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Abstract

In genetic programming for evolutionary art, there are many primitive sets
in use. Often their capabilities are unknown. This project defines four primitive
sets and compares their abilities to generate a number of images. Overall it finds
that a primitive set based on drawing shapes performed the best. However, none
of the primitive sets managed to generate images with sufficiently high quality.
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Chapter 1

Introduction

Evolutionary art seeks to recreate the human ability to create art. Dorin [11] asks whether
this is reasonable. If an image is created by searching through the space of all images until
a “desirable” one is found, is the creator skilled? Are they even an artist? Taking Dickie’s
definition of art, “a work of art is an object of which someone has said, ‘I christen this a
work of art’.” [10], it is easy to label the output of such programs as art. However, this is
no indication of quality. Art can be understood in the context of what meaning or history
it has, and what feelings it evokes [26]. Yet art produced by computers may have no such
history unless there is a human to guide it, or computer programs with emotions can be
created. By creating tools for the purpose of creating evolutionary art many authors have
taken a side in this argument. Cook’s paper [7] asserts that the images it produces are art.
Similarly the NEvAR (Neuro Evolutionary Art) system [20], by virtue of its name, implies it
is expected to produce art. However, these systems are not built on solid foundations. All
questions of aesthetic quality aside, the range of images these systems can generate is not
clear. It is unknown whether an arbitrary image can be recreated with any of these systems.
This is not to say that an evolutionary art system has to be capable of generating any given
image, just as oil painters do not have to produce pencil sketches or sculptures to be called
artists. However, the range of producible images should be defined in advance. This project
explores the range of images that can be generated when using genetic programming, a
form of evolutionary computation, for this task.

Evolutionary computation is useful because it can generate novel solutions. In evolu-
tionary computation a way of representing solutions is required, as well as a fitness func-
tion, a function that is capable of evaluating the quality of a solution. There are three
main approaches to fitness functions for this task. The first is having a human in the loop
[29, 12, 7, 20]. In this method, a human is used to evaluate all images produced and give
feedback to the system. The second approach involves comparing potential solutions to an
image or set of images known to be good [3, 23]. The initial set of good images is provided
by a human expert. The third approach is to judge the quality of images solely using an
algorithm [24, 9, 19, 27, 15]. Hybrid systems also exist, such as in [28, 22, 30]. Using a human
to evaluate images is effective as this system uses a fitness function that corresponds to the
users tastes. However, as the user is performing all evaluations, there are several significant
problems. The number of images evaluated by each user, has to be limited to prevent user
boredom. Moreover, the time taken for the user to react and judge images is a bottleneck.
Using a set of good images as a reference removes the need for constant repetitive user in-
put, as the selection of good images only has to be done once (possibly over an extended
period of time). However, it is not certain that the system will be able to identify the right
attributes needed to judge the fitness of unseen images accurately. The main advantage of
using an automated system is that it requires no interaction with an expert or any human
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(a) Sequence representation (b) Mathematical representation

Figure 1.1: GP programs

to produce results, thus overcoming the identified limitation. However, it does require an
algorithm that is accurately capable of evaluating how aesthetically pleasing a given image
is, which is still an open problem.

Within Evolutionary Art, Genetic Programming (GP) is a technique that is used to ad-
dress the problem [4, 16, 18, 20]. GP generates tree structured representations of programs.
Different trees can be combined to create new and potentially better trees, and any tree can
be used to create an image. GP uses Terminal and Function nodes to represent the trees.
Terminal nodes are the leaves of the tree, while function nodes are the internal nodes. The
function set is the set of all functions available to the GP system. Similarly the terminal set is
the set of all terminals available. The primitive set is the set of all functions and terminals.
For the purposes of this project a distinction between the function set and terminal set is
unnecessary, as they only form a complete representation together. An attractive feature of
GP for developing new systems is that it allows for primitive sets to be easily changed, al-
lowing GP to express a wide variety of solutions. In GP it is important that a primitive set is
sufficient, that some combination of the nodes are able to express an optimal solution. For
evolutionary art we require something stronger, we require additionally that the primitive
set will be likely to converge to a good solution within reasonable time.

Despite the variety of approaches and systems for evolving images there do not appear
to be many distinct classes of primitive sets, at least for the GP systems. There are two
main types of GP primitive sets that are considered here. The first is using Sequence nodes
[4, 16] as in Figure 1.1a. Sequence nodes do not draw, they only give the tree its shape.
The terminals are the actual drawing operations, such as Rectangle or Line nodes. This gives
program trees that represent a sequence of drawing instructions, and such trees are easy to
understand. The second type of representation is using standard mathematical functions as
in Figure 1.1b. If needed, the output value is scaled, and turned into a pixel colour value
[29, 20, 18]. Using shapes to model images can be difficult as they are often not made up of
simple shapes. Hence it may take large numbers of simple shapes just to make up one small
complicated section. The mathematical representation has the advantage of being frequently
used in other commonly seen problems such as symbolic regression, but it is very hard for
a human to understand the resulting programs. In these works the reasoning behind the
choice of primitive set, is often not explained.
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1.1 Goals and Objectives

This goal of this project is to investigate the choice of primitive sets for use with GP in evolu-
tionary art. Variations of the Sequence node represenation will be compared with mathemati-
cal representations with the aim of determining if there is a difference in their expressiveness.
Specifically this project has three main objectives.

1. To create four primitive sets for use in GP for the creation of images. The four primitive
sets are:

• Single colour lines — This primitive set is a simple version of the colour shapes
one. Its main purpose is to provide some insight into the different possible ways
of structuring trees comprised of drawing operations. Having a set with only
one drawing operation should make the comparisons easier. Three different tree
structures will be explored.

• Single colour shapes — This primitive set is to represent drawing using basic
shapes. Similar primitive sets have been used successfully [4, 16], and this is an
intuitive way to approach drawing as a human can understand it. This is the
method that is hypothesised to perform the best, as a decomposition of an image
into shapes does not seem very complicated for humans.

