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Abstract. Frame matroids and lifted-graphic matroids are two distinct
minor-closed classes of matroids, each of which generalises the class of
graphic matroids. The class of quasi-graphic matroids, recently intro-
duced by Geelen, Gerards, and Whittle, simultaneously generalises both
the classes of frame and lifted-graphic matroids. Let M be one of these
three classes, and let r be a positive integer. We show that M has only
a finite number of excluded minors of rank r.

A matroid is a frame matroid if it may be extended so that it has a basis
B such that every element is spanned by at most two elements of B. Such
a basis is a frame for the matroid. A matroid M is a lifted-graphic matroid
if there is a matroid N with E(N) = E(M) ∪ {e} such that N\e = M and
N/e is graphic. These fundamental classes of matroids were introduced by
Zaslavsky in a foundational series of papers [9, 10, 11, 12], the former under
the name of “bias matroids” as a generalisation of Dowling geometries. In
[11] Zaslavsky defined the class of frame matroids as above and showed that
the classes of bias and frame matroids are in fact the same.

Frame matroids are a natural generalisation of graphic matroids: the
cycle matroid M(G) of a graph G is naturally extended by adding its vertex
set V (G) as its frame, and declaring each non-loop edge to be minimally
spanned by its endpoints. Classes of representable frame matroids play
an important role in the matroid-minors project of Geelen, Gerards, and
Whittle [6, Theorem 3.1], analogous to that of graphs embedded on surfaces
in graph structure theory.

Frame matroids form a minor-closed class. Despite its importance, little
is known about its excluded minors. Zaslavsky exhibited several in [11].
Bicircular matroids are a relatively well-studied proper minor-closed class
of frame matroids; it is known that this class has only a finite number of
excluded minors [5]. There are also natural proper minor-closed classes
of frame matroids, and of lifted-graphic matroids, that have, for any fixed
r ≥ 3, infinitely many excluded minors of rank r [3]. The first systematic
study of excluded minors for the class of frame matroids is [4], in which 18
excluded minors of connectivity 2 for the class of frame matroids is exhibited,
and it is proved that any other excluded minor of connectivity 2 is a 2-sum
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of a 3-connected non-binary frame matroid with U2,4. The class of lifted-
graphic matroids is minor-closed. Less is known of their excluded minors
than of those for frame matroids.

Here we prove the following theorems.

Theorem 1. Let r be a positive integer. There are only a finite number of
excluded minors of rank r for the class of frame matroids.

Theorem 2. Let r be a positive integer. There are only a finite number of
excluded minors of rank r for the class of lifted-graphic matroids.

The prevailing belief among members of the matroid community was that
each of these classes should have only a finite number of excluded minors.
However, Chen and Geelen [2] have recently settled the question, rather
surprisingly, by exhibiting, for each class, an infinite family of excluded mi-
nors. Each family consists of a sequence of matroids (Mr)r≥7, defined using
a sequence of graphs (Gr)r≥7, with each excluded minor Mr having rank
r. Theorems 1 and 2 say that, like Chen and Geelen’s families, every infi-
nite collection of excluded minors for these classes must contain matroids
of arbitrarily large rank. Chen and Geelen point out that, “The existence
of an infinite set of excluded minors does not necessarily prevent us from
describing a class explicitly”; they point to Bonin’s excluded minor charac-
terisation of lattice-path matroids [1] as an encouraging example. Chen and
Geelen’s two infinite families of excluded minors are of a similar flavour to
Bonin’s infinite collections of excluded minors: Bonin’s characterisation has
three easily described infinite sequences of excluded minors, each consisting
of a set of matroids indexed by the positive integers, of ever-increasing and
unbounded ranks. Theorems 1 and 2, therefore, may be seen as support for
Chen and Geelen’s optimism.

In [7], Geelen, Gerards, and Whittle introduce the class of quasi-graphic
matroids, as a common generalisation of the classes of frame and lifted-
graphic matroids. For a vertex v, denote by loops(v) the set of loops incident
to v. Given a matroid M , a framework for M is a graph G satisfying

(1) E(G) = E(M),
(2) for each component H of G, r(E(H)) ≤ |V (H)|,
(3) for each vertex v ∈ V (G), cl(E(G− v)) ⊆ E(G− v) ∪ loops(v), and
(4) if C is a circuit of M , then the graph induced by E(C) has at most

two components.

A matroid is quasi-graphic if it has a framework. Chen and Geelen conjecture
that the class of quasi-graphic matroids has only finitely many excluded
minors [2]. We prove that, like the classes of frame and of lifted-graphic
matroids, when fixing the rank this is indeed the case.

Theorem 3. Let r be a positive integer. There are only a finite number of
excluded minors of rank r for the class of quasi-graphic matroids.
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1. Preliminaries

1.1. Frame matroids. Zaslavsky [11] has shown that the class of frame
matroids is precisely that of matroids arising from biased graphs, as follows.
Let M be a frame matroid on ground set E, with frame B. By adding
elements in parallel if necessary, we may assume B ∩ E = ∅. Hence for
some matroid N , M = N\B where B is a basis for N and every element
e ∈ E is minimally spanned by either a single element or a pair of elements
in B. Let G be the graph with vertex set B and edge set E, in which
e is a loop with endpoint f if e is parallel with f ∈ B, and otherwise
e is an edge with endpoints f, f ′ ∈ B if e ∈ cl ({f, f ′}). The edge set
of a cycle of G is either independent or a circuit in M . A cycle C in G
whose edge set is a circuit of M is said to be balanced ; otherwise C is
unbalanced. Let B be the collection of balanced cycles of G. The pair (G,B)
is called a biased graph; one may think of the pair as a graph equipped
with the extra information of the bias—balanced or unbalanced—of each
of its cycles. A theta graph consists of a pair of distinct vertices and three
internally disjoint paths between them. The circuits of M are precisely
those sets of edges inducing one of: a balanced cycle, a theta subgraph in
which all three cycles are unbalanced, two edge-disjoint unbalanced cycles
intersecting in just one vertex, or two vertex-disjoint unbalanced cycles along
with a minimal path connecting them. The later two biased subgraphs are
called handcuffs, tight or loose, respectively. Such a biased graph (G,B)
represents the frame matroid M , and we write M = F (G,B). Since the
collection B of balanced cycles of G is determined by the matroid M , we
may speak simply of the graph G as a frame representation of M , with its
collection of balanced cycles being understood as implicitly given by M .
Thus we may unambiguously refer to G as a frame graph for M , or say that
M has a frame graph G. When it is clear from context that G is a frame
representation of M , we say simply that G is a graph for M or that M has
a graph G.

1.2. Lifted-graphic matroids. Let N be a matroid on ground set E∪{e},
and supposeG is a graph with edge set E and with cycle matroidM(G) equal
to N/e. Then M = N\e is a lifted-graphic matroid. Each cycle in G is either
a circuit of N , or together with e forms a circuit of N . Again, cycles whose
edge set is a circuit of M are said to be balanced, and those whose edges
form an independent set are unbalanced. Zaslavsky has shown [10] that the
circuits of M are precisely those sets of edges inducing one of: a balanced
cycle, a theta subgraph in which all three cycles are unbalanced, two edge
disjoint unbalanced cycles meeting in just one vertex, or two vertex-disjoint
unbalanced cycles. Letting B denote the collection of balanced cycles of
G, we again say the biased graph (G,B) so obtained represents the lifted-
graphic matroid M ; we write M = L(G,B). As with frame matroids, we
may more simply say G is a lift graph for M , or that M has a lift graph G,
with its collection of balanced cycles being implicitly given by M . Similarly,
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when clear in context that G is a lift graph for M , we may say simply that
G is a graph for M , and that M has the graph G.

1.3. Quasi-graphic matroids. In [7], the authors show that the class of
quasi-graphic matroids includes the classes of frame and lifted-graphic ma-
troids, by showing that if G is a graph for a frame matroid M , then G is
a framework for M , and that similarly, if G is a graph for a lift matroid
N , then G is a framework for N . For the sake of consistency and to aid
exposition, if M is quasi-graphic and G is a framework for M , we as well
refer to G as a graph for M , or say that M has a graph G.

