
VICTORIA UNIVERSITY OF WELLINGTON
Te Whare Wananga o te Upoko o te Ika a Maui

VUW
School of Mathematics, Statistics and Computer

Science
Te Kura Tatau

PO Box 600
Wellington
New Zealand

Tel: +64 4 463 5341
Fax: +64 4 463 5045

Internet: office@mcs.vuw.ac.nz

Particle Swarm Optimisation for
Image Classification

Hamish Evans

Supervisor: Mengjie Zhang

Submitted in partial fulfilment of the requirements for
Bachelor of Information Technology.

Abstract

With the processing power available to modern computers, reliable multi-
class image classification is now a realistic task. However the need for efficient
and effective classifiers and search techniques is still an area that needs to be de-
veloped to enable this. Particle Swarm Optimisation (PSO) has had some success
in image classification, however all existing PSO image classification techniques
have been used in conjunction with an existing object classification technique.

This project describes two new stand alone approaches to object and image
classification. Instead of using PSO to evolve a set of good parameter values
only for another, already existing, object classification technique, the new ap-
proach can be used as a stand alone method for classification. The first new PSO
method treats all different features equally important and finds an optimal parti-
tion matrix to separate a data set into distinct class groups. The second new PSO
method considers the relative importance of each feature and the noise factor,
and evolves a weight matrix to mitigate the effects of noisy partitions and fea-
ture dimensions. The two methods are examined and compared with a popular
method using PSO combined with the nearest centroid and another evolutionary
computing method, genetic programming, on three image data sets of increasing
difficulty. The results suggest that the new weighted PSO method outperform
these existing methods on these object classification problems.

PSO has also been shown to convergence quickly. This means solutions are
found efficiently but the solution found is often a local optimum solution. This
project describes a new variant of PSO which integrates local search technique,
Simulated Annealing, into the particle dynamics. The new technique is com-
pared against the regular PSO versions of WPPSO and PSONCC and delivers
some unexpected results.

i

Acknowledgements

I would like to acknowledge the following:

• My superviser Dr. Mengjie Zhang, for pushing me to work consistently throughout
the year. The lessons you have taught me in work ethic, research skills, writing skills
and evolutionary computing have been extremely valuable.

• My friend Mathew Campbell-Adams, for always being available to bounce ideas off
and for proof reading my writing on multiple occasions.

i

ii

Contents

1 Introduction 1
1.1 Goals . 2

1.1.1 Research Questions . 2
1.2 Major Contributions . 2
1.3 Organisation . 3

2 Literature Review 5
2.1 Overview Object Classification and Fundamental Elements 5

2.1.1 Features . 5
2.1.2 Data Sets . 6

2.2 Overview of Machine Learning . 6
2.2.1 Supervised Learning . 6
2.2.2 Unsupervised Learning . 7
2.2.3 Reinforcement Learning . 7

2.3 Overview of Evolutionary Computing . 7
2.3.1 Particle Swarm Optimisation . 8
2.3.2 Genetic Algorithm . 9
2.3.3 Genetic Programming . 10

2.4 Overview of PSO Classification Methods . 11
2.4.1 PSO-Nearest Centroid Hybrid Technique 12
2.4.2 PSO-Neural Networks Hybrid Technique 13

2.5 Overview of Genetic Programming Classification Methods 15
2.6 Overview of Particle Swarm Optimisation Variants 15

2.6.1 Fitness Distance Ratio Particle Swarm Optimisation 15
2.6.2 Particle Swarm Optimisation With Mutation 16
2.6.3 Comprehensive Learning Particle Swarm Optimisation 16

3 Image Sets 17
3.1 Image Features Used . 17
3.2 Shape . 18
3.3 Face . 18
3.4 Textures . 18
3.5 Summary of Image Sets . 20

4 Results for Two Existing Classification Methods 21
4.1 Overview . 21
4.2 Experiment Configurations . 21

4.2.1 PSO Configuration . 21
4.2.2 GP Configuration . 22

4.3 Baseline Results . 23

iii

4.4 Chapter Summary . 24

5 PSO Stand Alone Object Classification Techniques 25
5.1 Overview . 25
5.2 Motivation for a Stand Alone PSO technique 25
5.3 Feature Partitioning Particle Swarm Optimisation 25

5.3.1 Particle Encoding and Fitness . 26
5.4 Weighted Feature Partitioning Particle Swarm Optimisation 26

5.4.1 Particle Encoding and Fitness Function 28
5.5 Results and Analysis . 28
5.6 Chapter Summary . 30

6 A Gaussian Approach to Feature Partitioning PSO 31
6.1 Overview . 31
6.2 The Gaussian Approach . 31

6.2.1 Results and Analysis . 32
6.3 Chapter Summary . 33

7 Particle Swarm Optimisation With Simulated Annealing 35
7.1 Overview . 35
7.2 Early Convergence Problem in PSO . 35
7.3 Simulated Annealing . 36
7.4 PSO and Simulated Annealing Integration . 36
7.5 Results and Analysis . 37
7.6 Chapter Summary . 38

8 Conclusions 39
8.1 Overall Conclusions . 39
8.2 Specific Conclusions . 39
8.3 Future Work . 40

8.3.1 Multi-Dimensional Feature Partitioning Particle Swarm Optimisation 40

iv

Figures

2.1 Global Neighbourhood . 8
2.2 Ring Neighbourhood . 8
2.3 GP Tree Structured Program . 10
2.4 Crossover Genetic Operator . 11
2.5 Mutation Genetic Operator . 11
2.6 Class Prototypes Evolved by PSO-NCC . 13
2.7 Feed Foward Neural Network . 13

3.1 Image with Two Sub-Regions (left) and Image with Four Sub-Regions (right) 17
3.2 Shapes with varying pixel means . 18
3.3 Six Classes of Face Images . 19
3.4 Six Classes of Texture Images . 19

5.1 FPPSO Classification Process . 26
5.2 WFPPSO Classification Process . 28

6.1 Feature Partitions versus Gaussians . 31

7.1 Regular Particle Movement (left) and Simulated Annealing Particle Move-
ment (right) . 37

8.1 XOR Problem . 40

v

vi

Tables

3.1 Shape Image Pixel Mean and Standard Deviations 18
3.2 Summary of Image Sets . 20

4.1 PSO Parameter Values . 22
4.2 GP Function Set . 22
4.3 GP Parameter Values . 23
4.4 Baseline Image Classification Results . 24

5.1 Comparison between classification techniques 29

6.1 Comparison Gaussian and Non-Gaussian Partitioning 33

7.1 Comparison between classification techniques with and without Simulated
Annealing . 38

vii

viii

Chapter 1

Introduction

Today’s society relies on computer systems heavily, and everyday computer systems are
placed with the trust to make important decisions. As a result of this there is a large demand
for efficient and effective decision making algorithms. It was not so long ago that computer
vision was an impossible task, however with the exponential increase in computer process-
ing power, achieving computer vision is now a realistic possibility. The challenge is to de-
velop and improve computer vision techniques so that they can equal or even supercede the
ability of human sight. Some computer vision tasks may include: image processing, image
segmentation, and image classification.

Evolutionary Computing (EC) is a subsection of Artificial Intelligence (AI), or more specif-
ically a child branch of Computational Intelligence. EC obtained its name from its ties to the
biological evolution process. All EC techniques maintain a population, where each indi-
vidual in the population is a potential solution to the problem domain. The population is
refined by some user-defined fitness function under an iterative progression, until a point
of convergence is reached.

Evolutionary Computer Vision is the science which involves using EC techniques to build
artificial systems that perform some specific task involving sight. There are many EC tech-
niques which can be applied to Computer Vision, however this project concerns the appli-
cation and advancement of two biologically inspired EC techniques, namely Particle Swarm
Optimisation (PSO) and Genetic Programming (GP), for Image Classification tasks. The role
of PSO and GP in Image Classification is to find the relationship between features extracted
from images and the associated class label of images. The result is a classifier which can take
as input a set of features extracted from an unseen image and predict the image’s class label.

Being a relatively new technique in Evolutionary Computing, PSO is an undeveloped
method for classification. Most of the existing PSO classification techniques have used PSO
in combination with an established machine learning and classification algorithm such as
with the Nearest Centroid method or Artificial Neural Networks. While these methods
have achieved good results in a number of classification tasks, they have a number of lim-
itations. For example, the hybrid methods will always be bound to the same limitations as
the existing machine learning techniques that they are fundamentally based on. In addition,
the hybrid methods almost always require some extra overhead to process the interaction
between PSO and the classification algorithms.

1

PSO has also shown to have an early convergence problem. Due to the laws which dic-
tate how particles move, particles will move quickly toward the best potential solution in
the population. This means that the final solution found by PSO is often a local optimum
solution rather than a global optimum solution. With limited computational resources avail-
able to PSO it is unreasonable to search every possible solution in a large or infinite solution
space, so the challenge is to devise a variant of PSO that can maintain a balance in the popu-
lation between optimal particles and suboptimal particles, as it may be that the suboptimal
particles lead to the global optimum solution.

1.1 Goals

This first and primary goal of this project is to gain a greater insight into the ability of PSO as
a stand alone classifier. This goal will be achieved by developing two new independent PSO
approachs to object classification called Feature Partitioning Particle Swarm Optimisation
(FPPSO) and Weighted Feature Partitioning Particle Swarm Optimisation (WFPPSO), which
does not rely on any existing machine learning technique. The approach will be examined
and compared with a common hybrid PSO-Nearest Centroid method and a GP method on
a series of object classification problems of increasing difficulty. We will investigate whether
the new approach can do a good enough job and whether the new approach outperforms
these existing methods.