• Mathematical functions — Primitive sets like this have been very commonly used
[25, 29, 20, 18] and as such are important to include in the comparison. This
method is not hypothesised to produce results as good as the single colour shapes,
but is anticipated to produce recognisable results. Unfortunately it is hard to get
a good handle on how the mathematical functions will behave as this representa-
tion does not match up with how people perceive images.

• Self normalising mathematical functions — This is the same as above except that
multiple strategies are used for converting numbers into colours. It is anticipated
to perform similarly to the mathematical functions.

2. To compare the four primitive sets on how closely they can copy a target image.

3. To determine which of these primitive sets produces the closest copy, and examine its
suitability for generating arbitrary images.

1.2 Major Contributions

This thesis has made the following major contributions.

1. This project shows the design of four different primitive sets that can be used in GP
for generating images.

2. This project shows the differences in the expressive abilities of the various primitive
sets. We find that it is non trivial to create a primitive set to copy an image, due to their
inherent complexity. It is not enough to just have similar colours in the correct places.
Colours have to form actual shapes with distinct boundaries, and in many images,
with intricate details. Finding programs that place the correct colours at the correct
co-ordinates as in the target image has a low probability. Moreover, the interaction of
two side by side lines of slightly different colours in the generated image, can appear
as a boundary or detail to a human, even if it should not. This results in the primitive
sets producing different stylized copies of the original.
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3. This project shows that the shapes primitive set has the best performance on the im-
ages that were used in this work. Despite this, it may not make a good primitive set
for use in other work. This is due to its tendency to place objects near, but not ex-
actly, where they should be. While this produces images that are recognisable copies
of images, they are still quite different from the original.

1.3 Organisation

The remainder of this report is organised as follows. Chapter 2 contains the background
needed to understand the work done, as well as the motivations for this project. Chapter
3 describes the details of all primitive sets considered in this thesis as well as the criteria
for judging representation quality. Chapter 4 describes the results of all the experiments.
Finally chapter 5 has a discussion of the results and chapter 6 gives the conclusions and
future work.
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Chapter 2

Background

2.1 Genetic Programming

Genetic programming (GP) is a machine learning technique that uses selection pressure and
a mating process to produce solutions [17]. This has many parallels with evolution and
genetics. In genetic programming, as it is used in this project, a program is represented by
a rooted undirected tree (Figure 2.1a). Each node in the tree is either a function node or a
terminal node. A function node is a node which has children such as the sequence node in
Figure 2.1b, and a terminal node is a leaf of the tree, like the colour node in Figure 2.1c. The
way that this tree is parsed and the operations performed by each of the nodes results in the
output program produced. In genetic programming the choice of functions and terminals is
very important. If a solution cannot be formed from possible combinations of the functions
and terminals given, then GP will never be able to find the solution to the problem.

(a) GP tree (b) Sequence node (c) Line node

Figure 2.1: Genetic programming components

For genetic programming it is common to define a fixed population size (number of pro-
grams in each generation) for the duration of the run. A set of genetic operators is also
defined. This project uses the following three genetic operators: elitism, mutation and
crossover, which will be discussed in the next section. Each of the three operators is used to
create a fixed proportion of the next generation.

2.1.1 Genetic Operators

Elitism selects the top possible individuals in each generation. This ensures that the best
individual of the next generation is at least as good as the best of the current generation. As
this operator is the only one that has no random element to it, it is the only one that is certain
to produce individuals that are good by the standards of the current generation. However,
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while having not enough elitism may result in a lot of poor individuals being selected for
the next generation, having it set high may prevent the solutions from getting better as it
can only provide ones that already exist.

Mutation selects a random node in the program tree of a particular individual, deletes
it, and replaces it with a random, valid subtree. This adds in new genetic material, and may
introduce new permutations of nodes into the gene pool. This also allows for the refine-
ment of small areas of the tree. In the biological metaphor this can be compared to random
damage to DNA due to random effects such as radiation.

Crossover selects a random subtree in each of two parents and swaps them, similarly
to how two parents contribute to the genetic make-up of a child. This has the potential to
combine the good parts of two solutions into a new better solution. This does not always
happen, so it is used to explore the space near the given solutions.

Both mutation and crossover act by replacing parts of program trees, so the structure of
the tree becomes important. If the program is structured such that any attempt to remove a
part of the tree would destroy its value as a good solution, then this sort of program repre-
sentation may not lead to good offspring being produced by crossover. As both operators
work by selecting random subtrees, neither is capable of dealing with the situation where an
individual is very good except for having a poor root node. If mutation were to change the
root node it would also then have to change the entire tree, losing the good parts. Crossover
on the other hand would have to select each of the root node’s children in turn and swap
them into a tree with the correct root node. On top of this, as the program is structured
as a tree, the majority of the nodes are at the bottom of the tree. As such when a random
node is selected, it is more likely to be one of the nodes at the bottom of the tree. For this
reason, representations in which all the computation is done at the leaves are more likely to
be modified in useful ways than ones where the computation is done inside the tree.

2.1.2 Fitness

The other key component of genetic programming is the fitness function. This is a function
that can take an individual program and assign to it a value describing how “good” it is.
Goodness is not a concrete measure, but rather is a way of judging how close a program is
to the perfect program. For example, in the case of evolving programs to add numbers, a
possible fitness function could be the difference between a given program’s answers and the
real answer. This fitness value is then used for selection, where better programs (programs
that have a better fitness) are more likely to be selected for breeding to populate the next
generation. At the end of the GP process the individual with the best fitness is the solution.
The selection of a good fitness function is critical to the success of GP as a technique. If the
fitness function is not quite right, then the GP process will not be attempting to produce a
good program for the true problem, and so will be unable to produce good results.

2.1.3 Selection

A selection mechanism called Roulette Wheel Selection [14] (also known as Proportional Se-
lection) is used for all parts of this project. In Roulette Wheel Selection programs are selected
with a probability directly proportional to their fitness. An individual may be selected mul-
tiple times. This mechanism is good as all individuals have some chance of being selected
for use in the next generation.

An alternative selection mechanism is called Tournament Selection [14]. This requires a
parameter called tournament size. Here, a number of individuals (based on the tournament
size) are sampled, and the one with the highest fitness is selected as the breeding individ-
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ual. The main problem with this is that the least fit individuals will not get selected (as some
other individual in the tournament will have a better fitness) but they may have character-
istics that are worth keeping.