Note that in general, given a frame matroid M there may be many frames
for M , and so many frame graphs for M . Similarly, given a lift N of a
graphic matroid, there may be many graphs with cycle matroid N/e, and
so many lift graphs for N . Of course neither is there any guarantee that a
quasi-graphic matroid has a unique framework.

Let M be a quasi-graphic matroid, and let G be a graph for M . Again,
call those cycles of G that are circuits of M balanced. In [7, Lemma 3.3] it is
shown that each circuit of M appears in G as either a balanced cycle, or one
of the following subgraphs: a theta in which all cycles are unbalanced, a pair
of unbalanced cycles meeting in exactly one vertex (tight handcuffs), a pair
of vertex disjoint unbalanced cycles together with a minimal path linking
them (loose handcuffs), or a pair of vertex disjoint unbalanced cycles.

In any case, whether M is frame, lifted-graphic, or more generally, quasi-
graphic, if G is a graph for M , then the collection B satisfies the following
property: if C and C ′ are two balanced cycles contained in a common theta
subgraph T of G, then the third cycle C4C ′ contained in T is also bal-
anced. Any collection of cycles with this property is said to satisfy the theta
property. Zaslavsky has shown [10] that conversely, in order that an arbi-
trary collection B of cycles of a graph G define a frame matroid F (G,B) or
lifted-graphic matroid L(G,B), it is only necessary that B be chosen so that
it satisfies the theta property.

1.4. Working with graphs for matroids. If G is a graph for M , and
e ∈ E(M) = E(G), we refer to e as a point, an element, or an edge. It
is at times convenient that paths, cycles, and induced subgraphs include
their vertices, and at other times more convenient that they consist of just
their edge sets. We will be explicit should context fail to make clear which
object we have in mind. Edges may be referred to as loops, having just one
endpoint, or links, having two distinct endpoints, when it is important that
the distinction be clear. We write e = uv to indicate that the link e has
distinct endpoints u and v.

For a subset X ⊆ E(M) and a graph G for M , we write G[X] for the
subgraph of G induced by X. Evidently, G[X] is a graph for M |X. Likewise,
for a subset U ⊆ V (G) of vertices, we write G[U ] for the subgraph of G
induced by U . If X is a set of edges, we denote by V (X) the set of vertices
of G incident to an edge in X. If G[X] contains no unbalanced cycle, then
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G[X] is balanced ; otherwise G[X] is unbalanced. If M is a frame matroid,
then the rank of a set X ⊆ E(M) is given by r(X) = |V (X)| − b(X),
where b(X) is the number of balanced components of G[X]. Thus if M is
connected, r(M) = |V (G)|, unless G is balanced. Since a balanced biased
graph represents a graphic matroid, and the frame matroids we consider
here are connected and non-graphic, we will always have r(M) = |V (G)|
when G is a graph for a frame matroid M . If M is a lifted-graphic matroid,
then the rank of a set X ⊆ E(M) is given by r(X) = |V (X)| − c(X) + δ,
where c(X) is the number of components of G[X], and δ = 0 if G[X] is
balanced and δ = 1 otherwise. Thus if M is a non-graphic lifted-graphic
matroid, and G is a connected graph for M , we have r(M) = |V (G)|.

1.5. Excluded minors are simple. The first sentence in the following
lemma appears in [4]. The second sentence has a similarly straightforward
proof.

Lemma 1.1. An excluded minor for the class of frame matroids is con-
nected, simple, and cosimple. An excluded minor for the class of lifted-
graphic matroids is simple and cosimple.

Note that the class of lifted-graphic matroids is not closed under direct
sum: U2,4 is lifted-graphic (the graph consisting of four edges linking a pair
of vertices is a graph for U2,4), but the direct sum of two copies of U2,4 is an
excluded minor for the class. The class of quasi-graphic matroids, like that
of frame matroids, is closed under direct sum: if G1 is a graph for M1, and
G2 is a graph for M2, then evidently the disjoint union of G1 and G2 is a
graph for the direct sum of M1 and M2. We include a proof of the following
elementary lemma, since the class has only recently been introduced.

Lemma 1.2. An excluded minor for the class of quasi-graphic matroids is
connected, simple and cosimple.

Proof. Let M be an excluded minor for the class of quasi-graphic matroids.
The fact that the class is closed under direct sum implies that M is con-
nected. Suppose M has a loop e. There is a graph G for M\e. Adding a
loop for e incident to any vertex of G yields a graph for M , a contradiction.
Similarly, if M has a coloop f , consider graph G for M/f . Adding a new
vertex w, choosing any vertex v ∈ V (G), and adding edge f = vw to G
yields a graph for M , a contradiction.

Now suppose M has a 2-element circuit {e, f}. Let G be a graph for
M\e. If f is a link in G, say f = uv, then let G′ be the graph obtained
from G by adding e in parallel with f so e also has endpoints u and v. If f
is a loop in G, say incident to u ∈ V (G), then let G′ be the graph obtained
from G by adding e as a loop also incident with u. Now G′ is a graph for
M , a contradiction. Similarly, if {e, f} is a series class in M , let G be a
graph for M/e. If f is a link in G, say f = uv, then let G′ be the graph
obtained from G by deleting f , adding a new vertex w, and putting f = uw
and e = wv. If f is a loop in G, say incident to u ∈ V (G), let G′ be the
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graph obtained from G by deleting f , adding a new vertex w, and adding
edges e and f in parallel, both with endpoints u,w. Again, G′ is a graph
for M , a contradiction. �

Because of Lemmas 1.1 and 1.2, we may omit the adjective “unbalanced”
when speaking of loops—all loops in biased graphs in this paper are unbal-
anced.

1.6. Long lines, fixing sets, fixing graphs. A line is a rank 2 flat. A
long line is a line containing at least 6 rank-1 flats. If l is a long line in a
simple frame matroid M , and G is a graph for M , then there are just three
non-isomorphic possibilities for G[l]: each consists of a pair of vertices with
|l|− i links between them and i loops, where i ∈ {0, 1, 2}, respectively, and if
i = 2 then the two loops are incident to different vertices; each has all cycles
unbalanced. If l is a long line in a simple lifted-graphic matroid M and
G is a graph for M , then there are just three non-isomorphic possibilities
for l: a pair of vertices with |l| links between them, a pair of vertices u, v
with |l| − 1 links between them and a single loop incident to u or v, or
a pair of vertices u, v with |l| − 1 links between them and a single loop
incident to a vertex w /∈ {u, v}. Hence if l is a long line in a simple frame
matroid, then in any graph for the matroid, there is a pair of vertices u, v
such that l = E(G[{u, v}]). If l is a long line in a simple lifted-graphic
matroid, then in any graph for the matroid, either there is a pair of vertices
u, v such that l = E(G[{u, v}]) or there are three vertices u, v, w such that
l = E(G[{u, v}])∪{e}, where e is a loop incident to w. Furthermore, observe
that in the latter case, e is contained in every long line of M , and {e} is the
only loop in G.

In fact, if l is a long line in any simple quasi-graphic matroid M , and G is
a graph for M , then the non-isomorphic possibilities for G[l] are just those
described above for the cases that M is frame or lifted-graphic. Thus, in
any case, if l is a long line in a matroid M and G is a graph for M , then
there is a pair of vertices u, v that we may unambiguously associate with l,
namely, that pair which all elements of l that are links in G share as their
endpoints. This pair of vertices are the endpoints of l in G.

