
Abstract
Korz is a new computational model that combines implicit 
arguments (constituting context) with multiple dispatch, in 
a slot-based model. Slots from a multidimensional space are  
drawn together into “objects” subjectively, in different ways 
in different contexts. The combination of these few con-
cepts powerfully supports evolution and contextual varia-
tion along multiple dimensions. Korz holds promise as a 
foundation for future languages that deeply integrate object-
oriented, aspect-oriented and context-oriented capabilities. 
Nonetheless, a number of issues remain to be resolved.

1. Introduction
 Korz [Unga14] introduces a new computational model that 
combines implicit arguments, which serve as context, and 
multiple dispatch, designed to address multidimensional 
contextual variation. In addition, rather than a fixed organi-
zation of method and data slots into objects, a Korz pro-
gram fundamentally consists of a multidimensional space of 
slots, and slots can be drawn together into “objects” subjec-
tively, in different ways in different contexts. There is no 
dominant decomposition, and no dimension holds sway 
over any other. At each computation step, multiple dispatch 
involving both implicit arguments (context) and explicit 
arguments is used to find the appropriate slot to evaluate.

Though these base concepts individually have been 
known and used for many years, this particular combination 
is novel and seems especially powerful: early experience 
shows that it enables the writing of software that supports 
contextual variation along multiple dimensions, and grace-
ful evolution of that software to support new, unexpected 
dimensions of variability, without the need for additional 
mechanism such as layers [Hirs08] or aspects [Kicz97].

The goal of this paper is to provoke consideration and 
discussion of the position that the Korz model is a good 
foundation for future work on languages that deeply inte-
grate object-, aspect-[Elra01] and context-oriented [Hirs08] 
capabilities.  The next section briefly outlines the Korz 
model, and is followed by discussion of some of the most 
challenging issues that remain outstanding. More details of 
Korz, and analysis of related work, are in [Unga14].

2. Overview of Korz Concepts
This section introduces basic Korz concepts and terminol-
ogy using a simple point drawing example shown in Fig-
ures 1 through 3.

In place of an object that constitutes identity as well as a 
set of slots, Korz has a coordinate that is solely a value that 
constitutes an identity; and instead of being contained by a 
single object,  a slot pertains to a number of coordinates, as 
indicated by part of its slot guard (the slot guard also in-
cludes a selector and a list of explicit positional parame-
ters).

In the example shown in Figures 1 through 3, examples 
of coordinates include: that referred to by the literal 20.0, 
the contents of the constant slots true and pointParent, and 
the contents of the variable slot point1. In Figure 2, an 
example of a slot guard is: { rcvr ≤ screenParent, grayScale 
≤ true } drawPixel(x, y, c) , which indicates that the method 
being defined is contained in a slot with selector drawPixel, 
has explicit positional parameters x, y, and c, and pertains 
to coordinate screenParent (which we say is “in the role of” 
rcvr, or “along the dimension” rcvr) and coordinate true 
(along the grayScale dimension); that is, the slot is con-
strained to only be accessible (eligible for selection by the 
dispatch algorithm) from contexts in which  the coordinate 
in the rcvr dimension is screenParent, or a descendant 
thereof, and the coordinate in the grayScale dimension is 
true (any additional dimensions of the context are irrelevant 
to the accessibility of this slot).

In Korz, a message send occurs in a context consisting of 
a number of coordinates, each in a particular role (or “along 
a dimension”). The context, selector, and explicit positional 
arguments of the message send determine the slot to be 
evaluated. In Figure 1, { rcvr: point1 }.display is an exam-
ple of a message send (which has no explicit arguments). 
The context for the message send will include the coordi-
nate point1  in the rcvr dimension, and depending on the 
chain of sends leading up to this send, the context might 
also implicitly include a coordinate in the device dimen-
sion: stdscreen for example. In this case, syntactic sugar can 
reduce the code for this message send to point1.display.  A 
message send can add bindings to the context that is being 
implicitly passed along the call chain, as in { rcvr: f1, de-
vice: s, location: australia }.display in Figure 3, which adds 
three bindings to the context before finding and evaluating 
a display slot; and a message send can remove bindings 
from the context, as in 
{ -location }.drawPixel(x, -y, c) in Figure 3, which removes 
any binding of the location dimension to a coordinate.