The secondary goal of this project is to analyse and address the early convergence problem
in the PSO method. This goal will be achieved by creating a variant of PSO call Particle
Swarm Optimisation Simulated Annealing (PSOSA), which as the name suggests integrates
the local search technique, Simulated Annealing, into the movement of particles through
the solution space. Simulated Annealing will be used to introduce more diversity into the
population to help prevent early convergence.

1.1.1 Research Questions

1. Can the Particle Swarm Optimisation Nearest Centroid (PSONCC) method outper-
form the standard GP method on a sequence of multiclass image classification prob-
lems?

2. Can the new stand alone PSO techniques for classification, FPPSO and WFPPSO, out-
perform the established classification techniques PSONCC and GP on a sequence of
multiclass image classification problems?

3. Can the PSO variant, PSOSA, mitigate the early convergence problem by integrating
Simulated Annealing?

1.2 Major Contributions

This project has made the following major contributions:

1. This project shows how to use particle swarm optimisation (PSO) to construct classi-
fiers for multi-class image classification problems. Two new PSO classification tech-
niques which do not rely on any existing classification techniques have been devel-
oped. The performance of the new techniques is evaluated against existing classifi-
cation techniques such as the PSO nearest centroid hybrid method and genetic pro-

2

gramming. One of the new methods, WFPPSO, shows to outperform the existing
techniques in all but one experiment.

2. A paper titled “Particle Swarm Optimisation for Object Classification” has been sub-
mitted for acceptance at the 23rd International Conference on Image and Vision Com-
puting New Zealand.

1.3 Organisation

This chapter has introduced the concepts of vision and classification tasks in evolutionary
computing. It has also outlined the current limitations of PSO as a technique and a classifier.

Chapter 2 gives a more in depth background of Machine Learning and Evolutionary Com-
puting. In sections 2.4 and existing object classification methods for PSO and GP are de-
scribed respectively. Chapter 3 describes the image sets which are used to test all of the
algorithms in this project.

Chapter 4 describes the baseline image classification techniques, PSONCC and GP. The
specific parameters used in the experiments for each technique are presented and then the
results for a series of image classification tasks are presented and analysed.

Chapter 5 gives an in depth description of the new stand alone PSO classification tech-
niques, WFPPSO and FPPSO. Specifically this includes a high level description backed with
an example, there is also a description of how the classifier is encoded into a particle.

Chapter 6 describes an experimental technique called GDPPSO, which extends the FPPSO
framework to take a full probabilistic approach to object classification.

Chapter 7 describes Particle Swarm Optimisation Simulated Annealing which is a PSO
variant that attempts to mitigate the effects of early convergence in PSO. The results are
presented and compared against the non simulated annealing versions of the technique.

Chapter 8 outlines the overall conclusions and all the specific conclusions. Possible future
directions and ideas are also dicussed.

3

4

Chapter 2

Literature Review

2.1 Overview Object Classification and Fundamental Elements

2.1.1 Features

A feature can be described as a discrete or continuous value that pertains to a type of entity.
Features are the fundamental building block of many representations in AI search problems.
The following sections describe the various categories of features and also the feature vector
which is the standard format for representing an object in an object classification problem.

Categories of Features

Features can for the most part be grouped into a hierarchy of three groups: low level, mid-
range and high level features. Low level features are values which do not abstract away
from the object/image at all. The raw pixel values of an image are an example of low level
features because they are a direct representation of the object, in this case an image. The
major drawback of using low level features is the large amount of computational power to
process them in an efficient way. For this reason low level features are only seldom used by
object classification techniques [1].

The mid-range category of features is a somewhat debatable category. The category con-
tains features which are domain independent but abstract away from the object/image in
some way. Pixel statistics such as the mean or standard deviation of an image would be
mid-range features. They are mid-range features because they are still domain independent
(they can be applied to any image set) but do not directly represent the image (they abstract
away from the raw pixel statistics). As we will later see, mid-range features are chosen to be
used in the experiments contained within this project.

High level features can be described as domain dependent features, they describe some-
thing very unique about each object in the data set being classified. If an image set of dif-
ferent faces was being classified, then examples of high level features would be the distance
between their eyes, length of their nose and the curvature of their mouth. They are high
level features because you cannot obtain these types of features from all kinds of image sets.
High level features are in most cases able to obtain the best classification accuracy, however
they are used in a goal oriented situation rather than a technical oriented situation. For this
reason they are not used within this paper.

5

Feature Vector

The feature vector is a vector of discrete or continuous values that describes a particular
entity in a given search problem. It defines a standard format which can be relied upon
by the search technique. In an object classification problem the general format of a feature
vector is a series of features pertaining to the object followed by one or more output labels,
this is defined in equation 2.1 where n is the number of features.

FeatureVector = (f0, f1, .., fn, classlabel) (2.1)

2.1.2 Data Sets

Training Set

The training set consists of all feature vectors that are used within the training/learning
process of the classifier.

Testing Set

The testing set consists of all feature vectors that are not used within the training/learning
process of the classifier. They are used to test the ability of the classifier to correctly classify
unseen instances. The motivation for this is that practical classifiers are often required to
classify instances that are not currently known.

Data Set Normalisation

The data set is normalised such that every value in each feature vector is in the range [0, 1].
This normalisation process ensures that each feature has an equal influence in the classifi-
cation. For example, let the classifier be a mathematical function with one dimension in the
data set in the range [1000, 10000], and another in the range [0, 100]. It would be likely that
the dimension in the range [1000, 10000] would have a greater influence in the classification
than the dimension in the range [0, 100]. This characteristic is, in most cases, undesirable.
The data set is normalised according to equation 2.2.

xij =
xij − xmin

j

xrange
j

(2.2)

Where xmin
j is the minimum value in the dimension j and xrange

j = xmax
j − xmin

j .

2.2 Overview of Machine Learning

Machine Learning is a subsection of AI and a large one at that. It encompasses all areas of
AI which involve adapting to new circumstances and extrapolating patterns. There are a
number of learning methods which machine learning techniques use, such as Supervised
Learning, Unsupervised Learning and Reinforcement Learning. The following sections will
briefly describe each of these learning methods.

2.2.1 Supervised Learning

Supervised Learning is a method which, in conjunction with the training set, enables the
adaptation of a candidate solution. The candidate solution is applied to the feature vector of

6

each instance in the training set to produce a predicted output value. The predicted output
value of each instance in the training set is then compared to the desired output value of
that instance. By this, the goodness of the candidate solution can be obtained, for example
the total error rate.

If the candidate function does not meet a satisfactory requirement it can be modified and
re-evaluated. On the contrary, if it does, the evaluation process can be stopped. It is this
iterative modification and re-evaluation that is the foundation of the supervised learning
process. To test the candidate solution, that has reached a point of termination in the learn-
ing process, it is a applied to the testing set.

2.2.2 Unsupervised Learning

Unsupervised Learning is similar to Supervised Learning in that it uses a feature vector but
it does not have the supervision of the output class label. Unsupervised learning is used
to locate patterns in the data set feature vectors. The patterns can then be used in some
way to separate the data set instances into groups and ultimately classes. The groups found
via unsupervised learning do not always directly correlate to the regular groups one might
expect.

2.2.3 Reinforcement Learning

Reinforcement Learning is a method somewhere in between that of Supervised Learning
and Unsupervised Learning. It is a method of learning that gives the system some insight
into how correct a candidate solution is, much like a hint. The degree to which a candi-
date solution is correct is represented by some discrete scale, rather than a binary correct or
incorrect feedback.

2.3 Overview of Evolutionary Computing

Evolution is a theory that was first described Charles Darwin in the late 1880s [2]. The theory
describes the progression of life through the means of natural selection. In other words all
species, either in or out of existence, have come from common ancestors and have succeeded
or failed by natural selection.

In the 1960s the concepts outlined by Darwin were adapted into computer systems to
enable the programming of computers by means of natural selection [3]. The first search
technique created was Genetic Algorithms [4], however the success of this technique later
spawned many others such as: Genetic Programming [3] [5], Evolutionary Strategy and
Learning Classifier Systems [6] [7].

More recently a new branch of techniques, that are based on social-psychological insight,
have been created under the category Swarm Intelligence, namely: Particle Swarm Optimi-
sation and Ant Colony Optimization.

This section gives an in depth overview of the techniques pertaining to this project, which
are Particle Swarm Optimisation, Genetic Algorithms and Genetic Programming.

7

2.3.1 Particle Swarm Optimisation

Introduced by Jim Kennedy and Russell C. Eberhart in in 1995 [8] [9], PSO is a stochastic,
population-based evolutionary algorithm for problem solving. It is a kind of swarm in-
telligence that is based on social-psychological principals and provides insight into social
behavior.

The population in PSO is called the swarm, where each individual in the population is
a particle. A particle is a position (a vector) in a d-dimensional solution space. A particle
modifies its position according to its velocity (a vector), which is stored within the particle.
A particle also maintains a reference to the best location it has come across in the solution
space. This reference is called the pbest, short for previous best.

The particles in the swarm are interconnected by a topology, called a neighbourhood.
Each particle can share information with its neighbours, which are determined by the neigh-
bourhood. The best pbest out of all of a particle’s neighbours is known as the gbest, short for
global best. There are two commonly used neighbourhoods, the global neighbourhood and
the ring neighbourhood, they are depicted in figures 2.1 and 2.2 respectively.

1
P P

P

PP

P
3

2

45

6

Figure 2.1: Global Neighbourhood

1
P P

P

PP

P
3

2

45

6

Figure 2.2: Ring Neighbourhood

The global neighbourhood supports fast information sharing between particles and is
used in cases where efficiency is valued over effectiveness. A ring neighbourhood on the
other hand slows the propagation of information through the swarm. This will increase
the time taken for the swarm to converge, however it helps to prevent the swarm from

8

converging on a local optimum solution by allowing the swarm to search more diverse areas
of the solution space.