The fixing set of a matroid M is the set X(M) = {e ∈ E(M) : e ∈ l and l
is a long line of M}. Two long lines are adjacent if their union has rank 3. A
component X ′ of the fixing set X(M) of a matroid M is a set

⋃
l∈L{e : e ∈ l}

of elements contained in a nonempty maximal set of long lines L such that if
l, l′ ∈ L then L contains a sequence of long lines l0, l1, . . . , lt with l = l0 and
lt = l′ such that each consecutive pair is adjacent. Let M be a simple rank-r
frame or lifted-graphic matroid, with nonempty fixing set X = X(M). Let
G be a graph for M . Let W = W (G) be the graph obtained by deleting all
edges of G not contained in a long line, deleting loops, and replacing each
parallel class of edges remaining with a single edge. Equivalently, W is the
simple graph on V (G) in which vertices u and v are adjacent if they are the
pair of endpoints for a long line in G. We call W the fixing graph of G, and
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associate to each edge el = uv of W the unique line l of M with endpoints
u and v.

1.7. Overview. These preliminaries in place, let us now briefly discuss our
overall strategy. Let M be one of the classes of frame, lifted-graphic, or
quasi-graphic matroids, and let M be a rank-r excluded minor for M. We
prove each of Theorems 1, 2, and 3 by showing that M does not contain an
arbitrarily long line as a restriction. This bounds |E(M)|. We do this by
choosing as canonical those graphs for matroids in M with certain prop-
erties, then establishing a bound on the number of canonical graph repre-
sentations for a matroid in M. If M has a sufficiently long line l, then we
can use this bound to find three elements e, f, g ∈ l such that there is a
graph Ge for M\e, a graph Gf for M\f , and a graph Gg for M\g, such that
Ge\f, g = Gf\e, g = Gg\e, f . But these graphs can be used to construct a
graph for M , a contradiction.

The strategy for bounding the number of canonical graph representations
for a frame, lifted-graphic, or quasi-graphic matroid is essentially the same
in each case. The key is bounding the number of ways in which the elements
in long lines may appear in a canonical graph representation for a matroid
in each of these classes. That is, for a matroid M ∈ M with fixing set X,
though there may be arbitrarily many graphs for M , we bound the number
of induced subgraphs G[X] that may appear in a canonical graph G for M .
So, though the fixing set X of M may contain arbitrarily many elements,
there is a bound on the number of subgraphs that X induces among all
graphs for M .

Our bounds are näıve, though somewhat less so for frame matroids. We
bound the number of ways the fixing set may appear in a canonical graph
representation by bounding the number of possible fixing graphs for a ma-
troid. If M is a frame matroid, this bound is sharp: there is just one (Lemma
2.3). Lifted-graphic and quasi-graphic matroids may in general have many
fixing graphs; our bounds are therefore cruder for these classes. In any case,
we are able to show that for each fixing graph, the remainder of a canoni-
cal graph for M is determined by the graph representation on E(M) −X.
There may, in general, be many graphs for M that agree on their fixing
graph but differ on E(M) − X. We completely side-step the problem of
determining these graphs, as follows. For any matroid M ∈M, the number
of elements outside the fixing set of M is bounded. We simply bound the
number of canonical graphs for M by the number of graphs on r vertices
and |E(M)−X| edges.

The fact that a frame matroid M has a unique fixing graph enables us to
show that a canonical frame graph representation for the restriction of M to
the closure of its fixing set is unique (Theorem 2.1). The proof of this fact
is the longest of the paper. We could, in fact, do without it, at the cost of
a somewhat cruder bound on the number of canonical graphs for a simple
frame matroid (for a matroid of rank r, worse than the bound of Lemma
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2.5 by a factor of rr
2
). We believe the effort worthwhile, as the result may

be of independent interest.

2. Frame matroids

Throughout this section, for a frame matroid M and a graph G for M , we
always mean that G is a frame graph for M . Let M be a simple connected
frame matroid and let G be a graph for M . Observe that two long lines in
M are adjacent if and only if they share a vertex in G. Observe also that an
element e is contained in more than one long line if and only if these lines
are adjacent and e is represented as a loop incident to their shared endpoint
in G. An element contained in just one long line may also be represented
as a loop, in certain circumstances. We say l is a pendant line of M if l is
a line with at least three elements, and (l, E − l) is a 2-separation of M .
Assume G has nonempty fixing set X. Then el is a pendant edge in a fixing
graph of G if and only if el corresponds to a pendant line l of M |X. If u, v
are the endpoints of l in G, and V (l) ∩ V (E − l) = {u}, then we call v the
pendant vertex of l. (A pendant edge in a simple graph is the edge incident
to a vertex of degree 1.)

We now describe a local modification that changes the number of loops in
a representation having a pendant line. Let l be a pendant line in a simple
frame matroid M , let G be a graph for M , and let u, v be the endpoints
of l in G, where v is the pendant vertex of l. It is easy to check that
if e ∈ l is a loop incident to v, then replacing this loop with a u-v edge
representing e yields another graph for M . Conversely, if G[l] has no loop
incident to v, and e is a u-v link, then replacing this link with a loop incident
to v representing e yields another graph for M . We refer to this second
operation as a pendant roll-up. Observe that if l contains k elements, then
by successively replacing loops with links while applying pendant roll-ups,
we obtain k+1 different graphs for M . Thus a frame matroid with a pendant
line may have arbitrarily many biased graph representations. The case of a
pendant line is quite tame; there are also highly connected frame matroids
with arbitrarily many biased graph representations, even when fixing rank
(see [4, Section 1.3] for details).

To deal with this issue, among all frame graphs for M , we choose as
canonical those that have the least number of loops. The following lemma
is the key to our proof of Theorem 1. If G is a graph for a simple frame
matroid M , and W consists of a spanning tree of each component of a fixing
graph of G, put Z(W ) = {e : e ∈ l and el ∈W}. Call G[Z(W )] a fixing tree
of G.

Theorem 2.1. Let M be a simple connected frame matroid, and let X ⊆
E(M) be a component of the fixing set of M . Then M | cl(X) has a unique
canonical graph J . Moreover, if G is a graph for M , then G[cl(X)] is ob-
tained from J by pendant roll-ups in a fixing tree of J .
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We use the following result of Whitney. The line graph of a graph G is
the graph whose vertices are the edges of G, in which two vertices e, e′ are
adjacent if e and e′ are incident to a common vertex in G.

Theorem 2.2 ([8], Theorem 8.2). Let G and G′ be connected graphs with
isomorphic line graphs. Then G and G′ are isomorphic unless one is K3

and the other is K1,3.

Lemma 2.3. Let M be a frame matroid. Then M has a unique fixing graph.

Proof. If M has no long line, then every graph for M has empty fixing
graph, so the lemma holds. Otherwise, the fixing graph of a graph for M
is the disjoint union of the fixing graphs of the components induced by
the components of the fixing set of M . Hence we may assume that M is
spanned by its fixing set X, and that X has just one component. Let G
and G′ be two graphs for M . Since M |X is connected, G[X] and G′[X]
are connected subgraphs of G and G′, respectively, and so their respective
fixing graphs are connected. The adjacencies of edges in the fixing graphs
of G and G′ are determined by the adjacencies of the long lines of M . Since
rank(M) = |V (G)| = |V (G′)|, it cannot occur that the fixing graph of one
G or G′ is K3 while the other is K1,3. Hence by Theorem 2.2, G and G′

have the same fixing graph. �

Hence we may unambiguously speak of the fixing graph of a frame ma-
troid.

We prove Lemma 2.1 by choosing a special spanning subgraph S of a
canonical graph for M | cl(X), where S contains many bases of M | cl(X). We
then construct a biased graph (H,S) by considering fundamental circuits of
elements with respect to these bases. This biased graph does not necessarily
represent M | cl(X), but is not too far off. Local modifications, in the form
of pendant roll-ups, are all that may be required to fix this. More precisely,
if l is a pendant line of M | cl(X), and e′ /∈ cl(E − l), then, while e′ may be
represented as a loop or a link in a biased graph representation of M | cl(X),
e′ is always represented by a link in a canonical representation; in this case
our procedure for constructing (H,S) from S places e′ as a link, as required.
If e′ is otherwise an element that may be represented as either a loop or a
link with respect to a spanning tree of the fixing graph, then our procedure
always represents e′ as a link in H, which may require repair.

