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Chapter 1

Probability

1.1 Introduction

Many physical phenomena can be described or predicted by a mathematical
model. For example, the velocity v (m/s) of a body falling freely for t seconds
in a vacuum is v = gt, where g = 9.81 m/s2.

Ideally, repeated trials under identical conditions would produce the same result
predicted by the model. This is the essential property of a deterministic
model.

There are other phenomena in which the results seem to occur by chance. For
example, the number of road deaths in a weekend, the outcome of a single game
of roulette, the time between successive arrivals at a service counter. These
events are either naturally unpredictable, or too complicated to describe by a
deterministic model. The mathematical models which may be used to describe
these situations of uncertainty are called probability models or stochastic
models (from Greek stochos to guess) and, in this respect, Probability and
Statistics might well be called the Mathematics of Uncertainty.

1.2 The Language of Probability

Concepts to do with chance, or unpredictable variation, have always been
difficult to grasp. Historically they evolved from two processes, the analysis of
games of chance (including insurance), and the analysis of sets of observations
affected by errors (initially in astronomical data). From games of chance, a
numerical measure of probability came into being. It was simply the ratio of
the number of favourable outcomes to the total number of possible outcomes
for a particular game. However, this measure assumes that each individual
outcome is equally likely (equally probable). So it cannot be used as a definition
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2 CHAPTER 1. PROBABILITY

of probability because the inclusion of the equally likely assumption would
make the definition “circular”. From the analyses of both games of chance
and measurement errors, empirical evidence was also gathered indicating that
relative frequencies appeared to stabilise when experiments were repeated many
times under identical conditions. The notion of an empirical probability being
equal to the proportion of occasions on which an event was observed then
led to the idea of probability being some sort of limiting relative frequency.
Unfortunately, it is not possible to conduct experiments indefinitely, nor is it
possible to prove what such limits should be.

The concepts (if not quite the definition) of probability evolved as idealisations
of issues such as these.

We start with the reasonable assumption that probability must be defined
relative to a situation (called a random experiment) that has an uncertain out-
come. We will assume that the set of all possible outcomes can be completely
specified before such an experiment is undertaken.

Definition A sample space is a set of elements in one-one
correspondence with the set of all possible outcomes of the situation
of uncertainty being modelled. An element in a sample space is called
a sample point.

The sample space S may be a listing of the set of all possible outcomes to the
experiment.

Classical gambling games using coins, six-sided dice, and decks of 52 playing
cards provide simple examples (mahjong would work well too, but would provide
more complicated examples). For instance, most dice have six faces, each
containing a unique number of dots (from 1 to 6). We can make up many
probability problems with a die (the singular version of the word) or dice (more
than one), for instance:

Example 1.1

(a) A single die is thrown and the result recorded.

The sample space is S = {1, 2, 3, 4, 5, 6}.
(b) Two dice are thrown, and the result is recorded.

There are six possible outcomes for each die, so that, in all, there are 6 × 6 = 36 possible outcomes for
the two together. Notice that we count a 1 on Die 1 and a 6 on Die 2 as distinct from 6 on Die 1 and 1
on Die 2.

The sample space is:

S = {(1, 1), (1, 2), (1, 3), (1, 4) (1, 5), (1, 6)
(2, 1), (2, 2), . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . , (6, 4), (6, 5), (6, 6)}
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(c) Two dice are thrown and the two results are added, and this total is recorded. This is the same as adding
each pair of results in (b) above. The sample space for this experiment will have fewer elements than the
sample space in (b) as we record only the possible totals, most of which can be obtained in more than
one way (for instance, 1 + 3 = 3 + 1 = 2 + 2 = 4).

The sample space is S = {2, 3, 4, . . . , 10, 11, 12} (it has 11 elements).

Example 1.2 An experiment involves tossing two coins and noting which sides are uppermost. Altogether there
are 4 possible outcomes, depending on which way up each coin lands. A particular sample space is S = {HH,
HT, TH, TT}, where the symbols H (heads) and T (tails) are used to identify the possible results for the first
and second coins.

Alternatively, we might write S = {(1, 1), (1, 0), (0, 1), (0, 0)} where “1” denotes a head and “0” denotes a
tail. In either case S is a set of elements in one-one correspondence with the set of all possible outcomes.

Definition Any subset of the sample space S is called an event.
An event A is said to occur if the observed outcome corresponds to
an element of A.

Example 1.3 In Example 1.2 about tossing two coins, if A denotes the event of observing “at least one tail”,
then
A = {HT, TH, TT}.
In Example 1.1, if B denotes the event of an even number of spots on a single die, B = {2, 4, 6}; if C denotes
the event of an equal number of spots on the two dice, then C = {(1, 1), (2, 2), (3, 3), . . . , (6, 6)}; if D denotes
the event of observing the sum of the spots on two dice to be greater than 6, then D = {7, 8, 9, 10, 11, 12}.

Definition An event defined by a subset consisting of a single
element of S is called an elementary event.

The different sample points can be denoted by s1, s2, . . . , written s1 ∈ S,

s2 ∈ S . . ., and the elementary events would be {s1}, {s2}, . . . .
The elementary events of our coin-tossing sample space are {HH}, {HT},
{TH} and {TT}.
The whole set S is sometimes called the certain event (because one of the
outcomes of S must occur if the list of possible outcomes is complete).

The empty set ∅ is the impossible event.

A sample space S is said to be finite if it consists of a finite number of outcomes,
like the coin-tossing example above.

Often there is no upper limit to the number of outcomes in S. The sam-
ple space is said to be countably infinite if the outcomes can be put into a
one-to-one correspondence with the positive integers. For example, if a coin
is tossed repeatedly until a head appears, then a possible sample space is
S ={H,TH,TTH,TTTH, . . . }. In principle, there is no ‘last’ element in this
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sample space. The element with n Ts is the (n + 1)th element in the se-
quence, so it is clear that this infinite set is in one-to-one correspondence with
the positive integers.

Definition If a sample space S is either finite or countably
infinite, then it is called a discrete sample space.

In general, we say that a set is countable if it is finite or countably infinite.
Otherwise it is uncountable. For example, the unit interval of real numbers,
{x : 0 ≤ x ≤ 1}, is uncountable, as are all continuous intervals of real
numbers.

We look now at the actual events on the sample space, and some relationships
between events.