The optimisation process of PSO occurs in an iterative fashion. Within each iteration the
velocity of each particle in the swarm is updated. Equation 2.3 dictates how a particle’s
velocity is updated, where r1 and r2 are two independently generated random numbers in
the range [0,1] and χ is a constriction factor used to prevent velocity values from growing
out of control. The particle position can then be updated according to formula 2.4 where χ
is a constriction factor, X is the particle’s current position in the solution space and r1 and r2
are two randomly generated floating point values in the range [0, 1].

PVid = χ[PVid + φ1r1(pbestid − Xid) + φ2r2(lbestn
id − Xid)] (2.3)

Xid = Xid + PVid (2.4)

2.3.2 Genetic Algorithm

Introduced by John Holland in 1954, the Genetic Algorithm is a highly parallel process that
evolves fixed length character strings using evolutionary theory first described by Charles
Darwin [2] in the 1880s. The Genetic Algorithm maintains a population of solutions which
are selectively modified over an iterative process by genetic operators. The solution repre-
sentation and genetic operators will be described in the next two sections.

Solution Representation

Solutions in Genetic Algorithms [4] are usually represented as a sequence of fixed length
strings. Each value in the program string will represent some property associated with a
solution to that problem domain. A simple example would be if you were the owner of
a restaurant and wanted to implement a strategy to maximise your profits. Assume there
were three binary decisions such as:

• Price - Should the price of steak be 10 or 15 dollars.

• Drink - Should wine or coke be served with the steak.

• Speed of Service - Should the customers have to wait for their steak or should it be
served as soon as possible.

The problem could be encoded in a GA as a bit string of three binary values where the
first bit represents the price property, the second represents the drink property and the last
represents the speed of service property.

Genetic Operators

The evolution process in the Genetic Algorithm occurs over many iterations called gen-
erations. Each generation the current population of individuals (fixed length strings) are
modified by two main genetic operators: crossover and mutation.

Crossover works by taking two individuals in the population. It then takes a substring
at a random point from each of the individuals. The two substrings are swapped which
produces two new offspring. This is analogous to biological sexual reproduction.

9

Mutation works by taking a singular individual in the population and randomly mutating
one of the values in the bit string.

Evolution Process

A user defined fitness function is used by the Genetic Algorithm to guide the population to
a point of convergence that is desirable. The fitness function is applied to each individual
in the population at the end of every iteration. When the fitness function is applied to an
individual it gives a fitness value which dictates the goodness of the individual. If the fitness
of every individual in the population is known, the GA can select individuals for mating
that will produce better offspring in the next generations.

2.3.3 Genetic Programming

GP is a population based Evolutionary Computing technique used to solve all kinds of
problems such as symbolic regression and classification. The idea of Genetic Programming
stemmed from the original Genetic Algorithm with the fundamental difference that individ-
uals would be represented as dynamic tree structure rather than a fixed length string.

Solution Representation

Each individual in the GP population is represented as a tree structure consisting of both ter-
minals (leaves) and functions. Functions generally fall into one of a few categories: standard
arithmetic operations, standard programming operations, standard mathematical functions,
logical function, or domain-specific functions. Each of these functions may take as argu-
ments terminals or functions, which recursively build up a tree structure. Terminals which
act as the leaf nodes of the tree are usually one of boolean, integer, real, vector or symbolic
types [3]. Figure 2.3 depicts a simple tree structure of the addition function with a feature
terminal and a floating point terminal.

1 4.3f

+

Figure 2.3: GP Tree Structured Program

Genetic Operators

The initial population of GP programs is generated randomly, however in the subsequent
cases GP programs are generated using genetic operators. The two genetic operators used
in GP are called crossover and mutation. Crossover takes two existing GP programs, then
takes two different random subtrees from each of them. It then proceeds to swap the two
subtrees, producing two different child GP programs. Mutation on the other hand only
requires one parent and constructs offspring by randomly changing a certain subtree of the
parents tree structure. The portion may be a terminal, a function or a combination of the
two. Figures 2.4 and 2.5 depict the crossover and mutation genetic operators.

10

f 2.3

−

3 4.3f4

+

4.3f

1f

4

+

+

2

3f

f

2.3

−

*

Crossover

1f

+ *

f2

Parent 2 Child 2Child 1Parent 1

Figure 2.4: Crossover Genetic Operator

2

3f

f

2.3

−

*

*

f 5.42

Mutation

Parent 1

Child 1

Figure 2.5: Mutation Genetic Operator

Evolution Process

The learning process in GP, known as the evolution process, is iterative. Each individual in
the GP population is evaluated every evolution by some user defined fitness function which
returns the goodness of an individual called the fitness.

Once the fitness of each individual in the population has been evaluated, a mating pool
must be selected from the population, which can be used to produce the next generation of
GP programs. The mating pool selection process can be done via a number of methods, such
as tournament selection[10] or roulette wheel selection [3]. Roulette wheel selection is the
more common selection process which selects individuals of the mating pool proportionate
to their fitness. Once the mating pool has been selected, genetic operators can be used to
generate the next population. This cycle is repeated until some termination criteria is met.

2.4 Overview of PSO Classification Methods

Particle Swarm Optimisation has been used for classification with a decent amount of suc-
cess. However all existing PSO classification methods have been used in combination with
an existing classification method, such as the Nearest Centroid method or with Neural Net-
works. When PSO is used in combination with an existing classification method it forms
what is termed a hybrid technique. The following sections will describe the Nearest Centroid
method and Artificial Neural Networks, and how PSO is used to assist in classification.

11

2.4.1 PSO-Nearest Centroid Hybrid Technique

The Nearest Centroid method has been around for some time and relates closely to other
proximity search techniques such as the nearest neighbor method. PSO can be combined
with the nearest centroid method to achieve better results. The following sections describe
the nearest centroid classifier and how PSO can be combined with the Nearest Centroid
Classifier to form a hybrid technique.

Nearest Centroid Classifier

The standard Nearest Centroid Classifier (NCC) uses a set of centroids to classify a feature
vector. There is a centroid for every class, where the centroid for a particular class is the
mid position of every feature vector of that class, in the training set. This means that each
centroid is a vector of size d, where d is the number of dimensions in a feature vector.

To classify a feature vector using the class centroids, the distance between each centroid
and the feature vector is calculated. There is a variety of distance measures that can be used,
however the most common distance measure is the Euclidean distance, which is calculated
using equation 2.5.

Euclidean(x, y) =

√√√√ d

∑
i=0

(xi − yi)2 (2.5)

The class of the centroid, which has the minimum distance from the feature vector, is the
classification of that feature vector.

PSO and NCC Hybridisation

PSO can be combined with NCC (PSO-NCC) to optimise the class centroids, however using
the term centroid is no longer accurate in this technique since, in most cases, they do not
represent the middle point of the class instances. A more accurate term would be prototypes.

To use PSO to evolve the class prototypes, each particle must be encoded as a c× d matrix,
where c is the number of distinct classes in the training set and d is the number dimensions
in each feature vector, this is shown by equation 2.6.

particlei =

 cv(1,1) .. cv(1,d)
..

cv(c,1) .. cv(c,d)

 (2.6)

As each particle changes its position in the solution space by equations 2.3 and 2.4, the
particle is effectively changing the positions of the class prototypes. As a result of this the
class prototype positions are often irregular. However irregular positions often result in
better classification accuracy than using the regular centroids. An example of two class
prototypes that have been evolved in a two dimensional solution space using PSO-NCC are
depicted in figure 2.6.

The two class prototypes, at the bottom of the graph, are the points which each instance is
measured from. The closest class prototype becomes the classification for a given instance,
the boxes of each class prototype encapsulate the instances which will be classified as the
class of that prototype.

12

Figure 2.6: Class Prototypes Evolved by PSO-NCC

2.4.2 PSO-Neural Networks Hybrid Technique

Artificial Neural Networks (ANN) have been the spearhead of many AI tasks since the
1980s, for this reason they are the most researched field in AI. Multi-Layer Feed-Forward
Neural Networks are a type of ANN in which the information moves in one direction, there
are no cycles or loops in the network. In recent years PSO has been used in combination
with ANNs to optimise the weights of the ANN. The following sections describe Multi-
Layer Feed-Forward Neural Networks and how PSO can be used to optimise them.

Feedfoward Neural Network

A Feed-Forward Neural Network (FNN) is an adaptive artificial system which is based
on the ideology of the human brain’s neural structure. The standard structure of a Feed-
Forward Neural Network consists of three layers of nodes (input layer, hidden layer and
output layer), where each node in a layer is connected to every node in the following layer.
Every connection also has a weight value. All information moves in one direction, from the
input layer through the hidden layer(s) to the output layer.

Hidden Layer Output LayerInput Layer

Figure 2.7: Feed Foward Neural Network

The feed-foward pass is used to obtain a classification output using a FNN. Each value
in the feature vector is passed to an input node, which means that there are an equal num-
ber of input nodes as there are feature dimensions. The output from each input node is
then passed to every node in the hidden layer and multiplied by weightinput→hidden, where

13

input → hidden is the connection from the input node to the hidden node. The output
from each hidden node is then passed to every node in the output layer and multiplied by
weighthidden→output.

The output vector from the FNN can finally be mapped to a classification. For example
if the problem was a three class classification problem, class 1 would be represented as the
(0, 0, 1) vector, class 2 would be represented as the (0, 1, 0) vector and class 3 would be
represented as the (1, 0, 0) vector. To map an output vector from the ANN to a classification,
a winner takes all method is used, where the largest output value is rounded to 1 and then
lesser values are rounded down to 0. This means the output vector will equal one of the
class vector representations and classified as the corresponding class.