2.1.4 Initial Population

At the start of the GP run the initial population is generated randomly. There are three
mechanisms for accomplishing this.

• The first of these is Grow where programs are just generated by picking random ele-
ments from the primitive set until a valid tree is created.

• The second is Full. Here programs are generated randomly, but they are forced to be
as deep as the experimental setup allows.

• The third is Ramped Half-Half where half of the individuals are generated using the Full
method and half using the Grow method.

2.1.5 Generating Solutions

Using the above tools the genetic programming process is then run:

1. Generate an initial population

2. Evaluate each individual

3. Select individuals for breeding

4. Breed the individuals to create a new population of the same size using the genetic
operators

5. Until you reach the maximum number of generations or find and acceptable solution
go to step 2

2.2 Evolutionary Art

Evolutionary art started out with Dawkins evolving little plant programs [8]. However, his
work did not focus on the idea of art or creating images, so much as showing that evolution
is a good model. Sims’ work [25] however was explicitly targeted at creating aesthetically
pleasing images / textures using mathematical operations.

Since then much more work has been done and there are now two main approaches. The
first is using a human as the fitness function [29, 12, 25, 7, 20]. Images are shown to a human
user who determines how good an image it is. The second approach uses a computer to
evaluate the fitness in one of two ways. The first uses an expert to predetermine a set of
“good” images that can then be used as the basis for any future work. This can be done
with learned classifiers [3] or by comparing to certain properties of the images [23]. The
second method avoids all user interaction [24, 9, 19, 27, 15, 2, 5, 1]. Using a human to select
an initial set of images still needs an expert to pick the initial set of images. Also the system
will have to have either a fixed target, or need to learn a new classifier each time a new
image is required. Even in the case of a fixed target, it is often not sufficient to reproduce the
target image (as it must already be available to be used as a target and generating a copy of
an image is usually not the goal). Fully automated systems do not have any bottlenecks due
to human interaction and are capable of generating new images transparently. However
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they require some form of algorithm capable of judging the fitness of an arbitrary image, a
still open problem.

Using humans as the fitness function removes the problem of having to find a way to al-
gorithmically detect how aesthetically pleasing an image was, but introduces new problems
such as user-fatigue, where the user starts getting bored [30]. This can lead to needing small
populations and short runs [29], or large numbers of users [12]. Trying to use known good
images as a basis for creating new ones is additionally difficult. First it requires a human ex-
pert to create the set of known good images, which, while being potentially time consuming
only needs to be done once, and so is reasonable. However, it is important that the correct
properties of the image be used as a guide, which is also difficult [23]. Systems that use au-
tomation for all fitness evaluations are able to be more general, and run without any human
users. However, the problem of judging the aesthetic quality of an image algorithmically
has no current good solutions, and so these systems can only have very limited use.

These can further be broken down into systems that use shapes to draw images, and
those that use mathematical functions. Systems that used mathematical functions for their
representation [25, 29, 12, 20, 23, 3] are the majority based on the papers surveyed. While
there are systems that use shapes such as GAUGUIN [7], they are the minority. In general,
the choice of primitive set was not explained in the papers, and there was no guarantee of
their ability to produce the desired results. The only interesting exception to this is the Elec-
tric Sheep system [12]. This system explicitly uses flame fractals for all their images (a fixed
mathematical representation where only the arguments are changed), however unlike most
systems, Electric Sheep produces movies. While the flame fractals it uses are not capable
of modelling any given image, they do not need to be for this application. They are simply
creating movies that are aesthetically pleasing to users of their application (which run as
screen savers), and so their representation does not need to be able to draw arbitrary im-
ages. It has been shown , through running the system for a time, that aesthetically pleasing
movies can be produced. It is possible that the other systems also ran some kind of tests to
see if interesting images were ever produced by their systems before finalising the primitive
sets, but this is not stated.

Systems that use automated fitness functions are the most affected by choice of primitive
set. Ross et al. [23] attempted to get traits from current artworks to create a fitness function.
They used the same representation as in Sims’ work [25], but the expressive capacity of that
representation was not evaluated or considered. Hence it is unclear if their system is capable
of producing images that are similar to their original set of good images. This limits their
findings as it is unclear how much effect the primitive set has on the final images produced,
and as such it is hard to generalise their results to arbitrary representations. For similar
reasons all experiments testing fitness functions have more limited results than necessary.
While these systems were evaluated on how well they managed to produce images, there
was no reason to expect the systems to be able to produce the desired images. The works
done by Barile et al. [5] and Alsing [1] are exceptions in this. The work of Barile et al. only
seeks to stylistically copy existing images. It also uses information about the image that it
is trying to copy in the drawing process, and so has an advantage in drawing images as it
already knows what it should produce and will not take counter productive steps. Alsing’s
work specifically set out to copy the Mona Lisa using 50 polygons with a fixed represen-
tation, and as such is sure in advance that the representation is what is desired. Another
similarity is that both these works only copy images of faces. This may be significant as im-
ages of a face have a certain structure, as most human faces are similar. As such, while these
works managed to produce good copies of the original image, they did not test a variety of
images, and in the case of Barile et al., used information about the target image that would
not be available to a system trying to draw a new image from scratch.
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Between all these works a variety of primitive sets are used, and many interesting images
are produced, but there was lack of good justification for the particular primitive sets chosen.
This carries with it a risk of misjudging the fitness functions (for the experiments that were
testing out new fitness functions), and deciding that the fitness function is a poor judge
of images when the real reason the images look poor is that the representation is unable to
produce images that that fitness function would rank very highly. While the systems created
work, produce images, and facilitate research on automated fitness functions, the selection
of a primitive set is not something that has had a lot of attention. This project focuses on
providing some comparisons of different primitive sets. This will provide more information
about systems that attempt to evolve images, as now it is unknown if they are capable of
evolving arbitrary images, or only certain kinds of images.
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Chapter 3

Method

The main focus of this project is to determine the expressiveness of different primitive sets.
To that end, four primitive sets are defined and compared to each other. The four repre-
sentations are based on previous works. A large area of research in evolutionary art is the
design of a fitness function capable of judging the aesthetic quality of an image. Such fitness
functions are intrinsically linked to the primitive set used, as it serves as a constraint on the
search space. By comparing these four primitive sets, this project aims to provide additional
context in which to evaluate fitness functions.

