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Abstract. Let sp(n) be the number of sparse paving matroids on the
ground set {1, . . . , n}. We prove that log log sp(n) = n − (3/2) logn +
O(log logn), and we conjecture that the same equality applies to the
number of all matroids on the set {1, . . . , n}.

1. Introduction

In 1973 Piff [4] proved the following upper bound on m(n), the number
of matroids on the ground set {1, . . . , n}:

(1) m(n) ≤ nk2nn−1
,

when n ≥ 2, and where k is a fixed constant.
A year later, Knuth [2] showed that

2( n
bn/2c)(2n)

−1

≤ m(n).

By adapting his argument, we can establish the following very slight im-
provement.

(2) 2( n
bn/2c)n

−1

≤ m(n).

To see that Equation (2) holds, note that Theorem 1 of Graham and
Sloane [1] implies that for any positive integer n, there is a code of at least(

n

bn/2c

)
n−1

words with length n, constant weight bn/2c, and minimum distance at
least 4. Therefore, there exists a family C of at least

(
n
bn/2c

)
n−1 subsets of

{1, . . . , n}, such that |C| = bn/2c for every C ∈ C, and |C ∪C ′| ≥ bn/2c+ 2
for every pair, {C,C ′}, of distinct members of C. Thus C is the family of
non-spanning circuits of a paving matroid with rank bn/2c. The same state-

ment is true of any subfamily of C, so there are at least 2|C| distinct paving
matroids on the set {1, . . . , n}. Equation (2) follows. (Recall that a rank-r
matroid is paving if every set with cardinality r − 1 is independent.)
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It is relatively straightforward to prove that 2n−1n−1/2 ≤
(

n
bn/2c

)
for all

positive integers n. By combining this fact with Equations (1) and (2), we
see that

n− (3/2) log n− 1 ≤ log logm(n) ≤ n− log n+ log log n+O(1).

This represents the current state of knowledge on the matroid enumeration
question. (Note that throughout this paper, logarithms will be taken to the
base 2.)

Recall that a matroid is sparse paving if both it and its dual are paving.
Let sp(n) be the number of sparse paving matroids on the ground set
{1, . . . , n}. In a recent paper [3], the authors conjecture that asymptoti-
cally almost every matroid is paving, and point out that this implies that
asymptotically almost every matroid is sparse paving. That is, they make
the following conjecture:

Conjecture 1.1. The limit limn→∞ sp(n)/m(n) exists, and is equal to one.

The purpose of this note is to show that when we apply Piff’s tech-
niques [4] to sparse paving matroids, we arrive at the following result.

Theorem 1.2. log log sp(n) ≤ n− (3/2) log n+ log log n+O(1).

It is easy to see that the matroids we constructed when establishing Equa-
tion (2) are all sparse paving. Combining this observation with Theorem 1.2
gives the following corollary.

Corollary 1.3. log log sp(n) = n− (3/2) log n+O(log log n).

This result, and our belief that sparse paving matroids predominate, lead
us to make the following conjecture 1.

Conjecture 1.4. log logm(n) = n− (3/2) log n+O(log log n).

Although Corollary 1.3 determines log log sp(n) with quite a high level of
precision, it doesn’t come close to providing us with an asymptotic formula
for sp(n). Even determining log log sp(n) to within an additive constant
would fail to achieve this goal. Therefore Conjecture 1.4 may be signifi-
cantly weaker than Conjecture 1.1 (and perhaps easier to prove). Although
limn→∞ sp(n)/m(n) = 1 would certainly imply Conjecture 1.4 (by virtue of
Corollary 1.3), it is a priori possible that sp(n) and m(n) are not asymp-
totically equal, even though

log log sp(n) = n− (3/2) log n+O(log log n) = log logm(n).

1Since the time of writing, Conjecture 1.4 has been proved by Bansal, Pendavingh, and
Van der Pol, who have shown that log logm(n) ≤ n−(3/2) logn+(1/2) log(2/π)+1+o(1).
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2. Proof of the main theorem

The proof depends on the following intermediate lemmas.

Lemma 2.1. Let n be a positive integer. Then(
n

bn/2c

)
≤

(√
2

π

)
2nn−1/2.

We believe that Lemma 2.1 is likely to be known, but we sketch the
argument for the sake of completeness, as we have been unable to locate a
proof in the literature.

Sketch proof of Lemma 2.1. For any positive integer n, define f(n) to be(
n
bn/2c

)
2nn−1/2

.

It is routine to check that both

f(1), f(3), f(5), . . . and f(2), f(4), f(6), . . .

are increasing sequences. Moreover, Stirling’s formula implies that
f(1), f(2), f(3), . . . converges to

√
2/π. Therefore f(n) ≤

√
2/π for every

n, as desired. �

Note that Lemma 2.1 implies that

(3)

(
n

bn/2c

)
≤ 2nn−1/2.

The following fact is Lemma 1 of [4].

Lemma 2.2. Let n and r be integers satisfying 1 ≤ r ≤ n. Then(
n

r

)
≤
(en
r

)r
.

For integers 0 ≤ r ≤ n, let spr(n) denote the number of sparse paving
matroids on the set {1, . . . , n} with rank r.

Lemma 2.3. Let n and r be integers satisfying 0 ≤ r ≤ n. Let M(n, r) be⌊
1

n− r + 1

(
n

r

)⌋
.