The training of the connection weights is usually done via a method called the back prop-
agation (BP) algorithm. The BP algorithm initially sets all the connection weights to small
random values. Then for each particular feed-forward pass, the weight change between
each layer is calculated by the following steps.

1. Take the output vector from the feed-forward pass

2. Calculate β, how beneficial the change is (in terms of lower error), for output nodes:

βz = dz − oz (2.7)

3. Compute β for each hidden node:

βh = ∑
z

wh→ooz(1− oz)βz (2.8)

4. Compute and store the weight changes for all weights:

∆wi→h = ηoioh(1− oh)βh (2.9)
∆wh→o = ηohoz(1− oz)βz (2.10)

Genetic Algorithms [4] have also been used, either in combination with the BP algorithm[11]
or as a stand alone method[12], to evolve the FNN architecture and weights. Genetic Algo-
rithms have shown to contribute a more effective global search to the BP algorithm which
uses a gradient decent search known for it’s ability to search local areas very effectively [12].

PSO and FNN Hybridisation

PSO has also shown to be an effective technique for evolving the weights of a FNN. With a
pre-defined FNN structure each particle can be encoded as the set of weight values, such as
in equation 2.11, where m is the number of input nodes, n is the number of hidden nodes
and o is the number of output nodes.

particlei =

 w1 .. wm
w1 .. wn
w1 .. wo

 (2.11)

Every iteration each particle is evaluated by copying the particle input, hidden and out-
put weights into the FNN input, hidden and output weights respectively. The particle fitness
is then the error rate of the ANN.

14

2.5 Overview of Genetic Programming Classification Methods

There are many ways to implement multi-class classification in genetic programming, such
as static class boundary determination, slotted dynamic class boundary determination and
centered dynamic class boundary determination [13], [5]. This project has a low focus on
GP therefore the most basic of methods, static class boundary determination, was used in
implement GP classification.

In static class boundary determination the real numbers are split into n slots, where n is
the number of classes in the classification task. Therefore each slot is associated with one
class. Using the static class boundaries any floating point value outputed from a genetic
program can be mapped to a class label. Equation 2.12 dictates the output class label, where
T is some constant value, v is the program output.

Class =



class1, v <= 0
class2, 0 < v <= T
class3, T < v <= 2T

..., ...
classi, (i− 2) ∗ T < v <= (i− 1) ∗ T

..., ...
classn, v > (n− 2) ∗ T


(2.12)

2.6 Overview of Particle Swarm Optimisation Variants

Particle Swarm Optimisation has shown to be a very successful optimisation technique with
very little overhead. However, PSO is often accused of having an early convergence prob-
lem. This is due to particles flying toward the best known solution. Therefore if the global
optimum solution is not on the path between any given particle and the current gbest then
it is likely the swarm will converge on a local optimum solution. In many problems a global
optimum solution is required therefore this characteristic is undesirable. Some PSO vari-
ant methods have been created to try and overcome this limitation and are described in the
following sections.

2.6.1 Fitness Distance Ratio Particle Swarm Optimisation

Particle velocity in standard Particle Swarm Optimisation is influenced by the best known
particle pbest and the best known particle in the neighbourhood, gbest. Fitness Distance
Ratio Particle Swarm Optimization (FDR-PSO) adds a third influential particle called nbest,
which is the particle that maximises the fitness distance ratio, calculated by equation 2.13.

Fitness(Pj)− Fitness(Xi)
|Pjd − Xid|

(2.13)

Where P is the candidate nbest particle and |...| denotes the absolute value. The particle
velocity is then updated by equation 2.14:

PVid = χ[PVid + φ1r1(pbestid − Xid) + φ2r2(gbestid − Xid) + φ3r3(nbestid − Xid] (2.14)

15

Results have shown that with a higher weighting on φ3, FDR-PSO out performs standard
PSO in many optimisation problems [14].

2.6.2 Particle Swarm Optimisation With Mutation

Particle Swarm Optimisation with Mutation is a variation of PSO which uses the genetic
operator, mutation, to prevent premature convergence. There is a Pmute probability that the
mutation operator randomly changes the particle position. The mutation operator intro-
duces unseen parts of solution space into the swarm, in many cases this can contribute to
the finding of a better solution than the current gbest [15] [16].

PSO with mutation was used to optimise four functions: sphere, sckley, rastrigin and
rosenbrock of dimensions 10, 20 and 30. The results found showed that the mutation op-
erator provided significant improvement in performance for the rastrigin and rosenbrock
functions for larger dimension values. However the mutation operator actually decreased
the performance in the sphere function.

2.6.3 Comprehensive Learning Particle Swarm Optimisation

Comprehensive Learning Particle Swarm Optimisation (CLPSO) is a variation of PSO where
the particle velocities are only influenced by one best position rather than two. Equation 2.15
dictates how the particle velocity is calculated.

PVd
i = χ[PVd

i + φ1r1(pbestd
f i(d) − Xd

i)] (2.15)

where fi = [fi(1), fi(2), ..., fi(D)] defines which particles pbest the particle i should fol-
low. pbestd

f i(d) can be the corresponding dimension of any particle’s pbest including its own
pbest. The decision depends on the learning probability Pc. A random number is gener-
ated for each dimension, if the random number is greater than Pc then pbestd

f i(d) refers to its
own pbest otherwise it will refer to a different particle’s pbest. Results obtained from using
CLPSO to solve multi-model problems show to outperform standard PSO [17].

16

Chapter 3

Image Sets

Three image sets of varying difficulty were used to test the algorithms described in this
project: shape, face and texture. Each image set consisted of multiple classes of images and
each individual image contained a singular class and some kind of background or noise. Sec-
tion 3.1 describes the features that were extracted from each of the images to form the image
feature vectors. The remaining sections describe each of the image sets in approximately
ascending order of difficulty. However image set difficulty often varies from technique to
technique as we will see in later results.

3.1 Image Features Used

The features used for the experiments undertaken in this project are image pixel statistics.
The mean and standard deviation of multiple sub-regions from the full image comprise the
feature vector. Figure 3.1 depicts 2 and 4 sub-regions respectively, each of which the mean
and standard deviation will be extracted from.

Figure 3.1: Image with Two Sub-Regions (left) and Image with Four Sub-Regions (right)

The motivation for using such primitive features is questionable. Such features could
mean lower performance is to be expected than if more features or higher level features were
used. However if good classification results can be achieved with a simple set of domain
independent features (such as pixel statistics), equal or better results can be achieved by
obtaining more features from other sub-regions or by using higher level features that are
dependent on the image set. Development of good specific features for a particular task is
beyond the scope of this project.

17

3.2 Shape

The shape image set consisted of four classes of shapes: light squares, dark-grey squares,
dark-grey circles and black circles, each with varying pixel means and standard deviations.
Each class was generated using a Gaussian filter against a uniform background. The shape
image set consisted of 200 image cut outs (50 from each class). The shape training set and
testing set were both generated using TFCV for every experiment in this project. Figure 3.2
depicts the four classes of shapes.

Figure 3.2: Shapes with varying pixel means

The pixel mean and standard deviation of each different class of image are presented in
table 3.1. An important observation is that all of the class mean values are well separated.
This suggests that the shape classes will be fairly easy to distinguish between and high clas-
sification accuracy is to be expected..

Class Mean Standard Deviation
Light Squares 150 30
Dark-Grey Squares 135 35
Dark-Grey Circles 120 40
Black Circles 105 65

Table 3.1: Shape Image Pixel Mean and Standard Deviations

3.3 Face

The face image set consists of images from six different people. The images were taken
at different times of the day with varying lighting, facial expressions (open/closed eyes,
smiling/non-smiling) and facial details (glasses/no-glasses). All the images are taken against
a dark homogeneous background and the subjects are in up-right, frontal position. The im-
ages are taken from set1, set2, set3, set8, set15 and set16 in the ORL face database which
contains 40 different image sets of people [18] [19]. The face image set consisted of 60 image
cut outs (10 from each class). The face training set and testing set were both generated using
TFCV for every experiment in this project. Figure 3.3 depicts the six classes of faces.

Due to the number of possible variations between each image, features generated from the
face image set are likely be less separable than those from the Shape image set. Therefore
we would expect the classification difficulty of this image set to be a step up from the basic
shape image set.

3.4 Textures

The texture image set consisted of six similar texture images, hearingbone weave, woolen cloth,
wood grain, bark, straw and raffia. The images were taken by a camera under natural light and
can be found in the web-based image database held by SIPI of USC [20]. The texture image

18

Figure 3.3: Six Classes of Face Images

set consisted of 1350 image cut outs (225 from each class). The training set was created
from 675 texture cut out images with an even distribution of classes. The remaining 675
texture cut out images comprised the testing set. Figure 3.4 depicts each respective class of
texture that was used for image classification. To the human eye these textures are easily
distinguishable, however their pixel statistics are very similar. We would expect the texture
image set to be hard to classify.

Figure 3.4: Six Classes of Texture Images

19

3.5 Summary of Image Sets

Table 3.2 contains a summary of each of the image sets.

Dataset Similarity Classes Images Size
Shapes Low 4 10x4 30x30
Faces Medium-High 6 10x6 90x110
Textures High 6 225x6 40x40

Table 3.2: Summary of Image Sets

20

Chapter 4

Results for Two Existing Classification
Methods

4.1 Overview

In this chapter we are looking to achieve the goal of a baseline for image classification which
latter methods can be compared against. Without a baseline it is hard to gauge the ability
of a new technique. The two existing techniques used for image classification in these sec-
tions are the PSO-Nearest Centroid Method and Genetic Programming, which were both
described extensively in earlier chapters.