If we consider two events, one of two things must be true. Either the two
events have at least one elementary event in common, or they have no events
in common. To use our coin example again, we can define an event A, the
event that there is at least one head. A is made up of the elementary events
{HH}, {TH} and {HT}, so that we can write A = {HH, HT, TH}. We can
define the event B to be the event that both outcomes are the same. Then
B is made of the elementary events {HH} and {TT}, or B = {HH, TT}. We
can see that events A and B have the elementary event {HH} in common.

But if we define event C to be the event that the two coins are different, then
C = {HT, TH}. Events A and C have the elementary events {HT} and {TH}
in common, but events B and C have no elementary events in common. Using
set notation, we can write B ∩ C = ∅.

Definition Two events A and B are called mutually exclusive
if A ∩B = ∅.

Example 1.4

(a) In the single die example, outcomes {1} and {2} are mutually exclusive.

(b) In the coin-tossing examples the outcomes (for a single coin) {H} and {T} are mutually exclusive.

The idea of mutually exclusive events can be extended to cover more than two
events.

Definition Events A1, A2, A3, . . ., are said to be mutually
exclusive if they are pairwise mutually exclusive. That is, if Ai∩Aj =
∅ whenever i ̸= j.
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To discuss relationships among events, which are subsets of the sample space,
the notation and methods of set theory are needed. The interpretation in terms
of a random experiment gives this notation an intuitive content which is richer
than the bare set theory content and for which special probability language has
evolved.

Operation Set Language Probability Language

A ⊂ B A is contained in B A implies B

A ∪B Union of A and B (points in either A or B
(or both))

Either A or B occurs (or both)

A ∩B Intersection of A and B (points in both A
and B)

Both A and B occur

Ā (or A′) A complement (points in the sample space
not included in A)

A does not occur

Example 1.5 If A = {2, 4, 6, 8} and B = {4, 8} then B ⊂ A.

Note that the same event A could equally validly have been defined in a number of other ways, for instance
A = {x : x = 2k, where k = 1, 2, 3, 4} or A = {8, 4, 6, 2} (order does not matter).

Note also that 2 ∈ A but {2} ⊂ A — elements need not be sets, but subsets must be.

If the outcome of an event is a real number, we often use interval notation to
represent the sets of interest. Remember that, if a and b are real numbers we
can write

(a, b) for {x : a < x < b}
(a, b] for {x : a < x ≤ b}
[a, b] for {x : a ≤ x ≤ b}

Relations between events can be easily represented by drawing a Venn diagram.

Example 1.6 A ∪B = (A ∩ B̄) ∪ (A ∩B) ∪ (Ā ∩B)
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The union of the three disjoint shaded areas (in the circles representing sets A and B) makes up the whole of
A∪B and the union of all four disjoint shaded areas (including the whole of S that is outside the circles) makes
up the whole of S.

We can also write A ∪B= {x : x ∈ A or x ∈ B}
A ∩B= {x : x ∈ A and x ∈ B}

Ā= {x : x ̸∈ A, x ∈ S} (the complement)
A−B or A \B= A ∩ B̄ = {x : x ∈ A, x ̸∈ B} (the difference)

1.3 Properties of Probability

Probability is a numerical measure of chance. Assigning probabilities to random
events has been quite controversial. Two ways of assigning probability that
we do not discuss in any depth are those of the frequentists (see also the first
paragraph of Section 1.2) and subjectivists:

Frequentists regard probability as a limiting relative frequency. For example,

Prob[Heads on one toss of a coin] = lim
n→∞

Number of heads (f)

Number of tosses (n)
.

Tossing a coin is a repeatable experiment. But it is impossible to repeat
an experiment indefinitely. And it is impossible to predict what such a
limit should be.

However, it has been found experimentally that relative frequencies do
seem to stabilise after many trials.

Subjectivists regard probability as a measure of “degree of belief”. A num-
ber between zero and one, it can be assigned in any situation of uncertainty
without assuming repeatability.

Naturally, the results of a repeatable experiment would influence a sub-
jectivist’s “degree of belief”. (If 50 tosses of a coin produced 50 Heads,
who could believe Heads and Tails were equi-likely?)
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Definition Let A be an event, then the probability of A, de-
noted by P (A), satisfies the following axioms (which we call P1, P2,
P3 for future reference):

P1 P (A) ≥ 0 for every A.

P2 P (S) = 1.

P3 If A1, A2, . . . are a sequence of mutually exclusive events (i.e.
no two have any sample points in common) then

P (A1 ∪ A2 ∪ · · · ) = P (A1) + P (A2) + · · · .

Example 1.7 We may gamble on getting an even number on a single throw of a die. The winning event is
a {2}, or a {4}, or a {6}, that is, the union of three elementary events. If we get a {2}, we cannot get a {4}.
Clearly, elementary events are mutually exclusive. If the probability of each of the 6 possible outcomes is 1

6
,

then the probability of winning is 1
6
+ 1

6
+ 1

6
(by P3), which is 1

2
.

Of these three axioms, P3 is the one with teeth in it, that carries the important
consequences. If, for example, we can assign probabilities to all the elementary
events of S, then since these are mutually exclusive, we can obtain probabilities
for all other subsets of S.

The second axiom is a normalisation condition (in other words we specify that
the total probability is 1) and the first states a preference for working with
non-negative numbers (again, this agrees with our intuition).

Example 1.8 Suppose one of the questions on a questionnaire asks subjects to indicate into which age category
they fall, where the six possible categories are 0–4, 5–14, 15–24, 25–44, 45–64, ≥ 65. The numbers in the
categories are as follows:

Age 0–4 5–14 15–24 25–44 45–64 ≥ 65

f 37 44 125 102 95 66

Suppose we call the event that a subject is aged 0–4 A1, the event that a subject is aged 5–14 A2, . . . . We
can then extend the table to get:

Event Age group Frequency Relative Frequency
fi pi

A1 0–4 37 37/469 = 0.08
A2 5–14 44 44/469 = 0.09
A3 15–24 125 125/469 = 0.27
A4 25–44 102 102/469 = 0.22
A5 45–64 95 95/469 = 0.20
A6 ≥ 65 66 66/469 = 0.14

S Total: 469 1.00

P1, that P (Ai) = pi ≥ 0 for every Ai is obviously satisfied (see the rightmost column).

P2 that P (S) =

6∑
i=1

pi = 1 is also satisfied (the entries in the pi column sum to 1).
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All our “events” are mutually exclusive, so can use P3 to establish the proportion of the sample that was, for
instance, “young” (ages ≤ 24), or “probably in the work force” (ages 15–64):

P (“young”) = P (A1 ∪A2 ∪A3) = P (A1) + P (A2) + P (A3) = 0.08 + 0.09 + 0.27 = 0.44.