Proof of Lemma 2.1. Write N = M | cl(X). Let (G,B) and (G′,B′) be two
canonical representations of N . If N has rank 2, then there is just one
canonical representation of N , consisting of a pair of vertices and |E(N)|
links between them, with all cycles unbalanced. So assume rank(N) > 2.
By the definition of a component of fixing set, M |X, and so N , is connected.
Hence the fixing graph of N is connected. By Lemma 2.3, the fixing graphs
of G and G′ are equal.

Each long line has at least six points, so for each edge el = uv of the
fixing graph, there are at least two elements of its corresponding line l that
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are links with endpoints u, v in both G and G′. Choose a spanning tree
W of the fixing graph of N . Let S be the biased subgraph of (G,B) and
(G′,B′) obtained by replacing each edge el of W with two elements of its
corresponding long line l that are links in both G and G′. Evidently S is a
biased subgraph of both (G,B) and (G′,B′). Let T be a spanning tree of S.
For each edge e ∈ S − T , put Te = T ∪ e. For each such edge e, Te is a basis
of N .

Now for each element e′ ∈ E(N)− S, define

Pe′ =
⋂

e∈S−T
C(Te, e

′)− e′

where C(Te, e
′) denotes the fundamental circuit in N containing e′ with

respect to the basis Te. Each fundamental circuit C(Te, e
′) defines a sub-

graph of (G,B). Thus for each element e′ ∈ E(N)− S, Pe′ is a subgraph of
S ⊆ (G,B).

Claim. Pe′ is either a single vertex, a single edge of T , or the path in T
linking the distinct endpoints of e′ in G.

Proof of Claim. Fix e′ ∈ E(N) − S. Since rank(N) > 2, |V (S)| > 2 and
|S − T | > 1. Hence there are at least two fundamental circuits appearing in
the intersection defining Pe′ , and so Pe′ ⊆ T . Since for each e ∈ S − T , Te
is a spanning tree along with one additional edge in an unbalanced 2-cycle,
each fundamental circuit C(Te, e

′) has in (G,B) the form of one of: (1) a
balanced cycle, (2) a theta subgraph, or (3) a pair of handcuffs, where in the
latter two cases all cycles are unbalanced and one cycle is the unbalanced
2-cycle of Te. Hence for each e ∈ S−T , C(Te, e

′)−{e, e′} is in cases (1) and
(2) a path contained in T linking the endpoints x, y of e′, while in case (3),
it is a path P in T linking x and y, together with the path in T linking P
and the unbalanced 2-cycle of Te.

Put Z = Z(W ) = {e : e ∈ l and el ∈ W}. Consider the form of C(Te, e
′)

in (G,B). If e′ ∈ Z, then for all e ∈ S − T with |C(Te, e
′)| ≥ 4, C(Te, e

′)
is a pair of handcuffs in (G,B); if |C(Te, e

′)| = 3, then e is contained in the
same line as e′ and C(Te, e

′) is either a tight handcuff in which e′ is a loop
or a theta consisting of three edges. If e′ /∈ Z, then in (G,B) edge e′ has
distinct endpoints x, y that are not adjacent in S (because M is simple and
long lines are flats, any edge of (G,B) that is a loop or shares endpoints with
an edge in S is in Z). Thus if e′ /∈ Z, then for every e ∈ S − T , C(Te, e

′)
contains the x-y path P ⊆ T ; P has length at least two, and for each edge
s ∈ S − T that is in parallel to an edge in P , C(Ts, e

′) is either a theta with
at least 4 edges or a balanced cycle. Therefore e′ ∈ Z if and only if every
fundamental circuit C(Te, e

′) is a handcuff or theta consisting of three edges
in (G,B).

Moreover, if e′ ∈ Z, then for each long line l of W containing e′ there are
edges tl ∈ T and sl ∈ S − T such that {e′, sl, tl} is a fundamental circuit
C(Tsl , e

′) of size 3. Thus if e′ ∈ Z, Pe′ is either a single edge (if e′ is contained
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in just one long line of W ) or trivial (if e′ is contained in more than one long
line of W ).

Assume now e′ /∈ Z. As above, let x, y be the distinct endpoints of e′ in
G, and let P be the x-y path in T . Since P has length at least two, there
are at least two edges e ∈ S−T such that C(Te, e

′) is either a theta with at
least 4 edges or a balanced cycle. Since in the intersection

⋂
e∈S−T C(Te, e

′)
defining Pe′ , P is contained in every fundamental circuit, and there are at
least two fundamental circuits in the intersection, Pe′ = P . 4

Now define a graph H by adding each element e′ ∈ E(N) − S to S as
follows.

(1) If Pe′ consists of a single vertex v, then e′ is a loop incident to v.
(2) If Pe′ is a u-v path in T , where u 6= v, then e′ is a u-v edge.

Let S be the collection of cycles of H that are circuits of N .
Put Z = Z(W ) = {e : e ∈ l and el ∈W}.

Claim. H agrees with G up to pendant roll-ups applied in the fixing tree
H[Z].

Proof of claim. Clearly H agrees with G on S. Consider an element e′ ∈
Z − S.

• If e′ is contained in more than one long line of N |Z, then in G, e′

must be a loop incident to a non-pendant vertex v at which all long
lines containing e′ meet; in this case Pe′ consists of the single vertex
v, and e′ is added to S according to (1) above: G and H agree on e′.
• If e′ is contained in just one long line l of N |Z, and l is not a pendant

line of N |Z, then in G, e′ must be an edge linking the endpoints of
l (l shares each of its endpoints with another line of N |Z; were e′

a loop, e′ would be contained in one of these lines); in this case Pe′

consists of a single link in T between the endpoints of l, and e′ is
added to S according to (2) above: G and H agree on e′.
• If e′ is contained in just one long line l of N |Z, and l is a pendant line

of N |Z, then in G, e′ may be either a edge between the endpoints of
l or a loop incident to the pendant vertex of l in G[Z]; in this case
Pe′ consists of a single link in T between the endpoints of l, and e′

is added to S according to (2) above: H and G agree on e′ up to a
pendant roll-up in H[Z].

Finally, consider elements e′ /∈ Z. If Pe′ consists of a single vertex v, this
is because there is a pair of fundamental circuits C,C ′ meeting only in e′.
Because in G each of these circuits contains an edge in T incident to v, each
of which is contained in a long line, this implies that e′ is a loop incident to
v in G. Let l be the long line in Z that has v as an endpoint and contains an
edge in T ∩ C. Then e′ ∈ l ⊆ Z, a contradiction. If Pe′ consists of a single
edge, this is because there is a fundamental circuit C(Ts, e

′) consisting of
just three elements {s, t, e′}, where s ∈ S−T and t ∈ T . But there is a long
line l ∈ W containing both s and t, so this again yields the contradiction
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e′ ∈ l ⊆ Z. Hence for all remaining elements e′ /∈ Z, Pe′ is a path in T of
length at least 2.

Therefore each remaining element e′ /∈ Z is added to S by our procedure
above as an edge linking a pair of vertices x, y that are not adjacent in T .
Let e′ /∈ Z. Since (H,S) and (G,B) agree on S, and the endpoints of e′ are
determined by the intersection of the fundamental circuits C(Te, e

′) of M
with respect to the collection of bases Te, all of which are contained in S, e′

must have the same pair of endpoints in both H and G. 4

Since (G,B) and (G′,B′) are both determined by S up to pendant roll-ups
inH[Z], and both are canonical representations ofN , (G,B) = (G′,B′). This
shows that M | cl(X) has a unique canonical biased graph representation.

The same argument shows that if G is a graph for M , and H is constructed
from a biased subgraph S of G in the same way as it is constructed above,
then S determines G[cl(X)] up to pendant roll-ups in the fixing tree H[Z].
Thus if J is the canonical representation of M | cl(X), then applying pendant
roll-ups to J [Z] as necessary to place elements of long pendant lines of M |Z
in parallel with the frame for M provided by V (J), yields a biased graph
J ′ = G[cl(X)]. �

Lemma 2.1 enables us to bound the number of canonical graphs for M .
Lemma 2.4 provides a more precise statement, which is more convenient to
apply.

