screen = newCoord extending screenParent;

method {rcvr ≤ screenParent} drawPixel(x, y, color) {
 // draw the pixel in the color
}

method {} main() {
 	 var point1 = makeAPoint(20.0, 30.0, blue);
 point1.display
 // Equivalent to: { rcvr: point1 }.display
 	 // Context from environment might yield:
 	 // { rcvr: point1, device: stdscreen }.display
}
main();

Figure 1. Drawing points on a screen.

def {} figureParent = newCoord
def {} figure = newCoord extending figureParent;

var {rcvr ≤ figure} point1;
var {rcvr ≤ figure} point2;
var {rcvr ≤ figure} point3;

method {rcvr ≤ figureParent} display {
 point1.display; point2.display; point3.display
}
method { rcvr ≤ screenParent, grayScale ≤ true }
drawPixel(x, y, c) {
 {grayScale: false}
 .drawPixel(x, y, c.mapToGrayScale)
}

...
 	 { rcvr: f1, device: s, grayScale: true }.display

...

Figure 2. Drawing figures in grayscale.

def {} locationParent = newCoord;
def {} location = newCoord extending locationParent;
def {} southernHemi = newCoord extending location;
def {} australia = newCoord extending southernHemi;
def {} antarctica = newCoord extending southernHemi;
method { rcvr ≤ screenParent, location ≤ southernHemi
}
drawPixel(x, y, c) {
 { -location }.drawPixel(x, -y, c)
}

...
 	 { rcvr: f1, device: s, location: australia }.display	
 	 ...

Figure 3. Drawing figures inverted.

approach we have begun to explore for providing such di-
rection is interpreter-control dimensions that affect the
functioning of the interpreter. An example would be a di-
mension that controls the handling of failure: depending on
the value in that dimension, a lookup failure could result in
different actions, such as bringing up a debugger, logging
the error and terminating the program, or executing context-
specific code provided by the developer. Thus, the power of
being able to introduce new dimensions for new purposes is
used below to facilitate graceful language evolution, not
only program evolution.

The ‘rcvr’ dimension

The dimension rcvr in the example is analogous to the ‘re-
ceiver’ or ‘this’ object of object-oriented languages, and is
thus familiar to programmers. It is at odds with two Korz
principles, however: that a single receiver is replaced by a
multidimensional context, and that all dimensions are
treated equally.

It might seem better in the example to have chosen some
other dimension name, perhaps graphic to indicate that it
deals with a graphic object. Then the x slot, for example,
would have been defined as var {graphic ≤ point} x. There
are two problems, however: The first has to do with meth-
ods like copy, built-in or library methods that apply broadly.
Such a method must use some dimension for the implicit
parameter it operates on (such a parameter would be the
receiver in object-oriented languages), and since the possi-
bilities for such a parameter are so broad and generic, a
domain-specific dimension name like graphic would not
suit. We could use a dimension name such as object, entity,
thing or the like, but wanted to avoid confusion between
coordinates and objects, and also avoid the implication that
objects occur in only one particular dimension. Another
possibility might be id or identity, but all coordinates in all
dimensions are identities. So we chose rcvr, to be sugges-
tive of the object-oriented receiver.

One possible solution would be to define methods like
copy as global methods that take an explicit parameter:
Instead of method { rcvr } copy() { ... } define method {}
copy(x) { ... } . This approach breaks down, however, for
methods associated with abstractions like collections, where
the use of explicit parameters becomes clumsy and counter
to the expectations of object-oriented programmers. In such
cases we could possibly use other appropriate dimensions,
like collection, rather than rcvr.