P (“working”) = P (A3 ∪A4 ∪A5) = P (A3) + P (A4) + P (A5) = 0.27 + 0.22 + 0.20 = 0.69.

The following immediate deductions from the axioms are important.

(i) P (∅) = 0.

(ii) P (Ā) = 1− P (A).

(iii) If A ⊆ B then P (A) ≤ P (B).

(iv) P (A) = P (A ∩ B) + P (A ∩ B̄) This very useful result is
known as the Law of Total Probability.

(v) P (A ∪B) = P (A) + P (B)− P (A ∩B).

Example 1.9 Students at a university (like VUW) can register for one or more degrees (if they do a double
degree). Let A be the event that a student is registered for an Arts degree and C be the event that they are
registered for a Commerce degree. Suppose we know that 45% of the students are registered for an Arts degree
and 50% are registered for a Commerce degree (P (A) = 0.45, P (C) = 0.5).

Problems such as this one, where amongst the probabilities of interest are P (A), P (C), P (A∪C) and P (A∩C)
are usually best represented by a Venn diagram.
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In order to solve any of the possible
problems, we need at least 3 pieces of
information. What pieces of informa-
tion could we have? If we look at our
Venn diagram, we see that the sample
space is made up of 4 mutually exclu-
sive events: Ā ∩ C̄, A ∩ C̄, Ā ∩ C and
A ∩ C.

Sometimes these events are of interest in their own right (the probability that a student is doing neither Arts
nor Commerce; the probability a student is doing a double degree in Arts and Commerce), and sometimes it’s
events that are the union of two or more of the mutually exclusive events that are of interest (the probability of
either Arts or Commerce or both; the probability of Arts (or both); the probability of Commerce (or both)).

In our example, we know P (A) = 0.45 and P (C) = 0.5. Let’s suppose, in turn, that we’re given all the possible
different third pieces of information:

(a) Firstly, suppose P (A ∩ C) = 0.20 (the probability of a student doing a double degree in Arts and
Commerce). For practice, we now find all possible probabilities:

(i) The probability a student is doing an Arts degree or a Commerce degree (or both) is
P (A ∪ C)= P (A) + P (C)− P (A ∩ C)

= 0.45 + 0.5− 0.2 = 0.75
(ii) The probability a student is registered only for an Arts degree is:

P (A ∩ C̄)= P (A)− P (A ∩ C)
= 0.45− 0.2 = 0.25

(iii) The probability a student is registered only for a Commerce degree is:
P (Ā ∩ C)= P (C)− P (A ∩ C)

= 0.5− 0.20 = 0.3
(iv) The probability a student is registered for neither of these degrees is:

P (Ā ∩ C̄)= 1− P (A ∪ C)
= 1− 0.75 = 0.25

(v) The probability a student is registered for an Arts degree, or a Commerce degree, but not both, is:
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P
(
(A ∩ C̄) ∪ (Ā ∩ C)

)
= P (A ∩ C̄) + P (Ā ∩ C)
= 0.25 + 0.3 = 0.55

or= P (A ∪ C)− P (A ∩ C) (the difference)
= 0.75− 0.2 = 0.55

(b) Now suppose we were given P (A ∪ C) = 0.75. We again find all possible probabilities:

(i) P (A ∩ C)= P (A) + P (C)− P (A ∪ C) (rearranging formula for P (A ∪ C))
= 0.45 + 0.5− 0.75 = 0.2

(ii) P (A ∩ C̄) = P (A)− P (A ∩ C) as before.
(iii) P (Ā ∩ C) = P (C)− P (A ∩ C) as before.
(iv) P (Ā ∩ C̄) = 1− P (A ∪ C) as before.
(v) P

(
(A ∩ C̄) ∪ (Ā ∩ C)

)
= P (A ∪ C)− P (A ∩ C) as before.

(c) Next suppose we were given that P (A ∩ C̄) = 0.25 (Arts only).

(i) P (A)= P (A ∩ C) + P (A ∩ C̄) (Law of Total Prob.)
∴ P (A ∩ C)= P (A)− P (A ∩ C̄)

= 0.45− 0.25 = 0.2
(ii) . . . and the other probabilities can be calculated as before.

(d) Similarly, if we are given P (Ā ∩ C) = 0.3, we can work out that

P (C)= P (A ∩ C) + P (Ā ∩ C) (Law of Total Prob.)
∴ P (A ∩ C)= P (C)− P (Ā ∩ C)

= 0.5− 0.3 = 0.2, and again continue as before.

Thus, in a problem of this general type, given any three pieces of information about two events, we can find
any other probability that can be expressed in terms of the two events. The principle can be extended to three
or more events (it’s just a bit messier as the number of basic mutually exclusive events is much larger).

It is all very well to have rules for handling probabilities, but how do we get
the probabilities initially? When the experiment has only a finite number of
outcomes, the essential task is to find the probabilities of each elementary
event (outcome). The probabilities of other events can then be found by
adding together the probabilities of the elementary events that they contain.

Example 1.10 (Equally likely events) In the simplest special case, all elementary events are equally
likely, so that if there are N of them each has probability 1

N
. This links to the well known recipe

P (A) =
no. of outcomes in A

total no. of outcomes
=

n(A)

n(S)
= proportion of outcomes in A.

1.4 Calculating Probabilities

1.4.1 Counting Problems

Even in the simplest case of equally likely outcomes, the problem of counting
the number of outcomes “in favour” of a given event quickly gets complicated
if there are many possible outcomes. The following two rules are useful for
solving counting problems.



10 CHAPTER 1. PROBABILITY

Rule 1: (Addition Rule) If a given event can be broken down
into a number of mutually exclusive sub-events, whose union fills
out the whole of the original event, then the number of outcomes in
favour of the original event is the sum of the numbers of outcomes
in favour of each of the subevents.

Rule 2: (Multiplication Rule) If the outcomes leading to a
certain event can be described in terms of stages which have to be
undertaken in order, then the number of outcomes in the final event
is the number of ways to produce the first stage times the number
of ways to produce the second stage, etc.

Many problems involving choosing objects “at random” can be answered more
or less directly by appeal to these two rules, assuming that elementary outcomes
are equally likely.

Example 1.11

(a) A motor car registration plate is characterised by a combination of two letters and four digits. How many
distinct registration plates are possible? How many of these have all letters and numbers different?

(b) Assuming all choices are equally likely, what is the probability that a registration plate chosen at random
has all numbers and letters different?

Answer

(a) 26× 26× 10× 10× 10× 10 = 6, 760, 000 different possible registration plates.