Lemma 2.4. Let M be a frame matroid, and let X be the fixing set of
M . Let G and G′ be canonical graphs for M such that V (G) = V (G′) and
G[E − cl(X)] = G′[E − cl(X)]. Then G[cl(X)] = G′[cl(X)], and so G = G′.

Proof. By Lemma 2.1, M | cl(X) has a unique canonical graph J , and both
G[cl(X)] and G′[cl(X)] are obtained from J by pendant roll-ups in a fixing
tree Z of J . (So G and G′ have the same fixing graph, and by assumption
agree outside of cl(X).) For each of G and G′, modify J to produce a
biased graph J ′(G), respectively, J ′(G′), representing M | cl(X), as follows.
For each link e ∈ E(J) contained in a pendant long line l of Z, do the
following. Let u and v be the endpoints of l. Denote by EG(x) the set of
edges of G incident to the vertex x. By assumption, for every vertex x,
EG(x)− cl(X) = EG′(x)− cl(X). Each e ∈ l satisfies precisely one of:

• e ∈ cl(E − EG(u)),
• e ∈ cl(E − EG(v)), or
• e /∈ cl(E − EG(u)) ∪ cl(E − EG(v)).

Moreover, e ∈ cl(E − EG(u)) if and only if e ∈ cl(E − EG′(u)), because
G[E − cl(X)] = G′[E − cl(X)], G and G′ share a fixing graph, and both G
and G′ are graphs for M . If e ∈ cl(E − EG(u)), then replace e with a loop
incident to v. If e ∈ cl(E − EG(v)), then replace e with a loop incident to
u. Otherwise, leave e as a u-v link. Now it is clear that M determines the
placement of e in J ′(G), respectively, J ′(G′), and that the resulting biased
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graphs J ′(G) and J ′(G′) represent M | cl(X). Evidently, J ′(G) = J ′(G′),
and by Lemma 2.1, G[cl(X)] = J ′(G) = J ′(G′) = G′[cl(X)]. �

Using Lemma 2.4, we obtain the following (rather crude) upper bound
on the number of canonical representations for a simple connected frame
matroid.

Lemma 2.5. Let M be a simple connected frame matroid of rank r. The

number of canonical graphs for M is less than
((

r
2

)
+ r
)5(r2) < r5r

2
.

Proof. Every canonical graph for M may be obtained as a graph H on r
vertices, constructed as follows. LetX be the fixing set ofM . By Lemma 2.1,
M | cl(X) has a unique canonical graph. Let G1, . . . , Gk be the components
of the fixing graph of M . Let H be the graph obtained by adding isolated
vertices to the disjoint union of G1, . . . , Gk so that the total number of
vertices is r.

Let Y be the set of elements of M not contained in the span of a com-
ponent of the fixing set. These elements are not contained in any of the
subgraphs Gi, and if e is any edge representing an element of Y , and e has
endpoints u, v, then |E(G[{u, v}])| ≤ 5 (else, since M is simple, e would
be contained in a long line, and thus in the fixing set). Thus |Y | ≤ 5

(
r
2

)
.

Now place the elements in Y as edges in H. Each may be placed as a link
or as a loop, subject the constraint that induced subgraphs on each pair of
vertices have at most 5 edges, so the number of such edge-labelled graphs

H is certainly less than
((

r
2

)
+ r
)5(r2).

Now place the elements in cl(X) in H, by replacing each edge el of the
fixing graph with its elements e ∈ l ⊆ X, and placing the elements in
cl(X) − X. By Lemmas 2.1 and 2.4, together the fixing graph of M and
the subgraph H[E− cl(X)] determine the endpoints of each edge e ∈ cl(X).

Hence there are less than
((

r
2

)
+ r
)5(r2) graphs for M . �

We can now show that excluded minors for frame matroids do not contain
lines of arbitrary length.

Theorem 2.6. Let M be a rank-r excluded minor for the class of frame
matroids. Then there exists a positive integer k, depending on r, such that
M does not contain a line of length k as a restriction.

Proof. Suppose to the contrary that for some fixed r, for every positive
integer k, there is an excluded minor of rank r containing a line of length at
least k as a restriction. In particular then, there is an excluded minor M of
rank r such that M has a line l sufficiently long for the following argument
to hold.

Since M is simple, for any element e ∈ l, M\e is simple. By Lemma
2.5, the number of canonical graphs for M\e is bounded by a function of r.
Hence we may choose three elements e, f, g ∈ l such that there are canonical
biased graph representations Ge, Gf , and Gg, of M\e, M\f , and M\g,



14 FUNK AND MAYHEW

respectively, such that Ge\f, g = Gf\e, g = Gg\e, f , and such that e, f, g
are links in each of the biased graphs containing them. Let G be the graph
obtained by adding e to Ge in parallel with edges f and g, and let B be the
set of cycles that either do not contain e and are balanced in Ge or that
contain e and are balanced in Gf . Consider the circuits of M :

• efg is a circuit in both M and F (G,B), and
• each circuit of M containing at most two of e, f , or g is a circuit of
F (G,B), since it is a circuit of one of F (Ge), F (Gf ) or F (Gg), and
each of Ge, Gf and Gg agrees with (G,B) on their respective ground
sets.

Thus we have a biased graph (G,B) representing M , a contradiction. �

We can now prove Theorem 1.

Proof of Theorem 1. Let r be a positive integer, and let M be an excluded
minor of rank r for the class of frame matroids. By Theorem 2.6, there is
an integer k such that M does not contain a line of length k as a restriction.
Arbitrarily choose an element e ∈ E(M), and let (G,B) be a biased graph
representing M\e. Then |V (G)| = r (we may assume M\e is non-graphic,
since M is not an excluded minor for the class of graphic matroids—these
are all frame). Since M has no line of length k, neither does M\e. This
implies |E(G)| ≤ (k − 1) ·

(
r
2

)
. Hence |E(M)| ≤ (k − 1) ·

(
r
2

)
+ 1. There

are only a finite number of matroids of rank r on at most this number of
elements. �

It is not difficult to establish a bound on the length of a line in an excluded
minor, in terms of rank, by determining how long the line l in the proof of
Theorem 2.6 must be to in order to guarantee the existence of the elements
e, f, g ∈ l asserted in the proof. Our feeling is that this bound is unlikely to
be tight.

Theorem 2.7. Let M be a rank-r excluded minor for the class of frame
matroids. Then M does not contain as a restriction a line of length greater

than 10r5r
2
.

Proof. Let e ∈ E(M), and consider a graph G for M\e. By Lemma 2.5, the

number of canonical graphs for M\e is less than r5r
2
. Thus if M has a line l

of length 10r5r
2
, then it is guaranteed that there that there are 11 elements

e1, . . . , e11 ∈ l such that the canonical graphs Gi for M\ei (i ∈ {1, . . . , 11})
are identical, up to relabelling of e1, . . . , e11.

Construct an auxiliary graph H on vertex set 1, . . . , 11, in which i is
adjacent to j if ei is a link in Gj and ej is a link in Gi. The edge set
of H is complementary to the edge set of the graph Hc on 1, . . . , 11, in
which two vertices i and j are adjacent if either ei is a loop in Gj or ej
is a loop in Gi. Since no graph Gi has more than two of e1, . . . , e11 as

loops, |E(Hc)| ≤ 2|V (H)|, and so |E(H)| ≥
(|V (H)|

2

)
−2|V (H)|. Since this is

greater than |V (H)|2/4 when |V (H)| > 10, by Turán’s Theorem, H contains
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a triangle. Let i, j, k be the vertices of this triangle. Then, up to relabelling
of edges ei, ej , and ek, Gi = Gj = Gk and ei, ej , and ek are links in each
of the graphs in which they appear, as required in the proof of Theorem
2.6. �

It is now straightforward to establish a bound, in terms of rank, on the
number of elements in an excluded minor for the class of frame matroids. We
simply substitute the bound on k given by Theorem 2.7 into the expression
bounding |E(M)| in the proof of Theorem 1.