4.2 Experiment Configurations

The specific configuration settings of a search technique can dictate largely the effectiveness
of the resulting classifier produced. This is especially prominent in GP which has such a vast
range of configuration abilities. This can be both a blessing and a curse; while GP provides
the potential functionality to solve many different kinds of problems, there is a fair amount
of overhead in setting a GP configuration correctly to solve even a simple problem. The
following sections will describe the various parameter values used by the search techniques
used in the baseline experiments and all proceeding experiments.

4.2.1 PSO Configuration

The following is a brief description of each of important parameters used in PSO.

• Swam Size - The number of particles in the swarm.

• Max Iterations - The number of iterations before the optimisation process is termi-
nated.

• Velocity Min Value - The minimum value any dimension value in a particle’s velocity
vector can obtain. This stops particles from flying too fast and over shooting a solution.

• Velocity Max Value - The maximum value any dimension value in a particle’s velocity
vector can obtain. This stops particles from flying too fast and over shooting a solution.

• Dimension Min Value - The minimum value any dimension value in the particle’s
centroid vector can obtain.

21

• Dimension Min Value - The maximum value any dimension value in the particle’s
centroid vector can obtain.

• Constriction Factor - A value used to stop the particles velocity growing too fast.

Table 4.1 details the specific values used in PSO for the baseline experiments. These same
values were used for every image set.

Parameter Kind Parameter Name Value

Search Parameters
Swarm Size 40
Max Iterations 200

Particle Parameters

Velocity Min Value -1.0
Velocity Max Value 1.0
Dimension Min Value 0.0
Dimension Max Value 1.0
Constriction Factor 0.74

Table 4.1: PSO Parameter Values

4.2.2 GP Configuration

The GP configuration defines a set of building blocks and properties that facilitate the solv-
ing of a problem efficiently. The following sections describe the building blocks (function
and terminal sets) and the properties (parameter values) used in the GP baseline experi-
ments. It is important to note that while it is likely that the GP configuration could have
been modified to achieve even greater classification accuracies, this is a baseline experiment
which means that the GP configuration is the very much a basic/standard configuration.

Function Set

The set of possible functions used in a GP program was the standard arithmetic operators
(with a small exception) and an if conditional statement. The exception to the arithmetic
operators is the protected division operator which will return 0 if the denominator is 0, a
characteristic not seen in regular division. The if conditional is quite unique in that it takes
three arguments: the first is a boolean condition, if the boolean holds the second argument (a
subtree) is executed, otherwise the third argument (a subtree) is executed. Table 4.2 details
the function set used.

Function Description
+ Standard arithmetical addition
- Standard arithmetical subtraction

Standard arithmetical multiplication
/ Protected division. Returns 0 if the denominator is 0.
if Executes argument two if argument one is true other executes argument three.

Table 4.2: GP Function Set

Terminal Set

The set of possible terminals used in a GP program consisted of the set of features and the
set of floating point numbers in the range [0, 100]. It is important to note that set of features

22

is of varying size depending on the specific experiment. The floating point terminals are
generated at the same time as the node and remain static throughout the duration of the
evolution process.

Fitness Function

The fitness function used for all GP experiments was the classification accuracy on the train-
ing set.

Parameter Values

The following is a brief description of each of important parameters used in PSO:

• Population Size - The number of individuals/genomes in the population.

• Max-Depth - The maximum depth a tree (individual) can obtain.

• Max Generations - The maximum number of generations before the evolution process
is terminated.

• Reproduction-rate - Also called the elitism rate, this is the percentage of individuals in
the current population that are copied directly into the next generation of individuals,
without being modified by any genetic operators.

• Crossover-rate - The percentage of individuals in the mating pool that will be used to
reproduce offspring using the crossover operator.

• Mutation-rate - The percentage of individuals in the mating pool that will be used to
reproduce offspring using the mutation operator.

Table 4.3 details the specific values used in GP for the baseline experiments. These same
values were used for every image set.

Parameter Kind Parameter Name Value

Search Parameters
Population Size 1000
Max-Depth 6
Max-Generations 100

Genetic Operators
Reproduction-rate 2%
Crossover-rate 70%
Mutation-rate 28%

Table 4.3: GP Parameter Values

4.3 Baseline Results

The mean values of 30 runs using PSO-NCC and GP classification techniques, against each
of the image sets described in section 3, are presented in table 4.4.

For the Face and Shape data sets, ten-fold cross validation (TFCV) was used, and the
accuracy reported is the average accuracy across all ten sub-runs. TFCV is used because the
Face and Shape image sets are relatively small and by using TFCV the training and testing
sets are maximised.

23

Dataset Technique Features Accuracy (%)

Shapes
PSO-NCC

4 100.00
8 100.00

GP
4 99.10
8 99.30

Faces
PSO-NCC

4 86.07
8 85.78

GP
4 49.89
8 52.61

Textures
PSO-NCC

4 83.01
8 76.7838

GP
4 63.52
8 61.48

Table 4.4: Baseline Image Classification Results

For the Shapes image set, PSO-NCC obtained perfect results and GP obtained near perfect
results. This is to be expected as each different class of shape has a separable set of pixel
statistics obtained through a Gaussian distribution. It confirms the hypothesis that the shape
image set is easy to classify.

For the Faces image set, PSO-NCC showed to outperform GP by a significant amount of
36.16 %. The reasons for GP struggling on the face image set is that, although TFCV was used
on the face image set, the number of training examples was not enough for sufficient training
of the GP program. It is also confirmation that GP struggles to obtain good classification
accuracy using the static class boundary classification map when the number of classes is
large. It is important to note that even though GP only obtained a classification accuracy
of 49.89 % with 4 features, it is still better than a random choice classifier. This is because
there are six classes of images, a random choice classifier would obtain a mean accuracy of
approximately 20 %.

For the Texture image set, PSO-NCC obtained a worse classification accuracy with 8 fea-
tures than with 4 features. This is quite unusual in most cases however in this case it is
probably more a reflection on the suitability of the features selected to classify the textures.
Feature selection is a very open ended question and beyond the scope of this project. Inter-
estingly GP was more effective in classifying the Texture image set than the Faces image set,
this relates back to the number of training instances. The Texture image set had 180 images
per class in the training set compared to the Faces image set which had 9 images per class in
the training set. However due to the inseparability of the texture features, GP still struggled
to obtain a high classification, its best being 63.52 %.

4.4 Chapter Summary

In this chapter the goal of a baseline for image classification was achieved using two es-
tablished object classification techniques. The two techniques used were the PSO-Nearest
Centroid and Genetic Programming and each technique was tested on three image sets of
varying difficulty. The results suggested that PSO-Nearest Centroid method outperformed
Genetic Programming in general. The contribution of this chapter is that it will serve as a
benchmark to compare new techniques against later in the project.

24

Chapter 5

PSO Stand Alone Object Classification
Techniques

5.1 Overview

The PSONCC technique was described in section 2.4.1. This section describes two new PSO-
based methods for object classification which do not rely on any existing object classification
techniques. The two techniques are called Feature Partitioning Particle Swarm Optimisation
(FPPSO) and Weighted Feature Partitioning Particle Swarm Optimisation (WFPPSO). In general
over this chapter we hope to distill the effective difference between FPPSO and WFPPSO
and analyse whether they can do a good enough job on a sequence of multiclass image
classification problems. Specifically we are interested what the effective difference between
WFPPSO and FPPSO and whether the weighting provides effective benefits.

This chapter is structured as follows. The motivation for the new stand alone techniques
are described in section 5.2. This is followed by two sections which describe FPPSO and
WFPPSO respectively. Finally the classification results of FPPSO and WFPPSO are presented
and analysed in section 5.5.

5.2 Motivation for a Stand Alone PSO technique

PSO has been used for object classification with varying success [21] [22] [23], however these
techniques have used PSO in combination with an existing object classification technique.
The following sections describe two new PSO techniques that do not rely on any existing
object classification techniques. The ideology of feature partitioning stemmed from Genetic
Algorithm classification techniques [4] [24], however FPPSO and WFPPSO differ somewhat.

5.3 Feature Partitioning Particle Swarm Optimisation

Feature Partitioning Particle Swarm Optimisation (FPPSO) is a classification technique which
tries to find an optimal Partition Matrix (PM) to separate a data set into distinct class groups.
PSO is used to evolve a class partition for each class on every feature dimension. Together
these form the PM which is the fundamental basis used for object classification. A class par-
tition in this case is simply a lower and upper limit, which together constitute the bounds
which a value can fall within.

25

To classify a feature vector using FPPSO, each feature in the feature vector is first classi-
fied separately using the PM. These are termed dimensional classifications. For example,
if a feature vector such as (0.15, 0.35, 0.27) was presented to the PM defined in 5.1, class
partitions ([0.1, 0.2], [0.25, 0.5], [0.25, 0.4]) would be matched on dimensions 1, 2 and 3 re-
spectively. This would return dimensional classifications (1, 1, 2).

PM =

 (0.1, 0.2) (0.3, 0.6) (0.7, 1.0)
(0.25, 0.5) (0.05, 0.1) (0.6, 1.0)
(0.9, 1.0) (0.25, 0.4) (0.0, 0.2)

 (5.1)

Secondly, the number of votes each class obtained is calculated. In the example referred
to previously, the vote counts would be (2, 1, 0) for classes 1, 2 and 3 respectively. The class
with the most votes is the final classification, in this case the final classification would be
class 1 with 2 out of 3 votes. Figure 5.1 depicts the entire classification process.