26× 25× 10× 9× 8× 7 = 3, 276, 000 have all different entries.

(b) Prob (all different) =
3, 276, 000

6, 760, 000
= 0.4846

Example 1.12 How many tosses of 3 dice result in at least one 6?

Answer First we consider a subdivision into three subevents:

A1 = exactly 1 six

A2 = exactly 2 sixes

A3 = exactly 3 sixes

We find the number of ways for each of these using rule 2 and then add them using rule 1.

Number of ways for A3: 1× 1× 1 = 1 way.

Number of ways for A2: If the first two dice are sixes, then the third could be any number other than 6, so
there are 1 × 1 × 5 = 5 possibilities. The same is true if the first and third are sixes, or the second and third
are sixes, resulting in 15 possibilities altogether.

Number of ways for A1: If the first dice is a six, the other two values can each be chosen in 5 ways, resulting in
1 × 5 × 5 = 25 possibilities. Again there are three cases, according to which dice is the six, so 75 altogether.

Hence the total number of ways is 1 + 15 + 75 = 91.

[Alternatively: Ans = (total no. of possibilities for 3 dice) - (those with no sixes) = 63 - 53 = 216 - 125 = 91.]

These results lead immediately to corresponding probabilities, assuming all outcomes are equally likely:
Prob (at least 1 six) = 1 − Prob(no sixes) = 1−

(
5
6

)3
= 91

216
.
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1.4.2 Permutations and Combinations

Suppose we have a collection of n distinct objects (cards, balls in an urn,
members of a population) and wish to select k ≤ n of these into a sample.
How many ways are there of doing this?

1. Ordered Sampling without replacement The number of ordered samples
of size k from a population of size n is

nPk = n(n− 1) · · · (n− k + 1)

(the first object can be chosen in n ways, the second in (n−1) ways, etc)
nPk is known as “the number of permutations of n objects taken k at a
time”.

Note that if k = n, we have the number of different possible orderings
(permutations) of the whole set, which is

nPn = n!

Remember that if n! = n(n − 1) · · · 3 · 2 · 1, and since nPk = n!
(n−k)! it is

quite consistent to define 1! = 1 and 0! = 1 (put n = 1 or k = n in nPk).

2. Unordered Sampling Now suppose the order does not matter, that we are
interested in which k objects are chosen but not in which order they are
chosen. In 1. each set of k distinct objects will be counted in each of its
k! possible orderings. So if the number of distinct (unordered) samples is
denoted by nCk we should have

nPk = (k!) nCk

Hence
nCk = n(n− 1) · · · (n− k + 1)/k! =

n!

k!(n− k)!
nCk is known as “the number of combinations of n objects taken k at a
time”.

Example 1.13 A drawer contains 5 knives, 4 forks and 3 spoons. Select three pieces of cutlery “at random”
(all possibilities equally likely). What is the probability of selecting

(a) all knives

(b) exactly one knife

(c) one knife, one fork and one spoon?

Answer

(a) 3 knives

(
5
3

)(
12
3

) =
5.4.3

12.11.10
=

1

22

(b) 1 knife

(
5
1

)(
7
2

)(
12
3

) =
5

1
· 7.6
2.1

· 3.2.1

12.11.10
=

21

44

(c) 1 of each

(
5
1

)(
4
1

)(
3
1

)(
12
3

) = 5.4.3× 3.2.1

12.11.10
=

3

11



Chapter 2

Discrete RV; Expectations

2.1 Definitions

Most of the quantities we might wish to study in a random experiment can
be described by numbers (a few may better be described by categories, but
even these can be given a numbered code e.g. red = 1, blue = 2, yellow = 3,
green = 4). A numerical quantity which depends on the outcome of a random
experiment is called a random variable. If we repeat the experiment, we will get
different outcomes and hence different values of the random variable. Capital
letters are often used to denote random variables, little letters to denote the
possible values they may take (a number, or observed value).

Even in a simple experiment, like tossing a die once, one can define many
random variables — e.g. the score X, the square of the score Y = X2,
etc. A binary random variable can have only two possible values (like parity);
a degenerate random variable has only one possible value (i.e. it is a fixed
number whatever the outcome).

Random variables are used as mathematical models for many numerical quan-
tities observed in real life which have an uncertain outcome: cricket scores,
air temperatures, student enrollment numbers etc. In this section we are con-
cerned only with random variables which are discrete— the only possible values
they can take are integers

Two important quantities associated with a discrete random variable are its
probability distribution (also called its probability (mass) function) and its ex-
pected value (expectation).

The probability distribution of the discrete random variable X is the set of
numbers pn, n = 0, 1, 2, . . . where

pn = Prob{X = n}

12
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For example, if X is the score on a single toss of a die, the probability distribu-
tion has six non-zero values, p1, p2, . . . , p6 each of which is equal to 1

6 : thus
p1 = p2 = · · · = p6 =

1
6 (this is an example of a discrete uniform distribution).

Example 2.1 Suppose a single die is tossed twice. Find the probability distribution of the larger of the two
scores, (say J = max(X1, X2)).

Answer There are 36 possible outcomes (S =
{
(1, 1), (1, 2), . . . , (6, 5), (6, 6)

}
). J can take any of

the values 1 to 6. Because the dice are fair all outcomes are equally probable. By counting cases, we find
p1 = P (J = 1) = 1

36
, p2 = 3

36
, p3 = 5

36
, p4 = 7

36
, p5 = 9

36
, p6 = 11

36
. (For example, only the outcomes (1,2),

(2,1), and (2,2) contribute to p2.)

A discrete distribution is best represented by a bar graph such as that illustrated
below for the distribution of J .

1 2 3 4 5 6

x

P
(J

=
x)

0.
00

0.
10

0.
20

0.
30

0 1 2 3 4 5 6 7

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

x

cd
f

Note that a bar graph differs from a histogram in that the columns are sep-
arated. This is to emphasise that the probabilities are attached to individual
numbers (the integers), not spread across intervals.

The cumulative distribution function (c.d.f., or simply distribution function)
usually denoted by F (x), or FX(x) if the random variable needs to be noted,
totals (adds) up successive values of the probability function, starting from the
left. It therefore has the representation

FX(x) = Prob(X ≤ x)

and for a discrete distribution is a step function with a step of height pn at
each integer n. (In the graph above, the open circles indicate that the right
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endpoint of each “step” is open, while the left endpoint is closed. So, for
example, when x = 1, FX(x) =

1
36 and not 0.)