A slot whose guard has no constraints on context, as in {} 
pointParent in Figure 1,  is globally accessible; i.e., the 
pointParent slot is not constrained at all with respect to the 
contexts from which it is accessible,  so it is accessible to 
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messages sent from any context.  Further, note that if a di-
mension is mentioned in a guard, but is not constrained to 
any particular coordinate, as for the device dimension in the 
guard for the display method in Figure 1, then that dimen-
sion must be present in the context for that slot to be acces-
sible, but any coordinate binding is acceptable.  As well,  in 
the body of a method, the coordinate to which a dimension 
is bound may be referred to using the dimension name, as in 
device.drawPixel(x, y, color) in Figure 1.

The code in the figures is structured using a pattern pio-
neered in Self [US87], in which prototype objects define 
data slots, and new objects are created by copying proto-
types, which gives them their own data slots. Method slots 
are defined in the parent of the prototype,  which also be-
comes the parent of the new objects when the prototype is 
copied. The methods are thus inherited by all the copies.

Please see [Unga14] for a more detailed walk through of 
the example code,  including the steps by which it evolved, 
as well as a Korz language definition.

3. Discussion: Power and Challenges
Multi-dimensional, symmetric models are powerful, but 
pose some interesting challenges. Many are due to the prin-
ciple that dimensions be treated equally: none should be 
dominant or special, and they should be unordered.  The 
following subsections suggest how the power of the funda-
mental approach might be applied to dealing with some of 
the most vexing of these challenges. We feel that these pos-
sibilities constitute intriguing directions for future research.

Dimensions for Interpreter Control

A number of the challenges highlighted below can be ad-
dressed by providing some direction to the interpreter. One 

def  {}  pointParent = newCoord;
def  {}  point = newCoord extending pointParent;
var  {rcvr ≤ point}  x;
var  {rcvr ≤ point}  y;
var  {rcvr ≤ point}  color;
method  {}  makeAPoint(x, y, c)  {
    var x, y, c, p;
    p = point.copy;
    p.x = x;  p.y = y;  p.color = c;
    return p;
}
method  {
    rcvr ≤ pointParent, 
    device //dimension required but can be anything
    }
    display {
        device.drawPixel(x, y, color) 
};

def  {}  screenParent = newCoord;
def  {}  screen = newCoord extending screenParent;

method  {rcvr ≤ screenParent}  drawPixel(x, y, color)  { 
        // draw the pixel in the color 
}

method  {}  main() {
   	 var point1 = makeAPoint( 20.0, 30.0, blue );
    point1.display
    // Equivalent to:  { rcvr: point1 }.display
   	 // Context from environment might yield:  
   	 //    { rcvr: point1, device: stdscreen }.display
}
main(); 

Figure 1. Drawing points on a screen.

def  {} figureParent = newCoord
def  {} figure = newCoord extending figureParent;

var  {rcvr ≤ figure}  point1;
var  {rcvr ≤ figure}  point2;
var  {rcvr ≤ figure}  point3;

method  {rcvr ≤ figureParent}  display {
    point1.display;  point2.display;  point3.display
}
method  { rcvr ≤ screenParent, grayScale ≤ true }
drawPixel(x, y, c)  {
    {grayScale: false}
        .drawPixel(x, y, c.mapToGrayScale)
}

...
   	 { rcvr: f1, device: s, grayScale: true }.display

...

Figure 2. Drawing figures in grayscale.

def  {}  locationParent = newCoord;
def  {}  location = newCoord extending locationParent;
def  {}  southernHemi = newCoord extending location;
def  {}  australia = newCoord extending southernHemi;
def  {}  antarctica = newCoord extending southernHemi;
method  {  rcvr ≤ screenParent, location ≤ southernHemi  
}
drawPixel(x, y, c) {
    { -location }.drawPixel(x, -y, c)
}

...
   	 { rcvr: f1, device: s, location: australia }.display	
   	 ...

Figure 3. Drawing figures inverted.



approach we have begun to explore for providing such di-
rection is interpreter-control dimensions that affect the 
functioning of the interpreter.  An example would be a di-
mension that controls the handling of failure: depending on 
the value in that dimension, a lookup failure could result in 
different actions, such as bringing up a debugger, logging 
the error and terminating the program, or executing context-
specific code provided by the developer. Thus, the power of 
being able to introduce new dimensions for new purposes is 
used below to facilitate graceful language evolution, not 
only program evolution.