Corollary 2.8. Let M be a rank-r excluded minor for the class of frame

matroids. Then |E(M)| ≤ (10r5r
2 − 1)

(
r
2

)
+ 1 < 5r5r

2+2.

3. Lifted-graphic matroids

Throughout this section, for a lifted-graphic matroid M and a graph G
for M , we always mean that G is a lift graph for M . Let M be a simple
lifted-graphic matroid, let G be a graph for M , let X be the fixing set of
M , and let W be the fixing graph of G. Whereas a frame matroid has
a unique fixing graph (Lemma 2.3), in contrast, a lifted-graphic matroid
may have many fixing graphs: if W is a forest, then any forest R with
E(R) = E(W ) is the fixing graph of a graph for M |X. Dealing with this
fact, along with the different behaviour of loops in graphs for lifted-graphic
matroids, is the business of the next few lemmas. For convenience, we shall
leave the definition of a long line unchanged, as a line containing at least six
rank-1 flats; note however, that four rank-1 flats in a long line are sufficient
for the proofs in this section.

Let M be a simple lifted-graphic matroid. Then any graph for M has at
most one loop, and if e is a loop in any graph for M , then e is contained
in every long line of M . Moreover, if e is a loop in a graph G for M , then
the graph obtained from G by removing e, adding a isolated vertex v0, and
placing e as a loop incident to v0 is a graph for M . Hence among all lift
graphs for M , we choose as canonical those that have the least number
of loops, and subject to this, have exactly two components, one of which
consists of either a single isolated vertex or a single vertex to which a loop
is incident. If G is a graph for M that is not canonical, then a canonical
graph for M may be obtained from G by repeatedly choosing a pair v, v′

of vertices, one in each of two components, and identifying v and v′ as a
single vertex, then adding a single isolated vertex u and, if G has a loop e,
replacing e with a loop incident to u. If G is a canonical graph for M , then
|V (G)| = r(M) + 1.

We deal with the case that M has just one long line separately. The case
M has more than one long line is a little bit easier.

Lemma 3.1. Let M be a lifted-graphic matroid of rank r with at least two
long lines. The following are equivalent.

• e is contained in more than one long line of M ,
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• e is contained in all long lines of M ,
• e is a loop in every graph for M .

Moreover, if M is simple, then M has at most one element in more than
one long line.

This follows directly from the forms circuits take in a graph for a lifted-
graphic matroid; we omit its straightforward proof.

Lemma 3.2. Let M be a simple rank-r lifted-graphic matroid containing
more than one long line. The number of canonical graphs for M is less than(
r
2

)6(r2) < r6r
2
.

Proof. Every canonical graph for M may be obtained as follows. Start with
r + 1 vertices, v0, v1, . . . , vr. Let W be the collection of edges {el : l is long
line of M}. Place the edges in W as links between distinct pairs of vertices

in {v1, . . . , vr}. Since |W | ≤
(
r
2

)
, there are less than

(
r
2

)(r2) ways this may
be done. For elements that are not in the fixing set of M , add at most five
links between pairs of vertices in {v1, . . . , vr} that are not already endpoints
of an edge el ∈W (as six such elements would be contained in the fixing set
of M). Hence there are less than 5

(
r
2

)
elements not in the fixing set of M ,

and so less than
(
r
2

)5(r2) ways this may be done.
Now if M has an element e contained in more than one long line (and

so contained in all long lines), then by Lemma 3.1, e must be a loop, and
the only loop, in every graph for M : place e as a loop incident to v0, and
replace each edge el ∈W with |l| − 1 links between its endpoints. If M has
no element contained in more than one long line, then by Lemma 3.1 no
graph for M has a loop: leave v0 as an edgeless, isolated vertex, and replace
each edge el ∈ E(W ) with |l| links between its endpoints.

Thus the number of canonical graphs for M is bounded by the number of
ways to place the edges of W times the number of ways the place elements

not in the fixing set of M , and this number is certainly less than
(
r
2

)(r2)(r
2

)5(r2).
�

Next we consider the case that M has just one long line.

Lemma 3.3. Let M be a simple rank-r lifted-graphic matroid containing
just one long line l. Then the number of canonical graphs for M is less than(
r
2

)5(r2) < r5r
2
.

Proof. Every canonical graph for M may be obtained from a graph H con-
structed as follows. Start with r + 1 vertices, v0, v1, . . . , vr. Let el be an
edge for a fixing graph of M , corresponding to l. Place the edge el as a link
between vertices v1 and v2. Add at most five links between pairs of vertices
in {v1, . . . , vr} that are not both endpoints of el. Next, either replace el with
|l| links, or replace el with |l| − 1 links and place a loop incident to v0.
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After placing el, there are less than
((

r
2

)
− 1
)5(r2) ways to place the ele-

ments in E(M) − l. Now consider the number of ways that the elements
of l may be placed. For each element e ∈ l, if e ∈ cl(E(H − v1)) or
e ∈ cl(E(H − v2)) (equivalently, if either H − v1 or H − v2 contains an
unbalanced cycle C for which C∪e is a circuit of M), then e must be placed
as a loop if this is to be a graph for M . On the other hand, if e is not in
either of these closures (equivalently, neither H − v1 nor H − v2 contain an
unbalanced cycle forming a circuit with e), then e must be placed as a link
with endpoints v1 and v2, since we are constructing a canonical graph for
M . In other words, together H[E(M)− l] and M determine the placement
of the elements in l in H. After placing el and the elements of M not in l,
there is just one way to place the elements of l. Hence there are less than((

r
2

)
− 1
)5(r2) canonical graphs for M . �

We may now prove the key fact used in the proof of Theorem 2. For each

positive integer r, set n(r) = r6r
2
.

Theorem 3.4. Let M be a rank-r excluded minor for the class of lifted-
graphic matroids. Then there exists a positive integer k such that M does
not contain a line of length k as a restriction.

Proof. Suppose to the contrary that for some fixed r, for every positive
integer k, there is an excluded minor of rank r containing a line of length
at least k. In particular then, there is an excluded minor M with a line l
sufficiently long for the following argument to hold.

For each e ∈ l, consider the graphs for M\e. Since for each e ∈ l there
are, by Lemmas 3.2 and 3.3, at most n(r) graphs for M\e, we may assume
l is sufficiently long that there are three elements e, f, g ∈ l, such that there
are graphs Ge, Gf , and Gg, for M\e, M\f , and M\g, respectively, such
that Ge\f, g = Gf\e, g = Gg\e, f , and such that e, f , and g are links in
each of the graphs containing them. Let G be the graph obtained by adding
e to Ge in parallel with edges f and g. Consider the circuits of M :

• efg is a circuit in M and a theta subgraph of G.
• Each circuit of M containing at most two of e, f , or g is a circuit of

one of M\e, M\f , or M\g, and the graphs Ge, Gf , and Gg for M\e,
M\f , and M\g, resp., agree with G on their respective ground sets.

Thus G is a graph for M , a contradiction. �

Proof of Theorem 2. Let r be a positive integer, and let M be an excluded
minor of rank r for the class of lift matroids. By Theorem 3.4, there is an
integer k such that M does not contain a line of length k as a restriction.
Arbitrarily choose an element e ∈ E(M), and let G be a canonical graph
for M\e. Then |V (G)| = r (we may assume M\e is non-graphic, since we
may assume M is not an excluded minor for the class of graphic matroids).
Since M has no line of length k, neither does M\e. This implies |E(G)| ≤
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(k−1) ·
(
r
2

)
. Hence |E(M)| ≤ (k−1) ·

(
r
2

)
+1. There are only a finite number

of matroids of rank r on at most this number of elements. �

As we established the bound of Corollary 2.8, so we can bound the size
of an excluded minor for the class of lifted-graphic matroids.