In the last example
(
J = max(X1, X2)

)
, FX(3) = P (X ≤ 3) = p1+p2+p3 =

9
36 =

1
4 .

The cumulative distribution function (cdf) has the properties:

(i) 0 ≤ F (x) ≤ 1 ;

(ii) P (a < X ≤ b) = F (b)− F (a)

(iii) If a < b, then F (a) ≤ F (b) (from (ii)).

If X is discrete, we have introduced the cdf as the sum of pi (the probability
distribution). Working backwards, we see that for a discrete X, with possible
values S = {x1, x2, . . . , xk, . . . }, pk = F (xk)− F (xk−1)

Definition If X is a discrete random variable, then the expec-
tation of X is given by

E(X) = x1p1 + x2p2 + · · ·

where p1, p2, . . ., are the probabilities associated with x1, x2, . . .,
respectively.

To find the expectation the basic procedure is to form the weighted sum over
all possible different outcomes

E(X) =
∑

pixi.

Example 2.2 Find the expected value of J in the last example. There are 36 points in the sample space, each
with p(si) =

1
36
. Hence, recalling that there are three outcomes where J = 2, five outcomes where J = 3, etc,

we have

E(J) =
1

36
{1 + (2 + 2 + 2) + (3 + 3 + 3 + 3 + 3) + · · · }

= 1.
1

36
+ 2.

3

36
+ 3.

5

36
+ 4.

7

36
+ 5.

9

36
+ 6.

11

36

=
1 + 6 + 15 + 28 + 45 + 66

36
=

161

36
= 4 17

36

A particularly important quantity is the variance ofX, written VarX or var(X),
which is

var(X) = E
[
(X − E(X))2

]
.

If we expand the square and simplify, this can be shown to be equal to

var(X) = E(X2)− (E(X))2.
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Example 2.3 Let X be the number of heads observed when a “fair” coin is to be tossed three times.

S = {TTT, TTH, THT,HTT, THH,HTH,HHT,HHH}

SX = {0, 1, 2, 3}, with four distinct elements.

p0 =
1

8
, p1 =

3

8
, p2 =

3

8
, p3 =

1

8

µ=
∑

pixi =
1
8
× 0 + 3

8
× 1 + 3

8
× 2 + 1

8
× 3

= 12
8

= 1.5 the expected number of heads.

(In fact, this is a “binomial experiment” for which µ = np, where n = 3 and p = 1
2
; see page 15.)

E(X2) =
∑

pix
2
i =

1

8
× 02 +

3

8
× 12 +

3

8
× 22 +

1

8
× 32 =

24

8
= 3

Hence,

σ2 = E(X2)− µ2 = 3− (1.5)2 = 0.75 =
3

4

(Again, for a “binomial experiment”, σ2 = np(1− p) = 3× 1
2
× 1

2
.)

The importance of both expected values and probabilities lies in the so-called
“laws of large numbers”. These assert that in a long sequence of observations
under identical conditions, the arithmetic mean of the observed values will
be very close to the expected value of the random variable, and similarly the
relative frequency with which a particular outcome is observed will be very
close to its probability.

2.2 The Binomial Distribution

This distribution arises wherever we
are dealing with a random vari-
able which can be thought of as
recording the number of suc-
cesses in a sequence of inde-
pendent Yes/No trials. Specifi-
cally we look for the following com-
bination of circumstances. 21

r

P(
X

=
r)

0.
4

0.
3

0.
2

0.
1

0.
0

650 43
prob002PSfrag replacements

P (X = r)

Binomial distribution with p =
0.6, n = 3.



16 CHAPTER 2. DISCRETE RV; EXPECTATIONS

1. The experiment involves a sequence of independent, identical tri-
als.

2. The outcome for each trial can be classified in just two ways,
namely as “success” or “failure”.

3. The probability p of a success is fixed for each trial.

4. The random variable X we are examining counts the number of
successes in a fixed (predetermined) number of trials.

Any set of trials with the properties 1. and 2. is called a set of Bernoulli Trials.
We meet Bernoulli trials again later, when discussing geometric and negative
binomial distributions.

Example 2.4 Tossing a coin and counting the number (X) of heads; drawing a random sample with replacement
and counting the number (X) having some particular characteristic; the number of faulty products in a batch;
the number of people with one of two possible views (like “yes” and “no” or “support” and “don’t support”)
in a sample for an opinion poll; etc.

The distribution is specified by two quantities (usually called parameters),
namely the fixed number of trials, n, and the probability of success in each
trial, p. The abbreviation B(n, p) is used to denote the particular distribution
corresponding to a given choice of n and p.

If X denotes the number of successes and q = 1 − p, then for x =
0, 1, 2, . . . , n,

px = P (X = x) =

(
n
x

)
pxqn−x

It can be shown that

E(X) = np var(X) = npq σX =
√
npq

The distribution is symmetrical if p = q = 1
2 , otherwise skewed towards the

lower half of the range if p < 1
2 and towards the upper half if p > 1

2 .

Example 2.5 If 80% of all students are in favour of lower fees, what is the probability that in a random sample
of 10 students:
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(a) there will be 7 in favour of lower fees;

(b) at least 7 will be in favour of lower fees?

Solution

Let X be the number in favour, then we can say X ∼ B(10, 0.8) as questioning each student can be regarded
as a Bernoulli trial with p = 0.8. So

(a) P (X = 7) = 0.2013.

(b) P (X ≥ 7) = 0.8791

Does 0.8791 agree with our intuition? If 80% are in favour, we’d expect around 8 out of the 10 to be in favour
(i.e. the probability of “at least 7” to be high), so it does.

Most statistical computer packages can calculate binomial probabilities for
almost any values of n and p, as can many calculators now.

2.3 The Poisson Distribution
This distribution is likely to be
found whenever we are counting
the number of occurrences of
some event over a period of
time , or the number of appear-
ances of some object in a region
of space.

P(
X

=
r)

r

0.
25

0.
15

0.
05

0.
0

6543210
PSfrag replacements

P (X = r)

Poisson distribution with µ = 1.8.

1. The experiment consists in counting the number of occurrences
of a certain event (or object) in a fixed interval of time (or region
of space).

2. These events occur one at a time and not simultaneously in groups.

3. The number of occurrences in any subinterval (subregion) is inde-
pendent of the number of occurrences in any disjoint subinterval
(subregion).

The situations where the Poisson distribution arises differ from those where
the binomial distribution arises because there is no fixed set of trials.