That leads to the second problem: the need to switch
between dimensions, and its impact on syntactic sugaring.
Suppose we had used the graphic dimension as suggested
earlier. The makeAPoint method would now have to be
written:
method {} makeAPoint(x, y, c) {
 var x, y, c, p;
 p = point.copy;
 {graphic: p}.x = x; {graphic: p}.y = y;
 {graphic: p }.color = c;
 return p;
}

This is clumsy, and it gets much worse in the case of cas-
caded expressions. The syntactic sugaring allows one to
write p.x = x and so on instead, which is much clearer, and
does exactly what an object-oriented programmer would
expect. This sugaring, of course, relies on its being clear
what dimension is involved. In our current implementation,
that dimension is always assumed to be rcvr, and this is the
one respect in which rcvr is treated specially. We have be-
gun considering a construct that would allow the program-
mer to specify the dimension to use, which would allow
makeAPoint to be written something like:
with implied dimension = graphic {
 method {} makeAPoint(x, y, c) {
 var x, y, c, p;
 p = {rcvr: point}.copy;
 p.x = x; p.y = y; p.color = c;
 return p;
 }
}

Now, unfortunately, the copy message can no longer be
sugared, because it uses a different dimension (whether rcvr
or something else), but, on balance, this might be a better
way to write this particular method. We are also interested
in IDE support that allows the same code to be viewed in
different ways, including with different choices of implied
dimension and consequent sugaring.

Lookup Specificity

As discussed in [Unga14], a situation sometimes arises
where a message matches two slots, one of which has more
dimensions in its slot guard but less-specific coordinates in
some of the dimensions that the guards have in common.
We opted to define the slot guard with more dimensions as
being more specific, irrespective of the coordinates in the
common dimensions. This decision supports the important
evolution scenario of adding new dimensions to an existing
system. However, it can be problematic in the case of evo-
lution involving specialization. An interpreter-control di-
mension could allow for context-sensitive determination of
specificity, but might reduce code comprehensibility.
Super
In any specificity-based dispatch approach, it is important
for a method to be able to trigger invocation of the next-
most-specific method (e.g. via super or call-next-method).
This is a known difficult problem in multiple-dispatch lan-
guages, because there is often not a natural, unique next-
most-specific method. Rules have to be employed, such as
linearization in CLOS [Gabr91] and all-parents-equal in
Self, or the programmer can be explicit, as in C++ and Self.

The same issues arise in Korz. They are particularly chal-
lenging due to our desire to preserve symmetry and hence
avoid any sort of built in linearization or dimension order-
ing. An interpreter-control dimension could be applied, al-
lowing the context to specify the order in which dimensions
should be relaxed, to provide context-specific code to be
executed, or to effect some other disambiguation scheme.
As in the case of lookup specificity, this degree of dy-
namicity could reduce code comprehensibility.

Modularity and AOSD

Dimensions provide a flexible and powerful modularization
mechanism, that can be used for program organization and
presentation and also has presence at runtime, which is im-
portant in dynamic languages. A module can be represented
by a specific dimension, or a coordinate within a specific
dimension. In the first case, the slots to be encapsulated
must mention that dimension in their guards. In the second
case, the guards must constrain the dimension to the appro-
priate coordinate. If either of these approaches is followed,
slots will be modularized and be inaccessible from other
modules unless the context is explicitly set up to have the
appropriate dimension bindings.

This means that the core mechanism of Korz addresses
many of the evolution scenarios that were the driving force
of the aspect-oriented software development (AOSD)
community [Elra01], without the need for additional con-
cepts such as aspects, subjects or layers. Obliviousness is
supported because slots can be added as described above
without pre-existing slots needing any knowledge of them.
There are, however, two limitations with respect to AOSD

The first limitation has to do with method combination.
When adding functionality to a system, it is often necessary
to add behavior to an existing method (in addition to adding
or replacing methods). This addition is done by such
mechanisms as advice weaving in AOP [Kicz97] or compo-
sition in SOP [HO93] and MDSOC [Tarr99], which effec-
tively allow multiple methods to be executed in response to
a single message, suitably orchestrated. Korz, on the other
hand, always selects a single, most-specific method to exe-
cute, and fails if there isn’t one. An interpreter-control di-
mension could support other, context-specific options, such
as Ensembles [UA10], which run every matching slot for
this message, or execution of some context-specific “meta-
code” that coordinates execution of the matching slots. In
addition, and possibly in conjunction, the “super” mecha-
nism described above can be used to achieve the effect of
around advice.