Two of the four primitive sets represent images using mathematical expressions, and the
other two use shapes. Experiments were run to compare the ability of these four represen-
tations to copy various target images. Experiments were used as opposed to mathematical
analysis since this is difficult due to the non-deterministic nature of GP. An ideal represen-
tation will encourage the formation of good solutions. A good solution is one that produces
an image that is very similar to the original. In the case where the means are not significantly
different, the representation with the lowest standard deviation from the mean will be taken
as the best. The low standard deviation is desirable as it means that the representation pro-
duces more consistent and predictable results.

3.1 Representations

All of these representations use RGB colours. This means that each colour is comprised of
three integers each in the range [0..255], where (0,0,0) is black and (255,255,255) is white.
While other colour representations exist (such as HSL or indexed colour), the RGB repre-
sentation is used in this work as it is simple, sufficiently expressive and there exist useful
programming libraries for it.

3.1.1 Lines

There are many different ways that a sequence of instructions to draw lines can be repre-
sented. Due to also needing to test representations other than lines, this project only con-
siders three different representations for drawing sequences of lines. These representations
are three adaptations of the representation used by Barile et al. [4]. In this representation
Sequence nodes are the functions (Figure 2.1b). The sequence nodes have multiple children
but do not do any computation themselves. Line nodes have children representing their own
position and their colour.

In the first representation computation is performed at the bottom of the tree. Sequence
nodes have varying numbers of children and lines have their position as an internal property
and their colour as a child. This version is hypothesised to perform the best, as it has all the
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(a) Line with
no children

(b) Line with Null children (c) The resulting image

Figure 3.1: Example red lines image

nodes that have side effects at the bottom of the tree, so it will be easier for useful nodes to
be modified by the GP operators, which struggle to make changes to the middle of a tree.

The second version moves computation to the inside of the tree. In this representation
a Line has a colour child and its position is stored internally. These lines also have three
other Line children. There are also Null nodes. These can take the place of a Line and do
not do anything as in Figure 3.1b. The Null nodes are just there so that the program tree can
terminate.

The third version has computation done in all parts of the tree. Lines are as in the pre-
vious representation, but Null nodes have been replaced with Lines with no children as in
Figure 3.1a. This is so that all nodes in the program tree contribute to the image. As these
representations have the drawing nodes inside the tree, it is hypothesised that GP will find
it harder to modify individuals in ways that increase their fitness and so they are not antici-
pated to perform as well.

Both lines and shapes share the same possible representations. Due to time constraints,
comparing all the shapes representations as well as all the lines representations was infea-
sible. As such the simplifying assumption was made that the best shapes representation
would be based on the best lines representation.

3.1.2 Shapes

The shapes representation is an extension of the lines representation. Shapes use the lines
representation except that instead of only having Line nodes, they also have circles and poly-
gons with three to five sides (Figure 3.2). Polygons have been restricted to five sides to
reduce complexity. It is anticipated that polygons with more than five sides can be approx-
imated by other operators. Many sided convex polygons can be approximated by circles,
and concave polygons by multiple simpler polygons.

Figure 3.2: Example red circle
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Figure 3.3: (4 ∗ 9) + 3 as a tree

3.1.3 Mathematical Functions

Mathematical expressions already have a standard representation as a tree as in Figure 3.3,
and as such this same representation was used in this work. The mathematical functions
used are a set of standard mathematical functions over doubles, such as addition and multi-
plication, with the full list appearing later in this section. Each colour channel has a separate
tree to represent it. This has the unfortunate side effect of making each colour channel in
effect a separate image. As such it is possible to get images that look like the colours are all
unrelated to each other, as they have no relation in the program tree. However it also allows
each colour channel to be independent, and hence able to represent certain kinds of colour
transitions more easily.

Arbitrary mathematical functions over the real numbers can return results that are real
numbers, and may not be valid colour values. As such the final result of the computation
is put through a function to constrain the range (set of possible outputs) to be the integers
from 0 to 255. Functions used for this purpose will be referred to as normalising functions [2].
There are however, many different functions that can do this.

The distinguishing feature of this mathematical representation is that only one normal-
ising function is used for all images. The normalising function is outside of the evolved
program, reducing the search space. The normalising function used here is the modulo
function shown in equation 3.1 and Figure 3.4a.

The mathematical functions used are addition, subtraction, division, multiplication, log-
ical and, logical or, logical xor, sin, arctan, exp, log, min and max. There are also nodes X and
Y which sample the x and y co-ordinate respectively, as well as RandDouble which produces
a random double value. While this is not the full set of functions used in other works, this
set contains most of the commonly used functions, and seems to be similar to the functions
used in the IMAGENE system [29]. As such any conclusions drawn from using this function
set may not apply directly to any other primitive set. A limited primitive set was chosen as
there is no standard set of mathematical functions used, and this set contains the set of well
known functions. It is hoped that results from using this set will provide a baseline that can
be used for evaluating other mathematical representations.

3.1.4 Normalised Mathematical Functions

This representation is the same as the mathematical functions representation except that
the normalising function is a function in the GP tree. This is different from the previous
mathematical representation as the normalising function is now a part of the GP process.
This results in a bigger search space, as any of the three normalising functions can now
be used, and potentially more interesting images. The three functions described in section
3.1.5 will be the possible normalising functions that can be used. This representation is
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hypothesised to produce better results than the plain mathematical functions representation,
because the normalising function can affect the way the colours are drawn, as discussed in
the next section.