Example 2.6 The number of earthquakes with magnitude 5 or above in a given year; the number of telephone
calls received in a given day; the number of fatal accidents over the Christmas period; the number of nuggets
of gold in a mining claim; the number of blood cells in a given square in the field of view of a microscope; the
number of galaxies in a given region of space, etc.
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The Poisson distribution is characterised by a single parameter µ, which turns
out to be both its mean and its variance, and the distribution is usually ab-
breviated to Pois(µ). The probabilities, which are defined for all possible non-
negative integers, are given by

px =
µx

x!
e−µ x = 0, 1, 2, . . .

These probabilities decrease rapidly, so that all, save the first few, can be
ignored in practice.

Sometimes r is used to denote the number of occurrences and λ to denote the
parameter, in which case the probability density function would be written as

pr =
λr

r!
e−λ r = 0, 1, 2, . . .

In these notes we will use µ to denote the average rate of occurrence in the
interval of time or space OF INTEREST, and λ to denote the average rate
PER UNIT time or space.

For the distribution we have

µX = µ, var(X) = µ, σX =
√
µ

Very commonly, the parameter is specified as an average rate, that is, the
number of events per unit time (or per unit area, etc) and it is the length of
time (or area, etc) which is of interest. Then µ is found by setting

µ = average rate× length of time

= λt

or in the case of areas

µ = average density × area

= λA

Probabilities can then be calculated from the formula given above.

Example 2.7 Suppose the average rate of large earthquakes is 2 per year. What is the probability of having 3
years without large earthquakes?

Answer Here µ = 2× 3 = 6, so p0 = e−6 ≈ 0.0025.
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2.4 The Geometric Distribution

The geometric distribution arises
as a model for the distribution of
waiting times, when time is mea-
sured in discrete units (such as tri-
als) rather than continuously. More
precisely, consider a sequence of
Bernoulli trials, as for the binomial
distribution, but with no fixed up-
per limit on the number of trials.
We count the number of failures
before the first success, say X.
Then X has a geometric distribu-
tion. Note that X can take the val-
ues 0, 1, 2, ..., that is, it starts at
zero.

0 1
prob004

P(
X

=
r)

r

0.
6

0.
5

0.
4

0.
3

0.
2

0.
1

0.
0

65432
PSfrag replacements

P (X = r)

Geometric distribution with
p = 0.6,
(µ = 2

3).

Note that sometimes the geometric distribution is defined as the number of
trials Y up to and including the first success. Then Y can take the values 1,
2, . . . , starting at 1 and not at zero. In fact, Y = X + 1.

The probability of getting a sequence of trials starting with x failures in a
row and then a success is qxp, assuming the trials are independent and have
a constant probability of success. Hence the geometric distribution has the
form:

P (X = x) = px = qxp, x = 0, 1, 2, . . .

with
E(X) =

q

p
, var(X) =

q

p2

The characteristic feature of the distribution of X is that the terms decrease
geometrically with x, each one being reduced by a further factor q from the
previous one. The “tails” of the distribution (i.e. P (X ≥ x) ) also decay
geometrically:

P (X ≥ x) = qxp+ qx+1p+ · · · = qxp

1− q
= qx
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2.5 The Negative Binomial Distribution

The negative binomial is a generali-
sation and extension of the geometric
distribution. It arises in more general
waiting time situations, such as the
number of trials before the 3rd suc-
cess, and is also used as a model for
situations where events are often clus-
tered together, such as the number of
breakdowns in a computer in a given
week, or the number of accidents on a
given shift, or the number of plants in
a given square metre of ground.

P(
X

=
x)

x

0.
30

0.
20

0.
10

0.
0

6543210

prob008a

PSfrag replacements

P (X = x)

x

Negative Binomial distribution
with p = 0.8, r = 6, (µ = 1.5).

The negative binomial distribution depends on two parameters, p and r. In
terms of a waiting time situation, p is the probability of a “success”, r is the
number of “successes” that will “terminate” the series of trials, x is the number
of “failures” before r “successes” are achieved (giving a total of x+ r “trials”,
the last of which is known to be a “success”). As usual when discussing a
probability distribution based on Bernoulli trials, q = 1− p.

The negative binomial distribution has probabilities of the form

P (X = x) = px =

(
x+ r − 1

x

)
prqx

=
(r + x− 1) · · · (r + 1)r

x!
prqx, x = 0, 1, 2, . . .

The mean and variance are given by

E(X) =
∑

xpx =
rq

p
var(X) =

rq

p2

The geometric distribution corresponds to the special case r = 1.

Example 2.8 A patient taking a new drug, Wonderdrug, has a 20% probability of suffering side-effects. What
is the probability that a doctor prescribing the drug finds that the fifth person starting to take the drug is the
second to have side-effects?

Answer Let X be the number of people who do not have side-effects from Wonderdrug, then r = 2 (the
second to have side-effects). p = 0.2 and q = 0.8 and we want P (X = 3) (as there are 3 without side-effects
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and 1 with before the fifth person, who is the second to have side-effects).

P (X = 3) = p3 =

(
x+ r − 1

x

)
prqx =

(
4

3

)
(0.2)2(0.8)3 = 0.08192



Chapter 4

Continuous Random Variables

4.1 Definitions and Examples

A continuous random variable X is
one which can take on any value in a
given range; e.g. heights and weights
of people, magnitudes of earthquakes,
levels of reservoirs, blood cholesterol
levels, etc. More technically, it is
a random variable with a continuous
cumulative distribution function, i.e.
without the steps characteristic of the
discrete case.

x

f   (x)
X

pdf001

We cannot define probabilities for continuous random variables in the same
way as for discrete random variables. For example if X is a Bin(n, p) random
variable then X is discrete and takes on the values 0, 1, 2, ..., n. Hence we can
easily write down the probabilities P (X = 0), P (X = 1), . . . , P (X = n).
Suppose Y is a continuous random variable which can take on any value in
[0,1] then we cannot even list all of the possible values for Y , i.e., Y has an
uncountably infinite set of possible values. Hence we cannot produce a list of
probabilities which describe the behaviour of Y . Instead it turns out that the
best way to describe the behaviour of Y is to look at probabilities of the form
P (Y ≤ y) rather than P (Y = y).

22
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Example 4.1 The error X in any weight measurement made by a certain set of electronic scales lies between 0
and 1 g. Suppose that X is a (continuous) random variable which is equally likely to take on any value between
0 and 1. Determine P (X = x) and P (X ≤ x) for 0 ≤ x ≤ 1.

Answer P (X = x) = 0; P (X ≤ x) = x for 0 ≤ x ≤ 1.