Class 3

Class 1

V
ot

in
g

M
et

ho
d

Input Features

Class 1 Class 2

Class 2

Class 3 Class 1

Class 3

Class 2

Classification
FinalDimensional

Classification

Figure 5.1: FPPSO Classification Process

5.3.1 Particle Encoding and Fitness

The PM is encoded in the particle as a dimensions× classes matrix, where each row r in the
matrix describes the set of class partitions for dimensionr, as shown in Equation 5.2. Each
value in the matrix is a value pair, which corresponds to the lower and upper bounds of a
partition.

particlei =

 (lower, upper)(1,1) .. (lower, upper)(1,c)
..

(lower, upper)(d,1) .. (lower, upper)(d,c)

 (5.2)

The fitness of each partition in the matrix is evaluated individually and is defined by
equation 5.3. Formally this equation is known as the sensitivity.

Fitnessi,j = truepositives/(truepositives + f alsepositives) (5.3)

5.4 Weighted Feature Partitioning Particle Swarm Optimisation

WFPPSO is an extension of the FPPSO classification algorithm which uses the same frame-
work as FPPSO for classification but includes a number of weights to increase the classifica-
tion accuracy. Once the best partition matrix has been found by the FPPSO method, weights
for each partition and each dimension are learned. For the purpose of this paper the parti-
tion weights are called the Partition Weight Matrix (PWM) and the dimension weights are
called the Dimensional Weight Vector (DWV).

26

The PWM is dimensions× classes, for each PM(i,j) value there is a corresponding PWM(i,j)
value, which dictates the strength of the (i, j)th Partition. Partitions which are not separable
are likely to have lower weights and partitions which are separable are likely to have higher
weights. This is because non-separable partitions are likely to misclassify and in order to
maximise the fitness function lower weights must be put on partitions that are likely to
misclassify.

The DWV is of size dimensions. Each DWVi value dictates the influence of the ith dimen-
sional classification on the final classification. This DWV helps to enhance dimensions with
less noise and lower the dimensions that are likely to misclassify.

To classify a feature vector using WFPPSO each of the features must be classified sepa-
rately using the PM. For example, if an instance such as (0.15, 0.35, 0.27) was presented to
the PM defined in 5.4, class partitions ([0.1, 0.2], [0.25, 0.5], [0.25, 0.4]) would be matched on
dimensions 1, 2 and 3 respectively. This would return dimensional classifications (1, 1, 2) .

PM =

 (0.1, 0.2) (0.3, 0.6) (0.7, 1.0)
(0.25, 0.5) (0.05, 0.1) (0.6, 1.0)
(0.9, 1.0) (0.25, 0.4) (0.0, 0.2)

 (5.4)

Secondly each dimensional classification is multiplied by their corresponding class weight
defined in the CWM. In the example referred to previously, if we had a CWV such as equa-
tion 5.5, the (classlabel : weight) pairs would be (1 : 0.8, 1 : 0.6, 2 : 0.5).

CWM =

 0.8 0.6 0.6
0.6 0.8 0.5
1.0 0.5 0.5

 (5.5)

Thirdly each weighted dimensional classification is multiplied by their corresponding di-
mension weight defined in the DWV. In the example referred to previously, if we had a
DWV such as equation 5.6, the resultant vector of (classweight : weight) pairs would be
(1 : 0.8, 1 : 0.3, 2 : 0.25).

DWV = (1.0, 0.5, 0.5) (5.6)

The final step is to sum the weighted votes for each class. In the example referred to pre-
viously, we would count (1.1, 0.25, 0.0) for classes 1, 2 and 3 respectively. The class with the
most weighted votes is the final classification, in this case the final classification would be
class 1. Figure 5.2 depicts the entire classification process.

27

Dimensional
Classification
Final

Input Features Classification

Class 3

Class 3

Class 1

Class 2

Class 3

Class 1

Class 2 Class 1

Class 2
Class 2 Weight Class 3 Weight

Class 3 Weight Class 2 Weight Class 1 Weight

Class 2 Weight Class 3 Weight Class 1 Weight

Class 1 Weight

V
ot

in
g

M
et

ho
d

Weight

Dimension

Dimension

Weight

Weight

Dimension

Final

Classification

Figure 5.2: WFPPSO Classification Process

5.4.1 Particle Encoding and Fitness Function

The PWM is encoded in each particle as a dimensions× classes matrix of floating point val-
ues in the range [0, 1]. Each row r in the matrix describes the set of partition weights for
dimensionr. The DWV is encoded in the same particle as a vector of size dimensions. Equa-
tion 5.7 shows how the PWM and DWV are encoded in one particle.

particlei =


pw(1,1) .. pw(1,c)

..
pw(d,1) .. pw(d,c)

dw1 .. dwd

 (5.7)

The fitness of each particle is the classification accuracy on the training set, using the
feature partitions, the particle PWM and the particle DWV in WPPSO.

5.5 Results and Analysis

The mean values of 30 runs using FPPSO and WFPPSO classification techniques, against
each of the image sets described in section 3, are presented in table 5.1.

For the Face and Shape data sets, ten-fold cross validation (TFCV) was used, and the
accuracy reported is the average accuracy across all ten sub-runs. TFCV is used because the
Face and Shape image sets are relatively small and by using TFCV the size of the training
and testing sets are maximised.

For the Shapes image set, WFPPSO obtained perfect results and FPPSO obtained near per-
fect results. This is to be expected as each different class of shape has a separable set of pixel
statistics obtained through a Gaussian distribution. However this does suggest that the un-
derlying FPPSO technique is less than satisfactory if it cannot find partitions for perfectly
seperable classes.

28

Dataset Technique Features Avg Accuracy (%)

Shapes

WFPPSO
4 100.00
8 100.00

FPPSO
4 99.75
8 99.98

PSONCC
4 100.00
8 100.00

GP
4 99.10
8 99.30

Faces

WFPPSO
4 92.44
8 97.39

FPPSO
4 72.56
8 76.78

PSONCC
4 86.07
8 85.78

GP
4 49.89
8 52.61

Textures

WFPPSO
4 80.02
8 81.16

FPPSO
4 61.11
8 62.91

PSONCC
4 83.01
8 76.78

GP
4 63.52
8 61.48

Table 5.1: Comparison between classification techniques

For the Faces image set, WFPPSO showed to outperform FPPSO by a significant amount
of 20.61 %. The main reason for FPPSO struggling to classify the face image set is that the
separability of the feature dimensions is higher than the shape image set. WFPPSO is able
to partially overcome this by promoting seperable partitions with high weight values and
mitigate noisy partitions with low weight values. It is the first confirmation that the CWM
and DWV provide significant benefits in terms of increasing the effectiveness (classification
accuracy).

For the Texture image set, both of the techniques struggled to obtain a high classification
accuracy. However WFPPSO showed to outperform the regular technique FPPSO by 18.2507
%. This confirms the significance of the CWM and the DWV to the WFPPSO technique.

The new method, WFPPSO, showed in most cases to be the most effective classification
technique, being closely challenged by PSONCC in some cases. However when the num-
ber of features increased the accuracy achieved by PSONCC dropped while the accuracy
achieved by WFPPSO increased. This suggests that WFPPSO is more well behaved than
PSONCC and could potentially achieve higher accuracy rates with higher dimension data
sets. As this is a relatively simple implementation of WFPPSO, there is potential to achieve
even higher classification results in future improved implementations.

29

The new techniques WFPPSO and FPPSO have showed some promising results on these
images sets. However they still struggled in some of the experiments to obtain a high clas-
sification accuracy. This is because FPPSO relies on the data set being seperable on the
majority of the classes, if this is not true then it will always misclassify to some degree. WF-
PPSO tries to overcome this somewhat by the use of weights, however it still does not have
the ability to transform a non-seperable data set into a seperable data set. For this reason
WFPPSO struggles on some classification problems.

5.6 Chapter Summary

In this chapter the goal of a developing two new stand alone PSO classification techniques,
WFPPSO and FPPSO, was achieved. The classification result of WFPPSO and FPPSO on a
sequence of image sets was described. The new techniques, particularly WFPPSO showed
to outperform the existing techniques in the majority of the experiments. The effectiveness
of WFPPSO was significantly larger than FPPSO in all cases which suggests that the addition
of the weights to the FPPSO technique was valuable. Some limitations of the new techniques
were also extracted from the result set.

30

Chapter 6

A Gaussian Approach to Feature
Partitioning PSO

6.1 Overview

This chapter describes a technique which pertains to the experimentation and further ex-
pansion of the FPPSO technique. The technique described is called Gaussian Distribution
Partitioning Particle Swarm Optimisation (GDPPSO).

The goal of this chapter is to dig a bit deeper into the capabilities of Partitioning using
PSO. More specifically it looks to find out whether GDPPSO provides any effective benefits
over the regular FPPSO technique.

6.2 The Gaussian Approach

One major limitation or drawback that could be suggested about the current implementation
of Feature Partitioning is that there are particular value ranges on some dimensions, which
are not covered by any FPPSO. Currently an instance value which falls into one of these
unknown regions, is classified as the class label associated with the closest Feature Partition.

This technique is often inaccurate as each class has a different spread of data which can
make the Euclidean distance an insufficient measure. For example, the feature value in
feature 6.1 will be classified as class 0 using the current technique when it is more likely to
be class 1.

Feature Partition
Class 1

Feature Partition
Class 2

Feature Value

SpreadSpread
Class 2 Class 1

Figure 6.1: Feature Partitions versus Gaussians

31

A gaussian approach to FPPSO was created to gain a better insight into whether this
is a problem with the current FFPSO implementation. The Gaussian approach, Gaussian
Distribution Partitioning Particle Swarm Optimisation (GDPPSO) follows much the same
process as the regular FPPSO however it has a few fundamental differences. Rather than
evolve the lower and upper limits of the each feature partition, GDPPSO evolves a mean
and standard deviation for each class on every dimension which can each be used to created
a gaussian distribution. A particle is now encoded by equation 6.1 where d is the number of
dimensions and c is the number of classes.

particlei =

 (µ1, σ1) .. (µ1, σc)
..