3.1.5 Normalising Functions

Normalising functions [2] are functions that accept arbitrary real values and return an inte-
ger in [0..255]. This project uses the three functions shown in equations 3.1, 3.2, and 3.3. Each
of the functions behaves in a quite different fashion. Equation 3.1, as in Figure 3.4a increases
steadily until it reaches 255 then drops suddenly back to zero, only to repeat. Equation 3.2,
as in Figure 3.4b is close to 255 when it is far from zero, and drops rapidly to zero the closer
the input gets to zero. On the other hand equation 3.3, as in Figure 3.4c gets larger as the in-
put value increases, while never going outside of the allowed range. How fast it grows and
where the steep part of the curve is, depend on the parameters b and d which are evolved as
part of the image generation.

N(c) = |bc c| % 256 (3.1)

N(c) =
∣∣∣∣⌊ 255c

c + 1

⌋∣∣∣∣ (3.2)

N(c) =
⌊

255ebedc
⌋

(3.3)

(a) Modulo function (b) Ratio function (c) Gompertz curve

Figure 3.4: Normalising functions

Normalising functions are not all the same. Normalising functions change how an image
looks. Consider a GP tree for a grey scale image which is of the function X3. This tree will
give a higher value result the further right the pixel is, starting with 0 at the left. Hence, it
would be anticipated that the image will be black at the left and become lighter to the right.
This is indeed the case if a normalising function such as the ratio function (equation 3.2) is
used, as can be seen in Figure 3.5b. However, if the modulo function (equation 3.1) is used
then, moving to the right, it gets gradually whiter, but suddenly becomes black again, and
then starts getting white again, as in Figure 3.5a.
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(a) X3 using modulo normalising
function

(b) X3 using ratio normalising
function

Figure 3.5: Effect of normalising functions showing two of the three for comparison pur-
poses

3.2 Fitness Function

The fitness of an individual is measured by the distance from the original image. This is the
sum of the absolute differences in activation for each pixel in each colour channel. Let an
activation for a pixel in an image be imagecolour[x][y], the target image be t, and an image
produced by the GP algorithm be o. Then the fitness of o can be expressed as in equation
3.4. For the GP system that is used here, fitness values range from 0 to 1, where 1 is the
best. So equation 3.5 is used to turn the fitness into a transformed fitness value for use in
this system. It divides the fitness by the highest possible error, where each pixel has the
maximum deviation possible from the target, for each of the colour channels, then subtracts
that from one to make 1 the best fitness.

fitness(o) =
width

∑
x=1

height

∑
y=1

∑
colour

|tcolour[x][y]− ocolour[x][y]| (3.4)

scaled fitness(o) = 1− fitness(o)
3 ∗ 256 ∗ height ∗width

(3.5)

This is not an ideal fitness function, even for copying an image. This fitness function
only looks at the individual colour of each pixel. It does not factor in concepts such as
the relative locations of pixels. This means that images can have high fitness using the
fitness function, but still not resemble the original image to a human. This is because all
the pixels in the image may be close in colour to the target, but the image as a whole may
not have any forms that resemble objects. As such a person will not see anything similar to
the target image, but the algorithm will give the image a high fitness. However, an image
with sufficiently high fitness will have to resemble the original image strongly, as there is no
other way to have all the pixel values be close enough. Hence, based on the assumption that
all our representations will work at least reasonably well, and the produced images have
sufficiently high fitness, this fitness function will be adequate for this project.

Limits

Given this fitness function, a bound is needed to decide how high the fitness must be for
an image to be considered a sufficiently good copy. RGB can represent 2563 = 16, 777, 216
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colours. The human eye can see on the order of 2 million colours [21], and we assume that
colour perception is the same over all colours (for simplicity). Therefore RGB can represent
many more colours than a human can distinguish. Hence we will allow a small amount of
latitude in what constitutes a good copy.

Let n be the number of different values you need for each colour channel such that you
have 2, 000, 000 colours total. Hence

n3 = 2× 106

n = 3
√

2× 106

n = 126 (0 dp) (3.6)

As n is about half of 256, that allows a colour value in a colour channel to be one value
off. This amounts to a total unscaled fitness of 5 per pixel (one channel is three values off,
and the other two are just one value off). Given that all images used in this work are 100 by
100 that gives us a final fitness of 5 · 100 · 100 = 50, 000 for an image. We will now define a
convincing copy of an image as one with a fitness at least as high as an image where each
pixel is two perceptible colours off. This corresponds to an unscaled fitness of 70,000 (an
upper bound value, when one channel is five values off and the other two are only one off)
which is a scaled fitness of 0.99089 (5 dp). This is to allow the system some leeway to make
mistakes, but still requiring it to produce accurate copies of the target image.

3.2.1 Limitations

The conclusions reached in this thesis may not hold if a different fitness function is used. It
is possible that using a different fitness function could lead to a different evaluation of the
primitive sets. However, in the present analysis it is assumed that our fitness function can
be used as a representative of fitness functions in general. We also note that here we are
using the fitness function to copy a particular image, whereas the representation is intended
for use in evolving new and novel images. It is assumed that copying is an “easier” task
than creating something new, and as such a representation which is inadequate for copying
an image will be similarly inadequate for evolving an original image.

Despite these problems, if a representation is not capable of representing an image, then
it is not capable of representing it irrespective of what fitness function is used. If a repre-
sentation is not capable of generating certain kinds of images, then when a fitness function
is being evaluated or used, even if the fitness function favours the images that cannot be
represented using the given primitive set, good images will not be generated.

The images that are being copied in this work are real art works, and not simplified syn-
thetic examples. The reason for this is that the experiments themselves take a very long time,
and there were only seven months allotted for this project. As such, it was worth running
the more complex images, as there would have been no chance to test them otherwise.

3.3 Selecting a Lines Representation

An experiment was carried out to compare the three lines representations, to determine
which is the best, so that it can subsequently be used for tests, and function as the basis
for designing a shapes representation. Each of the representations was used in more than
30 runs (the exact numbers vary as some of the runs were terminated by other users of
the computing system, and could not be restarted due to time constraints) to copy a target
image. The target image is Figure 3.7, a large extract from The Voyage of Youth - Life by
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Parameter Value
Population 100
Generations 200,000
Elitism Rate 2%
Mutation 48%
Crossover 50%
Max Depth 8
Image Size 100 x 100
Selection Roulette Wheel
Program Generation Ramped Half-Half

Figure 3.6: Experimental settings for compar-
ing lines

Figure 3.7: Target image for lines

Thomas Cole. This image was chosen as it is an image that is widely accepted as art (in
the Western world at least) as well as being in the public domain. While the chosen image
is not the only possible result that could be a desired output, it is still desirable, and time
constraints did not allow for having a wider sample of art. For this project, a desirable
primitive set should be able to produce this image. If it cannot produce this image, then it
does not matter if it can produce others, as we are seeking a general use primitive set.