Then

spr(n) ≤
M(n,r)∑
i=0

((n
r

)
i

)
.

Proof. Consider a sparse paving matroid on the set {1, . . . , n} with rank r.
Let h be the number of non-spanning circuits. Sparse paving matroids are
characterized by the fact that each non-spanning circuit is a hyperplane.
Therefore each non-spanning circuit contains r sets of size r − 1, and any
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set of size r− 1 is contained in at most one non-spanning circuit. It follows
that

rh ≤
(

n

r − 1

)
,

and therefore

h ≤
⌊

1

r

(
n

r − 1

)⌋
= M(n, r).

Since a sparse paving matroid is completely determined by its non-
spanning circuits, the number of sparse paving matroids on the set {1, . . . , n}
with rank r and i non-spanning circuits is clearly no greater than((n

r

)
i

)
.

Summing this formula as i ranges from 0 to M(n, r) gives the result. �

Lemma 2.4. Let n ≥ 0 be an integer. Then

sp(n) ≤ (n+ 1)

M(n,bn/2c)∑
i=0

(( n
bn/2c

)
i

)
.

Proof. Note sp(n) = sp0(n)+ · · ·+spn(n). Therefore it suffices to show that

spr(n) ≤
M(n,bn/2c)∑

i=0

(( n
bn/2c

)
i

)
for every r ∈ {0, . . . , n}. By duality, spr(n) = spn−r(n), so we assume that
r ≤ n/2.

Since

(4)

(
n

r

)
≤
(

n

bn/2c

)
,

the result will follow from Lemma 2.3, if we can show that

M(n, r) ≤M(n, bn/2c).
This is true by Equation (4), and because 0 ≤ r ≤ n/2 implies

1

n− r + 1
≤ 1

n− bn/2c+ 1
. �

Proof of Theorem 1.2. Since

1

n− bn/2c+ 1

is equal to either
2

n+ 2
or

2

n+ 3
depending on whether n is even or odd, it follows that

(5)
1

n− bn/2c+ 1
≤ 2

n+ 2
.
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We can assume that n ≥ 2, so this implies

M(n, bn/2c) ≤ 1

2

(
n

bn/2c

)
.

Therefore (( n
bn/2c

)
i

)
≤
( (

n
bn/2c

)
M(n, bn/2c)

)
when 0 ≤ i ≤M(n, bn/2c).

Lemma 2.4 implies that

sp(n) ≤ (n+ 1)(M(n, bn/2c) + 1)

( (
n
bn/2c

)
M(n, bn/2c)

)
.

It follows from Equation (3) that

(6) sp(n) ≤ (n+ 1)(M(n, bn/2c) + 1)

(
b2nn−1/2c
M(n, bn/2c)

)
.

Claim 1. (
b2nn−1/2c
M(n, bn/2c)

)
≤
(
b2nn−1/2c
de2n+1n−3/2e

)
.

Proof. By Equations (3) and (5), we see that

M(n, bn/2c) ≤ 2

n+ 2

(
n

bn/2c

)
≤ 2

n

(
2nn−1/2

)
≤ e2n+1n−3/2 ≤ de2n+1n−3/2e.

Therefore the claim will be proved as long as we can certify that

de2n+1n−3/2e ≤ (1/2)b2nn−1/2c.

It is not difficult to show that this is true for sufficiently large n. �

Applying Claim 1 to Equation (6) produces the following:

sp(n) ≤ (n+ 1)(M(n, bn/2c) + 1)

(
b2nn−1/2c
de2n+1n−3/2e

)
.

Now we apply Lemma 2.2, and deduce that

sp(n) ≤ (n+ 1)(M(n, bn/2c) + 1)

(
eb2nn−1/2c
de2n+1n−3/2e

)de2n+1n−3/2e

≤ (n+ 1)(M(n, bn/2c) + 1)

(
e2nn−1/2

e2n+1n−3/2

)de2n+1n−3/2e

≤ (n+ 1)(M(n, bn/2c) + 1)
(n

2

)e2n+1n−3/2+1
.
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By Equations (3) and (5), we see that

sp(n) ≤ (n+ 1)

(
2

n+ 2

(
n

bn/2c

)
+ 1

)(n
2

)e2n+1n−3/2+1

≤ (n+ 1)

(
2

n+ 1
2nn−1/2 + 1

)(n
2

)e2n+1n−3/2+1

≤ (n+ 1)

(
2n+1

n+ 1
+ 1

)(n
2

)e2n+1n−3/2+1

≤ (n+ 1)

(
2n+1

n+ 1
+

2n+1

n+ 1

)(n
2

)e2n+1n−3/2+1

= 2(n+2)−e2n+1n−3/2−1ne2
n+1n−3/2+1

But (n+ 2)− e2n+1n−3/2 − 1 is negative for sufficiently large n, so

2(n+2)−e2n+1n−3/2−1 ≤ 1

and therefore
sp(n) ≤ ne2n+1n−3/2+1.

Hence

log sp(n) ≤ (e2n+1n−3/2 + 1) log n

≤ (e2n+1n−3/2 + e2n+1n−3/2) log n

= e2n+2n−3/2 log n

and
log log sp(n) ≤ n− (3/2) log n+ log log n+ log e+ 2.

This completes the proof of Theorem 1.2. �
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