Result For many continuous random variables X there exists a
non-negative function fX(x) such that the area under the graph of
fX(x) to the left of point x is equal to P (X ≤ x), which is denoted
by

P (X ≤ x) =

∫ x

−∞
fX(u) du (−∞ < x < ∞)

Definition The function fX(x) is called the probability density
function (pdf) of X and

FX(x) = P (X ≤ x) =

∫ x

−∞
fX(u) du (−∞ < x < ∞)

is called the cumulative distribution function (cdf) or distribution
function of X.

It follows from the above result
that for any continuous r.v.
X with probability density
function (pdf) fX(x) and
constants a, b (a ≤ b)

P (a < X < b) =

∫ b

a

fX(x) dx

= F (b)− F (a)∫ ∞

−∞
fX(x) dx = 1

Moreover, wherever FX(x) is
differentiable,

F ′
X(x) =

d

dx
FX(x) = fX(x)

F(a)

F(b)

ba

b

P(a<X<b)

a

=F(b)-F(a)

x

pdf002

XF  (x)

1

0

P
(a

<
X

<
b)

x

f  (x)
X

Total    area   under  curve   =    1
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Both the probability density function, fX(x), and the distribution function,
FX(x), have simple interpretations. The distribution function is easiest since
FX(x) is simply the probability P (X ≤ x) for any given value of x. Because
of this property it is clear that the following results hold

• 0 ≤ FX(x) ≤ 1

• FX(x) is monotonic increasing, i.e. FX(a) ≤ FX(b) whenever a ≤ b

• lim
x→−∞

FX(x) = 0 and lim
x→∞

FX(x) = 1.

The probability density function also gives probabilities but in a completely
different way. The pdf fX(x) is a piecewise continuous function which gives
probabilities as areas under the curve. Hence the probability P (a ≤ X ≤ b) is
given by the area under fX(x) between x = a and x = b. Hence the following
results apply to probability density functions

• fX(x) ≥ 0

•
∫ ∞

−∞
fX(x) dx = 1 (since the probability that X lies in (−∞, ∞) must be 1!)

Note that fX(x) is NOT A PROBABILITY and so fX(x) > 1 is possible.

Both the probability density function and the distribution function are ways of
describing the probabilistic behaviour of a continuous random variable.

4.2 Expectations, Means and Variances
(Optional/Advanced)

How do we define the expected value of a continuous random variable X? We
can make use of our definition of expected value for discrete random variables
to produce a sensible definition for continuous random variables. Suppose X is
a continuous r.v. with pdf fX(x). Divide the x axis up into intervals of width
dx (dx very small) and define the discrete r.v. Y by setting

Y = x if x ≤ X < x+ dx (−∞ < x < ∞).

Then since dx is very small

P (Y = x) = P (x ≤ X < x+ dx) ≈ fX(x) dx.
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Moreover, from the theory of expectation for discrete r.v.s

E(Y ) =
∑

xP (Y = x)

≈
∑

x fX(x) dx
dx
−→
0

∫ ∞

−∞
x fX(x) dx.

Thus, as dx goes to 0, Y becomes X and so

E(X) =

∫ ∞

−∞
x fX(x) dx.

Definition For a continuous r.v. X with pdf fX(x) the ex-
pected value of X is

E(X) =

∫ ∞

−∞
x fX(x) dx = µX .

Similarly, for any given function g(x), the expected value of g(X) is

E
(
g(X)

)
=

∫ ∞

−∞
g(x) fX(x) dx.

In particular, setting

g(X) =
(
X − E(X)

)2
= (X − µX)

2

we obtain the variance of X (usually denoted by σ2
X); i.e.

σ2
X = E

[(
X − E(X)

)2]
= E

[
(X − µX)

2
]
=

∫ ∞

−∞
(x− µX)

2 fX(x) dx.

Also

σ2
X = E(X2)−

(
E(X)

)2
= E(X2)− µ2

X .

Expected values can be interpreted as long run averages exactly as for discrete
random variables. Hence we can take the expected value of any function of a
random variable. However by far the most useful expected values are the mean
and the variance given above.

Remember that expected values are in principle very easy to calculate. The
definition above gives the formula for E

(
g(X)

)
and this can be used no matter

how complex the function g(x) is. Evaluating the expected value is then simply
a question of integration.
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Example 4.2 X is a continuous random variable with distribution function given by

FX(x) =


0 x < 0

x3 0 ≤ x ≤ 1

1 x > 1

Check that you can reproduce the following results

1. E(X) = 3
4

2. E(X2) = 3
5

3. E(X−1) = 3
2

4. Var(X) = 3
80

Example 4.3 X is a continuous random variable with pdf given by

fX(x) =

{
x−2 x ≥ 1

0 otherwise

Check that you can reproduce the following results:

1. E(X) is infinite.

2. E(X−1) = 1
2

3. E(X−2) = 1
3



4.3. THE UNIFORM DISTRIBUTION 27

4.3 The Uniform Distribution

The uniform distribution describes situ-
ations where a continuous random vari-
able lies in a fixed interval [a, b] and is
equally likely to lie in any subinterval of
length d no matter where the subinter-
val lies in [a, b]. We can think of the
probability as being uniformly smeared
over the interval [a, b]. Hence this dis-
tribution is useful in situations where
there is no evidence that any region is
more likely than any other and the pos-
sible regions form a finite interval [a, b].
Alternatively you could use the uniform
distribution to model complete igno-
rance.
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a b

x
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A uniform distribution between a
and b.

Characteristics The continuous r.v.X has a uniform distribution
on the interval [a, b] (−∞ < a < b < ∞) if the pdf of X is

fX(x) =


1

b− a
(a ≤ x ≤ b)

0 (otherwise)

The distribution function of X is given by

FX(x) =


0 x < a

x− a

b− a
a ≤ x ≤ b

1 x > b

Result Let X be a continuous r.v. with a uniform distribution on
[a, b]. Then

µX = E(X) =
a+ b

2

σX = standard deviation of X =
b− a√

12
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4.4 The Normal Distribution

By far the most important model for
the pdf of a continuous r.v. is the nor-
mal distribution.
The basic reason that the normal distri-
bution works well as a model for many
different types of measurements gener-
ated in real experiments is that many
measurements can be regarded as ag-
gregates. Whenever responses tend
to be sums or averages of indepen-
dent quantities, the normal distribution
quite likely will provide a reasonably
good model for their relative frequency
behaviour.
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Normal distribution with
µ = 1.8, σ2 = 0.25.