In this part of the project the RMITGP framework [13] was used to do the genetic pro-
gramming. The RMITGP package was used to reduce programming errors as most of the
implementation had already been done, and as it written in C++, to get faster code execu-
tion.

The configuration for the GP system can be seen in figure 3.6. A roughly equal mix
of crossover and mutation was chosen on the basis that the crossover would provide the
general structure of the image, and mutation would “fix up” small details. As such both of
these were needed in large measures, so a roughly equal split was used. Elitism is at 2% as
it was desired to keep the best images from each generation, so that each generation would
be at least as good as the one before. It was assumed that each generation would be quite
poor, so there was no reason to keep too many images. A population size of 100 was used as
some empirical tests run showed that larger populations did not seem to give better results.
200,000 generations were used as there seemed to be a lot of scope for improvement in
images that were run for smaller numbers of generations (e.g. 100,000), and it was the largest
generation value that could have been used given the time allowed for an honours project.
It is also a sufficiently large number of generations that it is unlikely that systems will be
set to run for significantly more. An image size of 100 x 100 pixels was used as anything
larger made the fitness calculations take unreasonably long. Roulette Wheel selection and
Ramped Half-Half program generation were chosen to give programs with poor fitness that
may have some good features a better chance to survive, with the goal that they may be able
to provide some details to images with better fitness. A max depth of 8 was chosen to give
2,187 drawing nodes for the representation with the least number of line nodes. This was
assumed to be enough given that the image only had 10,000 pixels. Test runs had also shown
that the produced trees did not tend to use all possible nodes, and setting it any higher made
the experiments run for too long.
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3.4 Comparing the Four Representations

Once the best lines representation was selected, an experiment was carried out to compare
the four image representations focused on in this work. The most successful lines repre-
sentation was used in this section, as well as a shapes primitive set based on its structure.
Both mathematical representations were also used. All four representations were set up to
copy three images. For each image 13 experiments were run using each representation. As
this experiment was carried out over a distributed computing grid, it was uncertain that all
the experiments would be able to complete successfully and so the largest number of experi-
ments it was practical to run were used. The images used are sections from old artworks that
are out of copyright. Three art works were chosen as that was the most that there was time
and resources to do. They are: The Voyage of Life (Youth) by Thomas Cole (Figure 3.8a),
Child with Red Hair Reading by Lilla Cabot Perry (Figure 3.8b) and a statue of Leonardo da
Vinci by Luigi Pampaloni (Figure 3.8c). Fitness will be evaluated as described in section 3.2.

(a) Voyage of Life - Youth (b) Child with Red Hair Reading (c) Statue of da Vinci

Figure 3.8: Target images

3.4.1 Experimental Set up for Comparing the Four Representations

All experiments were run using a Java translation of the RMITGP package. The package
has been modified to allow program trees with multiple roots, in order to allow for the sorts
of trees used in the mathematical representations. The translation into Java was needed
to facilitate using the grid as the machine used for testing the experiments ran a different
operating system and hardware from the grid machines.

The configuration for the experiments can be seen in figure 3.9. We use almost the same
setup as in section 3.3 with the same reasoning. In the results of the lines experiments (in
chapter 4), it was noted that none of the fitnesses were close to the target fitness desired.
One possible reason for this is that many good images were being lost from the solution
pool due to poor children being created, and the elitism being too low. As such the elitism
rate was increased. Images using shapes representations have natural optimal substructure.
Optimal substructure means that an optimal solution is comprised of optimal solutions to
subproblems. In the context of images, a perfect image is composed of perfect subimages. As
such, a good part of each image could be evolved in separate programs, and then combined
by crossover. In order to take advantage of this property, crossover was increased. Mutation
was decreased in order to facilitate these changes.
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Parameter Value
Population 100
Generations 200,000
Elitism Rate 5%
Mutation 28%
Crossover 67%
Max Depth 8
Image Size 100 x 100
Selection Roulette Wheel
Program Generation Ramped Half-Half

Figure 3.9: Experimental settings for comparing the four representations
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Chapter 4

Results

4.1 Significance Testing

For all significance testing in this work, the rank sum test at 95% significance (using MAT-
LAB v7.10.0.499(R2010a) 32-bit (win32)) was used. This test was used instead of the t-test as
the underlying distribution is not assumed to be normal.

4.2 Selecting a Lines Representation

In the experiments to compare the different lines representations, not all the experiments
successfully terminated. This was because they were all run on separate computers, and
some were turned off or reset while the experiments were running, as the computers were
remote from the experimenter. The experiments could not be restarted due to time con-
straints. A summarised version of the results can be seen in table 4.1, and the complete
results can be seen in table 4.2.

Considering only the means, it would appear that the representation that used Null
nodes performed the best. Significance testing showed that the representation that used only
lines (No Null in the tables) has a lower mean than the Sequence node and Null node ter-
minated representation. The other two however, do not have significantly different means.
The Sequence node representation has a much higher standard deviation than the Null node
representation, as can be seen in table 4.1 and Figure 4.1. Figure 4.1 shows the distribution
of final fitnesses for the Sequence node and Null node representations. The lines-only rep-
resentation is omitted as all its fitness values are too low to be seen on the graph. Figure 4.1
shows that the final fitness values for the Sequence node representation are very spread out
compared to the Null node representation. For the subsequent experiments, some experi-
ments may not terminate, as with the lines experiments. Having all the final fitness values
close together will give a better indication as to the mean fitness of the representation.

Overall the Null node representation was chosen as the best representation as it provided
a high mean value, but also consistently produced low variance results.