Theorem 3.5. Let M be a rank-r excluded minor for the class of lifted-
graphic matroids. Then M does not contain as a restriction a line of length

greater than 6r6r
2
.

Proof. Let e ∈ E(M), and consider a graph G for M\e. By Lemmas 3.2

and 3.3, there are less than n(r) = r6r
2

canonical graphs for M\e. Thus if

M has a line l of length at least 6r6r
2
, then we are guaranteed that there

are seven elements e1, . . . , e7 ∈ l such that the canonical graphs Gi for M\ei
(i ∈ {1, . . . , 7}) are identical, up to relabelling of e1, . . . , e7.

Construct an auxiliary graph H on vertex set 1, . . . , 7, in which i is ad-
jacent to j if ei is a link in Gj and ej is a link in Gi. The edge set of H is
complementary to the edge set of the graph Hc on 1, . . . , 7, in which two ver-
tices i and j are adjacent if either ei is a loop in Gj or ej is a loop in Gi. Since
no graph Gi has more than one of e1, . . . , e7 as loops, |E(Hc)| ≤ |V (H)|, and

so |E(H)| ≥
(|V (H)|

2

)
− |V (H)|. Since this is greater than |V (H)|2/4 when

|V (H)| > 6, by Turán’s Theorem, H contains a triangle. Let i, j, k be the
vertices of this triangle. Then, up to relabelling of ei, ej , ek, Gi = Gj = Gk,
and ei, ej , and ek are links in each of the graphs in which they appear, as
required in the proof of Theorem 3.4. �

Substituting k = 6r6r
2

into the expression bounding |E(M)| in the proof
of Theorem 2 gives a bound on the number of elements in an excluded minor
for the class of lifted-graphic matroids:

Corollary 3.6. Let M be a rank-r excluded minor for the class of lifted-

graphic matroids. Then |E(M)| ≤ (6r6r
2 − 1)

(
r
2

)
+ 1 < 3r6r

2+2.

4. Quasi-graphic matroids

We proceed in this section analogously to Sections 2 and 3. We bound
the number of ways the elements in the fixing set may appear in a graph
for a quasi-graphic matroid, then bound the number of canonical graphs
for a quasi-graphic matroid in terms of its rank, for a suitable definition of
canonical graph. We then show that as a consequence there is a bound, in
terms of rank, on the length of a line in an excluded minor. We will not
recount here all of the properties of quasi-graphic matroids and their graphs
that we require. All basic properties and facts we use are found in [7].

Let M be a simple, cosimple, and connected quasi-graphic matroid of rank
r, and let G be a graph for M . Let c(G) denote the number of components
of G. The number of edges in a spanning forest of G is |V (G)|− c(G). Since
the edge set of a forest is independent in M [7, Lemma 2.5], this number
is a lower bound on the rank of M . However, the number |V (G)| − c(G)
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tells us nothing about the number of components of G that consist of just
a single vertex with a single incident loop. Let us call a component of G
that consists of just a single vertex with a single incident loop an isolated
loop. Let loops(G) denote the set of isolated loops of G, let comp(G) denote
the set of components of G that are not isolated loops, and let v(G) =
|V (G)| − | loops(G)|.

Lemma 4.1. Let M be a simple rank-r quasi-graphic matroid, and let G be
a graph for M with no isolated vertex. Then | loops(G)| ≤ r, | comp(G)| ≤ r,
and |V (G)| ≤ 2r.

Proof. Since M is simple and the number of components induced by a
circuit is at most two, the set of isolated loops of G forms an indepen-
dent set. Therefore | loops(G)| ≤ r, and adding loops(G) to any forest
yields an independent set. The number of edges in a maximal forest in
G is v(G) − | comp(G)|, so r ≥ v(G) − | comp(G)| + | loops(G)|. That is,
v(G) + | loops(G)| ≤ r + | comp(G)|. Since a set consisting of a single
link from each component of G that is not an isolated loop is independent,
| comp(G)| ≤ r. Hence |V (G)| = v(G) + | loops(G)| ≤ 2r. �

Let M be a simple quasi-graphic matroid. Define a canonical graph for
M to be a graph G for M satisfying:

• |V (G)| = 2r;
• for each long line l, denoting by ul, vl the endpoints of l in G, for

each element e ∈ l,
(CG1) if e ∈ cl(E(G− ul)) and e ∈ cl(E(G− vl)), then e is an isolated

loop;
(CG2) if e ∈ cl(E(G − ul)) and e /∈ cl(E(G − vl)), then e is a loop

incident to vl;
(CG3) if e /∈ cl(E(G − ul)) and e ∈ cl(E(G − vl)), then e is a loop

incident to ul; and
(CG4) if e /∈ cl(E(G−ul)) and e /∈ cl(E(G− vl)), then e is a ul-vl link.

If G is a graph for a simple quasi-graphic matroid M , then, as we show
in the next lemma, we may obtain a canonical graph G′ for M by adding
isolated vertices to bring the total number of vertices to 2r, and then, for
each long line l of M , replacing any edge representing an element e ∈ l that
does not respect our four conditions with one that does.

Lemma 4.2. Let G be a graph for a simple quasi-graphic matroid M , and
let G′ be constructed as above from G. Then G′ is a graph for M .

Proof. We check the four conditions G′ must satisfy if it is to be a framework
for M .

(1) We have not changed the edge set, so E(G′) = E(M).
(2) Each component of G that does not contain a long line is unchanged

and remains a component of G′. Every component of G that contains a pair
of endpoints of a long line remains a component of G′, possibly after losing
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some elements that have become isolated loops in G′ or gaining some ele-
ments that are now loops incident to an endpoint of the long line containing
them. Thus we have changed neither the number of vertices nor rank of
the edge set of any component that contains the endpoints of a long line.
Clearly, a component H of G′ consisting of an isolated vertex or an isolated
loop satisfies r(E(H)) ≤ |V (H)|.

(3) If e ∈ l is a u-v link in G, then e is in neither cl(E(G − u)) nor
cl(E(G − v)), for otherwise G would violate condition (3) for frameworks.
Hence every u-v link of G remains a u-v link in G′. We obtain our canonical
graph G′ from G just by possibly adding isolated vertices, then rearranging
the incidence of loops. Thus (3) certainly remains satisfied.

(4) Suppose C is a circuit of M and that G′[C] has more than two com-
ponents. Since G′ is obtained from G only by rearranging loops contained
in long lines, it must be the case that at least one component of G′[C] is a
loop e. Hence G[C] is a pair of handcuffs, tight or loose, or a pair of vertex
disjoint unbalanced cycles. Whichever the case, one of the cycles in this
subgraph of G is the loop e. Suppose G[C] is a pair of tight handcuffs or a
pair of vertex disjoint unbalanced cycles, say consisting of the two cycles C1

and e. Then G′[C] also consists of C1 ∪ e, and so has at most two compo-
nents. So G[C] must be a pair of loose handcuffs, say consisting of the cycle
C1, the path P , and e, where P contains at least one edge. Since G′[C]
has more than two components, C1 must also be a loop, let us call it f ,
whose incidence has been redefined in G′. Thus G[C] consists of the pair of
loops e, f together with the path P linking them. Since e and f were both
replaced with isolated loops in G′, each satisfies (CG1) for their respective
lines.

Let ul1 be the endpoint of the long line l1 to which e is incident in G, and
let vl1 be the other endpoint of l1 in G. Let ul2 be the endpoint of the long
line l2 to which f is incident in G, and let vl2 be the other endpoint of l2
in G. (Note that we allow l1 = l2, in which case ul1 = vl2 and vl1 = ul2 .)
Since e ∈ cl(E(G− ul1)), there is a cycle C2 ⊆ E(G− ul1) such that C2 ∪ e
is a circuit. If C2 can be chosen such that C2 either avoids P or meets P
just at ul2 , then do so. If not, choose a minimal ul1-C2 path Q1, a minimal
ul2-C2 path Q2, and a subpath Q3 of C2 such that Q1 ∪Q2 ∪Q3 is a ul1-ul2
path, and redefine P to be this path. Thus e ∪ P ∪ f is a circuit of M and
P either avoids C2 or meets C2 precisely in the path Q3.