Many naturally occurring measurements tend to have relative frequency dis-
tributions closely resembling the normal curve, probably because nature tends
to “average out” the effects of the many variables that relate to a particular
response. For example, heights of NZ women tend to have a distribution that
shows many measurements clumped closely about a mean height, with rela-
tively few very short or very tall women in the population. In other words, the
relative frequency distribution is close to normal.

Example 4.4 Weight of powder in boxes of washing powder, height of NZ men, voltage in a power socket,
cholesterol levels of smokers, aerobic fitness of students.

Characteristics A continuous r.v. X has a normal distribution
with parameters µ and σ2 (−∞ < µ < ∞, σ2 > 0) if the pdf of
X is

fX(x) =
1

σ
√
2π

e−
1
2(

x−µ
σ )

2

(−∞ < x < ∞)

Note: The following statements are all equivalent:

“X has a normal distribution with parameters µ and σ2”.
“X is a normal r.v. with parameters µ and σ2”.
“X is a N(µ, σ2) random variable”.
“X has a N(µ, σ2) distribution”.
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“X is N(µ, σ2)”.

Useful facts concerning the normal pdf are:-

• it is bell shaped and symmetric about µ;

• it can be shown that for X ∼ N(µ, σ2), 99.74% of the values of X lie
in the interval [µ− 3σ, µ+ 3σ], 95.44% in the interval [µ− 2σ, µ+ 2σ],
and 68.26% in the interval [µ− σ, µ+ σ].

Example 4.5 The mean length µ of mature karaka leaves is 151mm and the s.d., σ, is 15mm. Let X denote
the length of a randomly chosen karaka leaf, and assume that the values of X are normally distributed.

Find (a) P (120 ≤ X ≤ 155) (b) P (X > 185) (c) P (X ≤ 128).

(d) In a random sample of size n = 500 leaves, find the expected number of leaves with lengths between 120
and 155mm.

Solution

(a) Lengths recorded between 120mm and 155mm can have any value between 119.5mm and 155.5mm, if
measured to the nearest mm. The lower and upper standard scores are

z1 =
X1 − µ

σ
=

119.5− 151

15
= −2.1 z2 =

X2 − µ

σ
=

155.5− 151

15
= 0.3
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X ∼ N(151, 152) Z ∼ N(0, 1)

P (120 ≤ X ≤ 155)= P (−2.1 < Z < 0.3)
= P (−2.1 < Z < 0) + P (0 < Z < 0.3)
= P (0 < Z < 2.1) + P (0 < Z < 0.3) by symmetry
= 0.4821 + 0.1179 (See Statistical Table for Normal distribution)
= 0.6000 (or 60%)

(b) To the nearest mm, lengths recorded as greater than 185 must actually be greater than 185.5.

z =
X − µ

σ
=

185.5− 151

15
= 2.3

151 185.5 211
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X ∼ N(151, 152) Z ∼ N(0, 1)

P (X > 185)= P (Z > 2.3)
= P (Z > 0)− P (0 < Z < 2.3)
= 0.5000− 0.4893 = 0.0107 (or 1.07%)

(c) To the nearest mm, lengths recorded as less than or equal to 128 must actually be less than 128.5.

z =
X − µ

σ
=

128.5− 151

15
= −1.5
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X ∼ N(151, 152) Z ∼ N(0, 1)

P (X ≤ 128)= P (Z < −1.5)
= P (Z < 0)− P (−1.5 < Z < 0)
= P (Z > 0)− P (0 < Z < 1.5) (by symmetry)
= 0.5000− 0.4332 = 0.0668 (or 6.68%)

(d) In a random sample of size n = 500 leaves, we can treat P (120 ≤ X ≤ 155) as a proportion, and the
expected number would be 60% of 500, which is 300.

Alternatively, as a binomial experiment, a leaf is in the range [120, 155] or it is not (2 possible outcomes),
n = 500, p = 0.60 and µ = np = 500× 0.60 = 300, as before.

(And we would expect np = 500×0.0107 = 5.35 to be longer than 185mm, and np = 500×0.0668 = 33.4
to be shorter than 128mm.)
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4.5 The Exponential Distribution

The exponential distribution models situations where the data takes on pos-
itive values only, is more likely to be near the origin and is increasingly less
likely to be in an interval of fixed width as it moves further to the right. In
fact many random variables in engineering and the sciences can be modelled
appropriately as having exponential distributions. The exponential distribution
can be thought of as a continuous analogue to the geometric distribution and
is often used to model waiting times.
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A pdf of an exponential distribution with mean of 6. Corresponding cdf.

A common situation is when we are measuring times between certain events
of interest. As long as the events occur fairly randomly then the time between
them can be well approximated as an exponential random variable. In fact this
can be proven analytically under certain assumptions.

Example 4.6 Time between vehicles passing a fixed point on a motorway, time between accidents on an airline,
how long you have to wait for a lift in an office building.
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Characteristics The continuous r.v. X has an exponential distribu-
tion with parameter θ (θ > 0) if the pdf of X is

fX(x) =

{
θ e−θx x ≥ 0
0 x < 0

The distribution function of X is given by

FX(x) =

{
0 x < 0

1− e−θx x ≥ 0

Result Let the continuous r.v. X have an exponential distribution
with parameter θ. Then

µX = E(X) =
1

θ

σX = standard deviation of X =
√

V ar(X) =
1

θ

Note For the exponential distribution, µX = σX .

Example 4.7 The duration, X, in minutes of phone calls from company business phones is a continuous r.v.
with pdf

fX(x) =

{
1
6
e−x/6 x ≥ 0

0 x < 0

(a) What is the cdf, and show that this function is, in fact, a satisfactory cdf.

(b) Calculate the probability that a call will last between 3 and 6 minutes.

(c) Find the expected length of a call.

(d) Determine the variance of call length.

Solution

(a) F (x)= 1− e−x/6 x ≥ 0

We can confirm that this is a satisfactory cdf:

• F (0) = 1− 1 = 0, that is, P (X ≤ 0) = 0.

• F (∞) = 1− 0 = 1, that is, P (RX) = 1. (Since lim
x→∞

e−x/6 = 0.)

• F ′(x) = f(x) ≥ 0 so F (x) is an increasing function of x.

(b) P (3 < X ≤ 6)= F (6)− F (3) = (1− e−6/6)− (1− e−3/6)

= 0.6065306− 0.3678794

= 0.2386512

(c) The expected length of a call, using the result above, is µ = E(X) =
1

θ
=

1
1
6

= 6 minutes (θ = 1
6
).

(d) The variance, using the result above, is var(X) = σ2 =

(
1

θ

)2

=

(
1
1
6

)2

= 36.