Mean Std. dev.
Sequence 0.86239 0.02494
No Null 0.71744 0.01271
Null 0.87242 0.00705

Table 4.1: Lines final fitness summary
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Figure 4.1: Final fitness distributions for Lines

Sequence Nodes No Null Null
0.79443 0.87619 0.71448 0.71548 0.85749 0.87367
0.80782 0.87714 0.74512 0.718 0.85983 0.87403
0.82812 0.87769 0.74221 0.70778 0.85986 0.87405
0.83003 0.8781 0.70939 0.71772 0.86134 0.87475
0.83241 0.87919 0.71251 0.71422 0.8655 0.87589
0.83786 0.88062 0.70512 0.74172 0.86587 0.87671
0.8449 0.8847 0.716 0.72122 0.86737 0.87702
0.84706 0.88515 0.71122 0.70686 0.86738 0.87725
0.84883 0.88546 0.71422 0.72105 0.86798 0.87726
0.85233 0.88721 0.74986 0.71158 0.86822 0.87766
0.85278 0.88742 0.70162 0.7121 0.86878 0.87845
0.85617 0.8883 0.71262 0.71268 0.86906 0.88069
0.86554 0.89453 0.70513 0.71511 0.86962 0.88135
0.86814 0.87138 0.7189 0.709 0.87174 0.88173
0.87061 0.87332 0.71846 0.70301 0.87224 0.88424
0.87072 0.74681 0.70857 0.87233 0.88708

0.71278 0.72784 0.87252 0.87317
0.71008

Table 4.2: Final fitnesses for Lines
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4.3 Comparing the Four Representations

All the final fitnesses can be found in table 4.3. There are gaps in the table where experiments
did not finish. This is due to the non-deterministic nature of grid computing. Originally we
forecast that experiments would take a month to finish, using liberal assumptions. These
assumptions did not take into account several factors we were unaware of, and the data in
table 4.3 is taken after over two months of running experiments. The means were calcu-
lated over all three images, as we are not interested in the performance on an individual
image. The results (with significance testing) show that the lines representation performed
the worst and the shapes performed the best. The two mathematical representations did not
have significantly different means, and performance was between that of shapes and lines.

The best image in terms of fitness, from each representation for each target image can
be seen in Figure 4.2, where the best image from a given representation has its caption in
blue and bold (the reader is encouraged to look at the generated images from a distance).
There are two key things that can be seen from these images. The first is that for all but
the lines representation, the best image produced was The Voyage of Life - Youth (Figure
3.8a). The second is that the images generated by the mathematical representations look
nothing like the target image, and yet according to the fitness function used, the mathemat-
ical representations preformed better than the lines one. This is despite the mathematical
images being considered a worse copy when using a human to evaluate the fitness, as in the
human-in-the-loop technique, they are considered better copies.

None of the images had fitness values of 0.99089 or over to rank as a convincing copy of
an image (as defined in section 3.2). Despite this, the shapes representation preformed the
best, and has images that resemble the target image, particularly when seen from a distance.
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0.86404

0.85064
0.91177

0.9155
0.90374

0.86919
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0.87149
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0.908
13

0.84837
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(a) The Voyage of Life -
Youth

(b) Lines (c) Shapes (d) Math (e) Normalised Math

(f) Child with Red Hair
Reading

(g) Lines (h) Shapes (i) Math (j) Normalised Math

(k) Statue of da Vinci (l) Lines (m) Shapes (n) Math (o) Normalised Math

Figure 4.2: Best Image From Each Representation for Each Target Image
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Chapter 5

Discussion

5.1 Selecting a Lines Representation

The results show that the Null node representation gave the best performance. Both the
Sequence node and Null node representations for lines performed equally well considering
their mean results. However the Sequence node representation generated results with a
much larger spread of fitness values and hence a larger standard deviation. For the purposes
of this experiment a lower standard deviation is good as it helps to produce consistent and
predictable results.

The spread of results in the Sequence node version is quite interesting. Before starting
the experiments, it was hypothesised that the sequence node version would perform the
best, as it allows for all drawing nodes in the tree to be changed easily, since they are always
on the bottom of the tree. While it does have the highest equal mean and produced the best
final result, it did not consistently perform well.

The representation that had only line nodes fared the worst. This was not anticipated
given that all the nodes were contributing to the image, and this had the potential to result
in smaller and more efficient trees.

There is, however, a common thread in both of these representations. In both cases there
are Line nodes that have exactly one child which must be a terminal. These Line nodes are
effectively the leaves of the tree, but they are still counted as functions from the point of
view of the GP algorithm. It is therefore possible that when the GP algorithm is selecting
nodes to place in the tree, it may select one of these Line nodes as a function node, expecting
to be able to create a subtree below it. This, however, is impossible, and will effectively
end that branch of the tree. Extending GP with the ability to identify nodes that force finite
subtrees into the GP algorithm may improve the performance of the sequence, and lines-
only versions of the algorithm.

Creating tree structures to represent these program trees is not the only approach. In
many ways the lines representation seems suited to a slightly different approach, where the
program is not structured as a tree but rather as a variable length sequence of instructions.
This representation would be good if mutation and crossover were modified to work on
random subsections of the sequence as opposed to subtrees, otherwise they would only be
able to change the nodes at the end of the sequence. While this would have been interesting
to test, this is outside of the scope of tree based GP as used in this project, and modifications
to GP are outside the scope of this project.
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5.2 Comparing the Four Representations

The shapes representation produced the best results. Judging purely by mean fitness, the
shapes representation was the best, and the lines was the worst. However, as a human
assessing the images in Figure 4.2 as in the human-in-the-loop approach, the mathematical
representations seem to have been a lot worse than both lines and shapes. While space
and practicality requirements prevent the inclusion of all generated images, considering the
other images yields the same result. None of the images drawn using the mathematical
representations look like the images they are trying to copy, while the shapes and lines
representations do. This is a problem with the fitness function to be discussed later in this
chapter. Despite this, the shapes representation had the highest mean fitness and produced
recognisable images. This agrees with our original hypothesis that the shapes representation
would do well.