The ‘rcvr’  dimension

The dimension rcvr in the example is analogous to the ‘re-
ceiver’ or ‘this’  object of object-oriented languages,  and is 
thus familiar to programmers. It is at odds with two Korz 
principles, however: that a single receiver is replaced by a 
multidimensional context, and that all dimensions are 
treated equally. 

It might seem better in the example to have chosen some 
other dimension name, perhaps graphic to indicate that it 
deals with a graphic object. Then the x slot, for example, 
would have been defined as var {graphic ≤ point} x. There 
are two problems, however: The first has to do with meth-
ods like copy, built-in or library methods that apply broadly. 
Such a method must use some dimension for the implicit 
parameter it operates on (such a parameter would be the 
receiver in object-oriented languages), and since the possi-
bilities for such a parameter are so broad and generic, a 
domain-specific dimension name like graphic would not 
suit. We could use a dimension name such as object, entity, 
thing or the like, but wanted to avoid confusion between 
coordinates and objects, and also avoid the implication that 
objects occur in only one particular dimension. Another 
possibility might be id or identity, but all coordinates in all 
dimensions are identities. So we chose rcvr,  to be sugges-
tive of the object-oriented receiver. 

One possible solution would be to define methods like 
copy as global methods that take an explicit parameter: 
Instead of method { rcvr } copy() { ... } define method {}  
copy(x) { ... } . This approach breaks down, however, for 
methods associated with abstractions like collections, where 
the use of explicit parameters becomes clumsy and counter 
to the expectations of object-oriented programmers. In such 
cases we could possibly use other appropriate dimensions, 
like collection, rather than rcvr.

That leads to the second problem: the need to switch 
between dimensions, and its impact on syntactic sugaring. 
Suppose we had used the graphic dimension as suggested 
earlier. The makeAPoint method would now have to be 
written:
method  {}  makeAPoint(x, y, c)  {
    var x, y, c, p;
    p = point.copy;
    {graphic: p}.x = x;  {graphic: p}.y = y;
    {graphic: p }.color = c;
    return p;
}

This is clumsy, and it gets much worse in the case of cas-
caded expressions. The syntactic sugaring allows one to 
write p.x = x and so on instead, which is much clearer, and 
does exactly what an object-oriented programmer would 
expect. This sugaring, of course, relies on its being clear 
what dimension is involved. In our current implementation, 
that dimension is always assumed to be rcvr, and this is the 
one respect in which rcvr is treated specially. We have be-
gun considering a construct that would allow the program-
mer to specify the dimension to use, which would allow 
makeAPoint to be written something like:
with implied dimension = graphic {
    method  {}  makeAPoint(x, y, c)  {
        var x, y, c, p;
        p = {rcvr: point}.copy;
        p.x = x;  p.y = y;  p.color = c;
        return p;
    }
}

Now, unfortunately, the copy message can no longer be 
sugared, because it uses a different dimension (whether rcvr 
or something else), but, on balance, this might be a better 
way to write this particular method. We are also interested 
in IDE support that allows the same code to be viewed in 
different ways, including with different choices of implied 
dimension and consequent sugaring.

Lookup Specificity

As discussed in [Unga14], a situation sometimes arises 
where a message matches two slots, one of which has more  
dimensions in its slot guard but less-specific coordinates in 
some of the dimensions that the guards have in common. 
We opted to define the slot guard with more dimensions as 
being more specific, irrespective of the coordinates in the 
common dimensions. This decision supports the important 
evolution scenario of adding new dimensions to an existing 
system. However, it can be problematic in the case of evo-
lution involving specialization. An interpreter-control di-
mension could allow for context-sensitive determination of 
specificity, but might reduce code comprehensibility.
Super
In any specificity-based dispatch approach, it is important 
for a method to be able to trigger invocation of the next-
most-specific method (e.g. via super or call-next-method). 
This is a known difficult problem in multiple-dispatch lan-
guages, because there is often not a natural, unique next-
most-specific method. Rules have to be employed, such as 
linearization in CLOS [Gabr91] and all-parents-equal in 
Self, or the programmer can be explicit, as in C++ and Self.

The same issues arise in Korz. They are particularly chal-
lenging due to our desire to preserve symmetry and hence 
avoid any sort of built in linearization or dimension order-
ing. An interpreter-control dimension could be applied,  al-
lowing the context to specify the order in which dimensions 
should be relaxed, to provide context-specific code to be 
executed,  or to effect some other disambiguation scheme. 
As in the case of lookup specificity, this degree of dy-
namicity could reduce code comprehensibility.