(µd, σ1) .. (µd, σc)

 (6.1)

The classification of a feature vector in GDPPSO occurs by first obtaining the probability
of each class on each dimension. These probabilities are calculated by the Gaussian distri-
butions created by the mean and standard deviation values found within each particle. The
probabilities can be visualised in a dimensions× classes matrix where the (i, j)th value in the
matrix is the probability of a feature vector being the ith class according to the jth dimension.
An example can be seen in equation 6.2. 0.8 0.2 0.3

0.6 0.1 0.2
0.5 0.3 0.4

 (6.2)

The final classification using GDPPSO is obtained by summing the probability for each
class. By equation 6.2 we would obtain (1.9, 0.6, 0.9) for classes 1, 2 and 3 respectively. The
final classification would be class 1 with the summed probability 1.9.

6.2.1 Results and Analysis

The mean values of 30 runs using FPPSO and GDPPSO classification techniques are pre-
sented in table 6.1.

For the Face and Shape data sets, ten-fold cross validation (TFCV) was used, and the
accuracy reported is the average accuracy across all ten sub-runs. TFCV is used because the
Face and Shape image sets are relatively small and by using TFCV the training and testing
sets are maximised.

The results presented in table 6.1 suggest that using a fully probabilistic approach for
partitioning is not as effective as using hard boundaries for partitioning for these particu-
lar classification problems. However the technique still being in its infant stages, there are
many changes that could be made to the implementation to potentially increase the effec-
tiveness of the technique. This is a concern for future work, as Gaussian distributions have
been used, via other methods, as an effective approach for classification [5].

32

Dataset Technique Features Avg Accuracy (%)

Shapes
GDPPSO

4 99.56
8 99.45

FPPSO
4 99.75
8 99.98

Faces
GDPPSO

4 58.72
8 54.39

FPPSO
4 72.56
8 76.78

Textures
GDPPSO

4 65.27
8 63.57

FPPSO
4 61.11
8 62.91

Table 6.1: Comparison Gaussian and Non-Gaussian Partitioning

6.3 Chapter Summary

In this chapter the goal of describing an experimental technique which expands on the regu-
lar FPPSO technique was achieved. The new technique was called GDPPSO. The initial goal
of GDPPSO was to overcome the uncertainty of classes having different data spreads and
also to verify whether using a probabilistic approach would provide any effective benefits.
However the results found that the original ideaology was not reflected in the effectiveness
of GDPPSO did. Nonetheless it is still valuable insight and something to investigate further
in future work.

33

34

Chapter 7

Particle Swarm Optimisation With
Simulated Annealing

7.1 Overview

This section extends the standard PSO to incorporate the local search technique Simulated
Annealing. The new technique is called Particle Swarm Optimisation Simulated Annealing
(PSOSA). By integrating Simulated Annealing into how the particles fly through the solution
space, we would expect that the new technique mitigates early convergence. Ultimately this
should mean PSOSA produces better classifiers.

In general over this chapter we hope to distill whether PSOSA can effectively mitigate the
early convergence problem in PSO. Specifically we are interested in how the PSOSA version
of WFPPSO and PSONCC compare to the regular PSO version of WFPPSO and PSONCC
and also what are some of the reasons for the success or failure of PSOSA.

This chapter is structured as follows. The early convergence problem in PSO is described
in section 7.2 which forms the motivation for creating PSOSA. A general overview of Simu-
lated Annealing is described in section 7.3 followed by a description of how it is combined
with PSO to form PSOSA. Finally the classification results of PSOSA are presented and anal-
ysed in section 7.5.

7.2 Early Convergence Problem in PSO

Hill climbing is a local search technique which from any given state will choose the best
neighboring state as its successor. A search technique that never makes a move towards a
worse state, such as hill climbing, is prone to converge at a local optimum solution. Sim-
ulated Annealing is a local search technique which aims to avoid the limitations of greedy
search algorithms such as hill climbing. PSO is not as greedy as hill climbing in that it can
move to a worse state, however it does still suffers from a similar problem. If the global
optimum solution is not on the path from any given particle to the gbest it is unlikely that
the global optimum solution will not be found due to the swarm being stuck in a local min-
imum. If Simulated Annealing is integrated into the movement of particles there is a higher
chance the swarm can escape a local minima.

35

7.3 Simulated Annealing

Simulated Annealing is a generic probabilistic meta-algorithm for global optimisation prob-
lems. The SA ideology comes from metallurgy, where annealing is the process used to tem-
per or harden metals and glass by heating them to a high temperature and then gradually
cooling them [25]. Rather then take the next best move, simulated annealing also calculates
a random move. If the random move improves the situation it is always taken, otherwise,
the algorithm may accept the move with some probability less than 1. The probability de-
creases exponentially with the badness of the move. The probability also decreases as the
temperature T goes down with time. This means bad moves are more likely to be allowed
at the start when the temperature is high, and they become more unlikely as T decreases.
Equations 7.2 and 7.2 define the probability P of accepting the random move, where f is the
fitness and k and λ are some constant values.

P ∝ T−1 (7.1)
P = ke−λ f (7.2)

7.4 PSO and Simulated Annealing Integration

Simulated Annealing can be integrated into the movement of particles in PSO. This is im-
plemented by each iteration, offering two possible movements to a particle. One of the
movements will be the regular movement calculated by equation 2.3. The other movement
will be a random move. The random move will be accepted by some probability P defined
by equation 7.1. Specifically the following steps are taken each time a particle moves:

1. Calculate a random position in the solution space.

2. Calculate the regular new position P of the particle by equations 2.3 and 2.4.

3. Evaluate the fitness of each of the preceeding positions.

4. If the random position is better than P move to the random position.

5. Otherwise calculate the temperature T by equation 7.3.

T = (iterations− iteration)/iterations (7.3)

6. Take the random move with a probability proportionate to T.

7. Otherwise move to P.

The introduction of the random move will introduce more areas of the search space to
the Swarm and ultimately increase the chances of the global optimum solution being found.
Figure 7.1 depicts the regular particle movement versus particle movement with simulated
annealing.

36

Particle

lbest influence

gbest influence

Resultant
Move

Velocity

Particle

lbest influence

gbest influence

Resultant
Move

Random Move

Velocity

Figure 7.1: Regular Particle Movement (left) and Simulated Annealing Particle Movement
(right)

7.5 Results and Analysis

The mean values of 30 runs using WFPPSO and PSONCC classification techniques with and
without simulated annealing are presented in table 7.1.

For the Face and Shape data sets, ten-fold cross validation (TFCV) was used, and the
accuracy reported is the average accuracy across all ten sub-runs. TFCV is used because the
Face and Shape image sets are relatively small and by using TFCV the training and testing
sets are maximised.

A consistent pattern seen across all of the of the experiments is that the addition of Sim-
ulated Annealing provided no increase in effectiveness (classification accuracy). This could
be due to a number of factors.

The first reason could be that PSOSA is simply not suited for these particular data sets.
More specifically their is not a diverse range of solutions to these classfication problems,
therefore by randomly changing the positions of the particles the local optimisation of the
classifier will be disrupted.

A second reason could be related to this particular implementation, a close observer will
notice that definition of Simulated Annealing does not match this implementation directly.
The text book definition of Simulated Annealing takes the random move proportionate to
the temperature and the exponential badness of the move. This implementation only takes
the temperature into account. This means that too many bad moves are being introduced to
the swarm and consequently affecting quality of the final classifier produced.

37

Dataset Technique Simulated Annealing Features Avg Accuracy (µ± σ)

Shapes

WFPPSO

True 4 99.99 ± 0.0014
False 4 100.00 ± 0.0000
True 8 100.00 ± 0.0000
False 8 99.98 ± 0.0000

PSONCC

True 4 99.27 ± 0.0086
False 4 100.00 ± 0.0000
True 8 99.34 ± 0.0090
False 8 100.00 ± 0.0000

Faces

WFPPSO

True 4 89.15 ± 0.0122
False 4 92.44 ± 0.0000
True 8 93.17 ± 0.0113
False 8 97.39 ± 0.0000

PSONCC

True 4 69.86 ± 0.0170
False 4 86.07 ± 0.0000
True 8 62.98 ± 0.0150
False 8 85.78 ± 0.0000

Textures

WFPPSO

True 4 73.74 ± 0.0194
False 4 80.02 ± 0.0000
True 8 73.01 ± 0.0266
False 8 81.16 ± 0.0000

PSONCC

True 4 65.98 ± 0.0397
False 4 83.01 ± 0.0000
True 8 64.86 ± 0.0242
False 8 76.78 ± 0.0000

Table 7.1: Comparison between classification techniques with and without Simulated An-
nealing

7.6 Chapter Summary

In this chapter the goal of a integrating Simulated Annealing into PSO to create a new tech-
nique was achieved. The new technique was called PSOSA. The initial goal of PSOSA was
to try and mitigate the early convergence problem in PSO however some unexpected results
were found. The addition of Simulated Annealing provided no benefits in terms of effec-
tiveness. However these results are not useless as any research is valuable knowledge for
future reference.

38

Chapter 8

Conclusions

At the start of this project some initial goals were hoped to be achieved, they are outlined
in 1.1. The following sections look at the overall research questions that were outlined and
how the actual results compare to what was initially expected. Section 8.1 describes the
overall conclusions in relation to the broad goals that were outlined. Section 8.2 describes
the conclusions in relation to some of the more specific research questions that were outlined
throughout the project.