The mathematical primitive sets are much larger than the shapes and lines sets. This
results in a much larger search space that is much harder to search. Moreover, this primitive
set is very small compared to the primitive set used by Sims [25], which many subsequent
primitive sets are based on. As such, while their sets are more expressive, it is also sig-
nificantly harder to find a solution, and as such if there was potential in the mathematical
representations, the smaller set may be more likely to find it in the limited time.

It is worth noting that three of the four representations had their best image as The Voy-
age of Life. With this in mind the means of each image were calculated for the lines and
shapes representations (the mathematical ones were ignored as they did not look like the
target image in any of the cases). Despite the low number of tests for each image, there was
virtually no difference in the means. As such while it is likely that some images will be eas-
ier to copy than others (such as a giant white square), that does not appear to have been the
case for the images used here.

5.3 Limitations of the Fitness Function

It can be seen from looking at a sample of the images produced by the system used here, as in
Figure 4.2, that having a higher fitness value does not necessarily mean that an image looks
closer to the original. The images generated with mathematical representations are a good
example of this. While they have a higher mean fitness than the lines representation, they
look less like the target image than similar images generated with the line representation.
This is because the fitness function only takes into account the colour difference of each
pixel independent of any other factors such as location, or the colour of neighbouring nodes.
This is not, however, how humans view images. Humans see regions of similar colours as
“objects”. The lack of such “objects” in an image will make it unrecognisable. As the fitness
function does not consider regions of colour, it does not factor the appearance of “objects”
in its calculation. As such it will classify images that have the approximate colour scheme
of the image all over with high fitness, even if the image is not recognisable as the original
to a human.

Creating a fitness function that considers regions of colour is more complex than the
current implementation, and was originally thought to be unnecessary. If an image were to
have a sufficiently high fitness using the implemented fitness function, the produced image
would have to be similar, as the only way to have all the colours the same is to be the
same image. However, none of the images were near the target fitness and as such had this
problem.
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5.4 Applicability

The primitive sets tested in this work are not exact copies of all the primitive sets used in
other works. Works that use shape-based representations may structure their trees differ-
ently. Similarly, works that use mathematical based representations may not use the exact
same set of mathematical functions, and may also use different rules to turn real numbers
into colours. As such, the findings in this work can not be generalised to all primitive sets.

Even so, these findings have some general applicability. These results are not sufficient
to demonstrate that any given primitive set used in other work is not capable of producing
arbitrary images. However, these results show that primitive sets that may be thought rea-
sonable, may be less expressive than expected. There are many different primitive sets out
there, and while it cannot be said that they are not good enough, it can be said that they
should at least be tested to see how good they really are. The performance of the shapes
primitive set used here can also be used as an indicator for how a general shapes primitive
set can be anticipated to behave, even without being able to provide exact details.

5.5 Image Choice

This project only looked at a small range of possible images. Two of the images were paint-
ings from the last 200 years, and the other was a photo of a statue. This is not a general
sample of all possible images. To more fully explore the expressiveness of primitive sets,
a wider variety of images should be used. Unfortunately, this was not possible in the time
allotted.

While the image used in this project are among the more complicated, they are also
among the more interesting. While solving simple geometric images, maybe work better,
there is comparatively little to be gained. Given that we have a shapes primitive set, copying
a simple geometric image could be trivially solved by a very small tree. Moreover, trying to
copy simpler images would not allow for the analysis for more complex images, due to time
restraints.

29



30



Chapter 6

Conclusions

This project has successfully defined four primitive sets that are capable of generating im-
ages based on a fitness function. Irrespective of the particular target image, these primitive
sets can generate images, as long as they are used with their expressive ability in mind. As
such, any of the four can be used in GP for creating images.

Of these four primitive sets, the shapes representation has the best performance on copy-
ing images. The lines representation has the worst performance, however, based on human
fitness evaluation, the two mathematical representations seem like they should be ranked
lower than the lines. Future work with a modified fitness function may be able to address
this issue.

Overall, the resulting images produced in this work are not of very high quality. They
are not faithful copies of the original image, but rather stylized versions missing most of the
recognisable features and objects. While this means that none of the primitive sets explored
should be used widely for all forms of evolutionary art research, they may be suitable for
certain tasks.

The definition of a primitive set that is both expressive enough to draw all images, and
one that works well with GP is non-trivial. All four primitive sets defined here failed, de-
spite the shapes representation seeming intuitively like it should work. While there is a lot
of work that is trying to define a good fitness function, a fitness function is limited by the
primitive set that is used to define images. It is therefore important for more work to be
done on the expressiveness of primitive sets, and the definition of standard sets for use in
GP for evolutionary art.

6.1 Future Work

There are several avenues to pursue from this work. The first is that since this work has not
managed to successfully find a good primitive set, further work needs to be done on this.
There are several clear alternatives to certain design choices made in this work:

• HSL or HSV can be used as the colour representation instead of RGB

• Having a shape’s co-ordinates be a terminal, as opposed to being stored in the shape

• Representing locations using non Cartesian co-ordinates

• Using Linear GP or a linear representation within tree based GP

• Have location as a function of where the node is in the tree, as opposed to a property
of the node being drawn
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• Using vector representations of images

As well as changes to the representation, work should be done on the fitness function.
At the moment it is prone to classifying images that are simply an average of the colours
in the image as a good image. Work should be done on a more “intelligent” fitness func-
tion. Possibilities include a fitness function that detects whether “objects” exit in the image,
or changing the shape of the fitness function to bring lower fitnesses closer together and in-
crease the distance between higher fitnesses. This can be done by exponentiating the current
fitness value to an exponent proportional to the number of generations, which will serve the
additional purpose of only moving the lower fitnesses together after a certain time.

More work needs to be done on validating the primitive sets that already exist. Testing
each of the sets currently in use, on a large set of images of the sort that are desired, with
experimental parameters comparable to normal operation. This will help provide results
that give information about particular systems and their capabilities.

Work can also be done to explore the effect of adding the knowledge that some GP func-
tion nodes may actually act as terminals. It may also be worth trying to copy simpler im-
ages. As the images chosen here attempt to sample images from the real world, this may
bring with it additional complexity.
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