Modularity and AOSD

Dimensions provide a flexible and powerful modularization 
mechanism, that can be used for program organization and 
presentation and also has presence at runtime, which is im-
portant in dynamic languages. A module can be represented 
by a specific dimension, or a coordinate within a specific 
dimension. In the first case, the slots to be encapsulated 
must mention that dimension in their guards. In the second 
case, the guards must constrain the dimension to the appro-
priate coordinate. If either of these approaches is followed, 
slots will be modularized and be inaccessible from other 
modules unless the context is explicitly set up to have the 
appropriate dimension bindings. 

This means that the core mechanism of Korz addresses 
many of the evolution scenarios that were the driving force 
of the aspect-oriented software development (AOSD) 
community [Elra01], without the need for additional con-
cepts such as aspects, subjects or layers. Obliviousness is 
supported because slots can be added as described above 
without pre-existing slots needing any knowledge of them.  
There are, however, two limitations with respect to AOSD

The first limitation has to do with method combination. 
When adding functionality to a system, it is often necessary 
to add behavior to an existing method (in addition to adding 
or replacing methods).  This addition is done by such 
mechanisms as advice weaving in AOP [Kicz97] or compo-
sition in SOP [HO93] and MDSOC [Tarr99], which effec-
tively allow multiple methods to be executed in response to 
a single message, suitably orchestrated. Korz, on the other 
hand, always selects a single, most-specific method to exe-
cute, and fails if there isn’t one.  An interpreter-control di-
mension could support other, context-specific options, such 
as Ensembles [UA10], which  run every matching slot for 
this message,  or execution of some context-specific “meta-
code” that coordinates execution of the matching slots. In 
addition, and possibly in conjunction, the “super” mecha-
nism described above can be used to achieve the effect of 
around advice.

The second limitation of Korz relative to AOSD is that 
its support for pointcuts (specifying in one place code that 
is to be executed at multiple sites, or join points) is limited 
to what can be done with inheritance. Multidimensional 
inheritance with dynamic parents is powerful.  If an exten-
sion provides additional methods for some existing situa-
tion guarded by coordinates in one or more new dimen-
sions,  then, provided those dimensions are bound to suitable 
coordinates in the context, the new methods will match the 
original message, and hence be candidates for combination 
as determined by the interpreter-control dimension above. 

However, the case that is not covered by this is that of 
selector-based matching: for example, adding behavior to 
all methods with a particular selector, irrespective of the 
other elements of their guards. This case can be handled by 
the kind of extension to Korz that is discussed next.

Can We Go Even Further With Symmetry?

 We believe that we can make the Korz model conceptu-
ally more elegant by treating selectors as coordinates in a 
“selector” dimension. Selectors would then move into slot 

guards rather than being separate elements of slots. For 
example, a slot defined in Korz as
    method {rcvr ≤ pointParent, device} display {...}
would instead be written as
 method {rcvr ≤ pointParent, device, selector ≤ display} {...}
This would allow a slot that is to match all messages with 
selector display to be written as
    method {selector ≤ display} {...}
Also, with selectors as coordinates, it would be possible to 
define parentage, supporting inheritance. This could be 
done explicitly, as with other kinds of coordinates, or possi-
bly using pattern matching, where a pattern is considered an 
ancestor of every selector that it matches. For example, a 
slot that matches all setters using the standard naming con-
vention could be written as
    method {selector ≤ set*} {...}

The two extensions above have yet to be defined fully 
and implemented, but we believe that,  rather than being 
special-purpose mechanisms, they would enhance the Korz 
model in an elegant and consistent manner. Korz should 
then be a suitable foundation for languages that deeply in-
tegrate the object-, aspect- and context-oriented paradigms 
(and possibly feature-oriented also; this needs exploration).

An even more tantalizing – and more speculative – ex-
tension is to devise a suitable way to shift perspective so 
that the slot’s contents becomes one more component of its 
guard, rather than a separate contents component. Then the 
guard becomes the entire slot, possibly leading to a unifica-
tion of the object and relational models.

We look forward to in-depth exploration of these and other 
issues relating to symmetric multidimensional models at the 
workshop, and to input from colleagues with deep insight 
from a number of different perspectives.
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