The second limitation of Korz relative to AOSD is that
its support for pointcuts (specifying in one place code that
is to be executed at multiple sites, or join points) is limited
to what can be done with inheritance. Multidimensional
inheritance with dynamic parents is powerful. If an exten-
sion provides additional methods for some existing situa-
tion guarded by coordinates in one or more new dimen-
sions, then, provided those dimensions are bound to suitable
coordinates in the context, the new methods will match the
original message, and hence be candidates for combination
as determined by the interpreter-control dimension above.

However, the case that is not covered by this is that of
selector-based matching: for example, adding behavior to
all methods with a particular selector, irrespective of the
other elements of their guards. This case can be handled by
the kind of extension to Korz that is discussed next.

Can We Go Even Further With Symmetry?

 We believe that we can make the Korz model conceptu-
ally more elegant by treating selectors as coordinates in a
“selector” dimension. Selectors would then move into slot

guards rather than being separate elements of slots. For
example, a slot defined in Korz as
 method {rcvr ≤ pointParent, device} display {...}
would instead be written as
 method {rcvr ≤ pointParent, device, selector ≤ display} {...}
This would allow a slot that is to match all messages with
selector display to be written as
 method {selector ≤ display} {...}
Also, with selectors as coordinates, it would be possible to
define parentage, supporting inheritance. This could be
done explicitly, as with other kinds of coordinates, or possi-
bly using pattern matching, where a pattern is considered an
ancestor of every selector that it matches. For example, a
slot that matches all setters using the standard naming con-
vention could be written as
 method {selector ≤ set*} {...}

The two extensions above have yet to be defined fully
and implemented, but we believe that, rather than being
special-purpose mechanisms, they would enhance the Korz
model in an elegant and consistent manner. Korz should
then be a suitable foundation for languages that deeply in-
tegrate the object-, aspect- and context-oriented paradigms
(and possibly feature-oriented also; this needs exploration).

An even more tantalizing – and more speculative – ex-
tension is to devise a suitable way to shift perspective so
that the slot’s contents becomes one more component of its
guard, rather than a separate contents component. Then the
guard becomes the entire slot, possibly leading to a unifica-
tion of the object and relational models.

We look forward to in-depth exploration of these and other
issues relating to symmetric multidimensional models at the
workshop, and to input from colleagues with deep insight
from a number of different perspectives.

References
[Elra01] Elrad, T. et al. (eds.), 2001. Special section on

aspect-oriented programming. CACM. 44, 10.
[Gabr91] Gabriel, R. et al. 1991. CLOS: Integrating object-

oriented and functional programming. CACM, 34, 9.
[Hirs08] Hirschfeld, R. et al. 2008. Context-oriented Pro-

gramming. JOT. 7, 3.
[HO93] Harrison, W. and Ossher, H. 1993. Subject-

Oriented Programming: A Critique of Pure Objects.
OOPSLA’93.

[Kicz97] Kiczales, G. et al. 1997. Aspect-Oriented Pro-
gramming. ECOOP’97.

[Tarr99] Tarr, P. et al. 1999. N degrees of separation: multi-
dimensional separation of concerns. ICSE’99.

[UA10] Ungar, D. and Adams, S. 2010. Harnessing Emer-
gence for Manycore Programming: Early Experience
Integrating Ensembles, Adverbs, and Object-based In-
heritance. OOPSLA’10 Short Paper.

[Unga14] Ungar, D. et al. 2014. Korz: Simple, Symmetric,
Subjective, Context-Oriented Programming. Onward’14.

[US87] Ungar, D. and Smith, R. B. 1987. Self: The Power
of Simplicity. OOPSLA’87.