8.1 Overall Conclusions

The main goal of this project was to construct and describe a stand alone Particle Swarm
Optimisation technique for classification, which did not rely on an existing classification
algorithm. Inspection of the results found in section 5.5 suggest that this goal was success-
fully achieved through the FPPSO and WFPPSO classification techniques. While WFPPSO
is still not perfect, it does not rely on any established classification algorithms such as that of
PSONCC and also provides a solid foundation to expand further research from. It is a new
contribution to PSO and will help its progression in general classification tasks.

A secondary goal was to analyse and address the early convergence problem in PSO by
creating a PSO variant called Particle Swarm Optimisation Simulated Annealing. The results
found in section 7.5 suggest that this goal was addressed but not achieved in the grand
scheme of things. PSOSA provided not benefits to the effectiveness of either the PSONCC
and WFPPSO classification techniques. However the investigation is still a valuable insight.

8.2 Specific Conclusions

In section 1.1.1 some specific research questions were outlined. The first question concerned
the comparison of the effectiveness of established classfication techniques (PSO-NCC and
GP). The two techniques had no difficulty classifying the shape data set, however as the
number of classes and the difficulty increased in the image sets PSO-NCC outperformed the
basic GP technique.

The second question was whether the new stand alone classification techniques, WFPPSO
and FPPSO, could outperform the baseline classification techniques on a sequence of image
classification tasks. The results presented in section 5.5 showed that the WFPPSO classifica-
tion technique outperformed both the baseline techniques in close to all of the experiments.

39

FPPSO on the other hand struggled to classify the harder image sets (face and texture).
FPPSO underperformed the PSO-NCC method and outperformed GP in most cases. From
these findings we can also distil that the CWM and DWV are a valuable contribution to the
FPPSO technique.

The last question concerned whether PSOSA could mitigate the the early convergence
problem in PSO. The results in section 7.5 suggest that this is false, however it could be
that PSO does not suffer from an early convergence problem on these particular data sets.
Further research is necessary to make a full conclusion on this question however the findings
in this project suggest PSOSA does not help with early convergence.

8.3 Future Work

The following section describes some of the ideas related to a technique, called Multi-Dimensional
Feature Partitioning Particle Swarm Optimisation, that I was interested in implementing.
However due to time constraints it must be left to future work.

8.3.1 Multi-Dimensional Feature Partitioning Particle Swarm Optimisation

One characteristic of the partitioning algorithms discussed in this project is the assumption
that each feature dimension is independent. This is in many cases an incorrect assumption.
A basic example that exploits this assumption is the XOR problem as depicts in figure 8.1.

�
�
�
�

��
��
��

��
��
��

D
im

en
si

on
 2

Dimension 1

1

0 1

Figure 8.1: XOR Problem

Using independent dimensions it is not possible to classify an instance correctly. How-
ever if both dimensional values dictate the classification it is then possible to classify all
instances correctly. This is a behaviour similar to that seen in decision trees [25].

If we were to use MDWFPPSO to solve the XOR problem we would first evolve the feature
partitions in much the same manner as FPPSO, the resultant partitions would be approxi-
mately those found in equation 8.1.

FeaturePartitions =
(

(0, 0.1) (0.9, 1.0)
(0, 0.1) (0.9, 1.0)

)
(8.1)

40

The weighting pass is where the difference comes in. Extra weight matrices are evolved
to describe the relationship between any n dimensions and a given class. For the XOR prob-
lem we need two extra matrices, one to describe the relationship between dimensions 1 and
2 and the class label 1. The other matrix describes the relationship between dimensions 1
and 2 and the class label 2. These matrices are displayed in equations 8.2 and 8.3.

Class1Weights =
(

1.0 0.0
0.0 1.0

)
(8.2)

Class2Weights =
(

0.0 1.0
1.0 0.0

)
(8.3)

For the matrix 8.2 pertaining to class 1 there is a high weight put on the upper left weight,
which means that if the value is between partition 1 on dimension 1, (0, 0.1) and partition 1
on dimension 2, (0, 0.1), return a high weight for class 1. Likewise if it is between partition
2 on dimension 1, (0.9, 1.0) and partition 2 on dimension 2, (0.9, 1.0), return a high weight
for class 1.

The matrix 8.3 pertaining to class 2 is the inverse of matrix 8.2 which is what we would
expect for the XOR problem.

PSO can be used to evolve the values found in the matrices described above. However
there is one major limitation about with this technique. Assume we have a much larger
classification problem, such as six classes where each feature vector was of eight dimensions.
If we were to evolve a multi-dimensional matrix to describe the relationship between any
n features and a particular class a very large amount of computational power would be
needed. Therefore some kind of heuristic is needed to prune redundant matrices or a user-
defined value is needed which dictates the largest number of dimensions to be combined.
These are all questions to be answered in future work and are beyond to scope of this project.

41

42

Bibliography

[1] M. Zhang, “Pixel based neural networks for multiclass object detection,” tech. rep.,
Victoria University School of Mathematical Computing Sciences, 2001.

[2] C. Darwin, The Origin of Species: By Means of Natural Selection. Albemarle Street, Lon-
don: John Murray, 1866.

[3] J. R. Koza, Genetic Programming On the Programming of Computers by Means of Natural
Selection. Cambridge, Massachusetts: The MIT Press, 1992.

[4] H. B. Kamepalli, “The optimal basics for gas,” tech. rep., Regional Engineering College
Warangal, India, April 2001.

[5] W. Smart, “Genetic programming for multiclass object classification,” tech. rep., Victo-
ria University School of Mathematical Computing Sciences, 2005.

[6] S. W. Wilson, “Zcs: A zeroth level classifier system,” Evolutionary Computation, vol. 2,
no. 1, pp. 1–18, 1994.

[7] A. Geyer-Schulz, “Holland classifier systems,” SIGAPL APL Quote Quad, vol. 25, no. 4,
pp. 43–55, 1995.

[8] K. Kennedy and R. Eberhart, “Particle swarm optimisation,” tech. rep., Purdue School
of Engineering and Technology, 1995.

[9] K. Kennedy and R. Eberhart, “A new optimizer using particle swarm theory,” tech.
rep., Purdue School of Engineering and Technology, 1995.

[10] T. Blickle and L. Thiele, “A mathematical analysis of tournament selection,” in Proceed-
ings of the Sixth International Conference on Genetic Algorithms, pp. 9–16, Morgan Kauf-
mann, 1995.

[11] D. White and P. Ligomenides, “Gannet: A genetic algorithm for optimizing topology
and weights in neural network design,” in New Trends in Neural Computation, pp. 322–
327, Springer Berlin / Heidelberg, January 1993.

[12] J. R. Koza and J. P. Rice, “Genetic generation of both the weights and architecture for
a neural network,” in In International Joint Conference on Neural Networks, pp. 397–404,
IEEE, 1991.

[13] T. Loveard and V. Ciesielski, “Representing classification problems in genetic program-
ming,” in Proceedings of the 2001 Congress on Evolutionary Computation, 2001., pp. 1070–
1077, 2001.

[14] T. Peram, K. Veeramachaneni, and C. Mohan, “Fitness-distance-ratio based particle
swarm optimization,” Swarm Intelligence Symposium, 2003.

43

[15] A. Stacey, M. Jancic, and I. Grundy, “Particle swarm optimization with mutation,” tech.
rep., Dept. of Math. and Stat., R. Melbourne Inst. of Technol., Australia, 2003.

[16] H. N. and I. H., “Particle swarm optimisation with gaussian mutation,” in Proceedings
of the IEEE Swarm Intelligence, 2003.

[17] J. Liang, A. Qin, P. Suganthan, and S. Baskar, “Comprehensive learning particle swarm
optimizer for global optimization of multimodal functions,” Evolutionary Computation,
IEEE Transactions, vol. 10, 2006.

[18] F. S. Samaria and A. C. Harter, “Parameterisation of a stochastic model for human face
identification.,” in Proceedings of the 2nd IEEE workshop on Applications of Computer Vi-
sion, 1994.

[19] “Orl face image set,” April 2008. http://www.cl.cam.ac.uk/Research/DTG/attarchive/pub/data/.

[20] “Usc texture database,” April 2008. http://sipi.usc.edu/database/database.cgi?volume=textures.

[21] C. guang Chang, D. wei Wang, Y. chen Liu, and B. ku Qi, “Application of particle
swarm optimization based bp neural network on engineering project risk evaluating,”
International Conference on Natural Computation, vol. 1, pp. 750–754, 2007.

[22] H.-B. G. Liang Gao, Chi Zhou and Y.-R. Shi, “Combining particle swarm optimization
and neural network for diagnosis of unexplained syncope,” in Computational Intelligence
and Bioinformatics, pp. 174–181, Springer Berlin / Heidelberg, September 2006.

[23] P. B. Paula Brito, Guy Cucumel and F. de Carvalho, Partitioning by Particle Swarm Opti-
misation, ch. 2. Springer Berlin Heidelberg, 2007.

[24] A. G. H. and S. I., “A genetic algorithm for classification by feature partitioning,” in
Proceedings of the 5th International Conference on Genetic Algorithms, 1993.

[25] S. J. Russel and P. Norvig, Artificial Intelligence A Modern Approach. Pearson Education
Inc, second ed., 1995.

[26] M. Zhang and U. Bhowan, “Pixel statistics and program size in genetic programming
for object detection,” tech. rep., School of Mathematical and Computer Sciences, Victo-
ria University of Wellington, 2004.

[27] A. W. Mohemmed and Z. Zhang, “Particle swarm optimization for data classifica-
tion,” tech. rep., School of Mathematical and Computer Sciences, Victoria University
of Wellington, 2005.

44