By the strong circuit elimination axiom, there is a circuit D containing
f , such that D ⊆ (e ∪ P ∪ f) ∪ C2 − e. The subgraph G[D] is contained in
G[P ∪ f ∪ C2], and so consists of either C2 ∪ f or C2 ∪ f ∪Q2. Now choose
an edge g ∈ C2, and apply circuit elimination to the circuits e ∪ C2 and D:
there is a circuit D1 contained in e ∪ C2 ∪D − g. Since the only cycles in
e∪C2∪D−g are e and f , this implies e∪f is a circuit. But this contradicts
the fact that M is simple. �

We now place a bound on the number of canonical graphs for M .
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Lemma 4.3. Let M be a simple rank-r quasi-graphic matroid. The number

of canonical graphs for M is less than
(
2r
2

)(2r2 ) ·
((

2r
2

)
+ 2r

)5(2r2 )
< (3r2)12r

2
.

Proof. By Lemma 4.1, the number of vertices of a graph for M is at most
2r. Thus every canonical graph for M may be obtained from a graph H
constructed as follows. Let V be a set of 2r vertices. We first place the
edges of what will be the fixing graph of a graph for M . Let X be the fixing
set of M and let W be the collection of edges {el : l is a long line in X}.
Place each edge el ∈W as a link between a pair of vertices in V , such that
no two edges in W share the same pair of endpoints. There can be at most(
2r
2

)
edges in W , so there are less than

(
2r
2

)(2r2 )
ways to place these edges.

For elements not in X, we can place, for each pair u, v of vertices in V
that are not already endpoints of an edge el ∈ W , at most five edges on
{u, v}, as otherwise these elements would be contained in a long line (where
at most two of these elements may be placed as loops). Hence there are at

most 5
(
2r
2

)
elements not in X. Each may be placed as a link or a loop, so the

number of ways these elements may be placed is less than
((

2r
2

)
+ 2r

)5(2r2 )
.

A graph G for M may now be obtained from H as follows. Having placed
the edges in W , we have placed the fixing graph of G. We have also placed
all elements not in X. Now for each el ∈W , we replace el with the elements
contained in l. We accomplish this as follows.

For each l ∈ X, let ul, vl be the endpoints of l in H, and let e1l , e
2
l , e

3
l , e

4
l be

four “dummy” edges, which will temporarily stand in for, or represent, the
entire line l. Since |l| ≥ 6, and there may be at most two elements of l that
are loops, in every graph for M , every long line has at least four elements
represented as links between its endpoints. Moreover, lengthening a line in
a quasi-graphic matroid beyond four points contributes nothing new to the
graphical structure of the matroid: A new element e added to the line is in
a 3-circuit with two existing edges, say f and f ′, which in a graph for M has
the form of either a theta subgraph (if e is added as a link) or handcuffs (if
e is added as a loop). By circuit elimination, a set of edges D ⊆ E− l forms
a dependent set with {e, f} if and only if D forms a dependent set with
{e, f ′}, if and only if D forms a dependent set with {f, f ′}, and e may be
placed as either a loop or link, as appropriate, so that the circuit contained
in each dependent set appears in the graph as a subgraph of one of the
forms required for circuits (a balanced cycle, a theta, tight handcuffs, loose
handcuffs, or a pair of vertex disjoint cycles). (Note that adding points to a
3-point line can potentially change the graphical structure of a quasi-graphic
matroid, since a 3-point line may be represented in a graph by a balanced
3-cycle, and no graph representation for a line with more than 3 points is
compatible with the graphical structure of a 3-cycle.)

So now replace each edge el in H with four dummy edges e1l , e
2
l , e

3
l , e

4
l ,

placed as links between the endpoints of el. By the previous paragraph,
there is a quasi-graphic matroid MH obtained by replacing in M each long
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line l with its 4-point dummy line. And, by the previous paragraph, for any
set of elements F that is not contained in a single long line, F is dependent
in M if and only if, for each long line l that F meets, removing the elements
of l and replacing them with a pair of dummy elements e1l , e

2
l , results in a

dependent set in MH .
Next, we replace the dummy elements of H for each long line with its

elements in X. We do this as follows. For each l ∈ X, let ul, vl be the
endpoints of l in H. For each l ∈ X, and each element e ∈ l, precisely one
of the following situations holds.

Either there is a cycle C in H − {ul, vl} such that C ∪ e is independent,
or there is no such cycle. If there is a cycle C in H−{ul, vl} such that C ∪ e
is independent, then precisely one of the following holds.

(1) There exists a cycle C in H−{ul, vl} such that C∪e is independent,
and there exists a C-ul path P in H − vl such that C ∪ e ∪ P is a
circuit: place e as a loop incident to ul. (Observe that e is in the
closure of E(H − vl).)

(2) There exists a cycle C in H−{ul, vl} such that C∪e is independent,
and there exists a C-vl path P in H − ul such that C ∪ e ∪ P is a
circuit: place e as a loop incident to vl. (Observe that e is in the
closure of E(H − ul).)

(3) For every cycle C in H −{ul, vl} such that C ∪ e is independent, for
every C-ul path P , C∪e∪P is independent, and for every C-vl path
Q, C ∪ e ∪Q is independent. Now consider two subcases.
(a) There is a cycle C ′ in H − {ul, vl} such that C ′ ∪ e is a circuit:

place e as an isolated loop. (Observe that e is in the closure of
E(H − ul), and in the closure of E(H − vl).)

(b) For every unbalanced cycle C in H − {ul, vl}, C ∪ e is indepen-
dent: place e as a ul-vl link. (Observe that e is in neither the
closure of E(H − ul) nor the closure of E(H − vl).)

It is not hard to see that (1) and (2) cannot both hold, by applying the
circuit elimination axiom to appropriate subgraphs of H (thus in each case,
e is in the closure of just one endpoint of l).

If there is no cycle C in H −{ul, vl} such that C ∪ e is independent, then
precisely one of the following holds.

(4) All cycles in H − {ul, vl} are circuits.
(5) There is an unbalanced cycle inH−{ul, vl}, and for every unbalanced

cycle C in H − {ul, vl}, C ∪ e is a circuit

If (4) holds, then precisely one of the following holds. For each long line l,
let Dl = {e1l , e2l , e3l , e4l }. As for cases (1), (2), and (3) (a) and (b) above, in
each of the following cases, it is evident that the placement of e satisfies the
conditions (CG1)-(CG4).

(a) H\Dl is balanced. There is no cycle in H\Dl forming a circuit with
e, nor any cycle C together with a minimal C-{ul, vl} path forming
a circuit with e: place e as a ul-vl link.
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(b) Every unbalanced cycle in H\Dl meets both ul and vl: place e as
a ul-vl link. (In this case, for every unbalanced cycle C in H\Dl,
C ∪ e is dependent; placing e as a ul-vl link means C ∪ e either
contains a balanced cycle or is a theta subgraph with all there cycle
unbalanced.)

(c) Every unbalanced cycle in H\Dl meets ul but avoids vl. If there is
an unbalanced cycle C with C∪e a circuit, place e as a loop incident
to ul; otherwise place e as a ul-vl link.

(d) Every unbalanced cycle in H\Dl meets vl but avoids ul. If there is
an unbalanced cycle C with C∪e a circuit, place e as a loop incident
to vl; otherwise place e as a ul-vl link.

(e) Each of H −ul and H − vl contain an unbalanced cycle, say Du and
Dv, respectively.

(i) If both Du ∪ e and Dv ∪ e are independent: place e as a ul-vl
link.

(ii) If Du ∪ e is a circuit while Dv ∪ e is independent: place e as a
loop incident to ul.

(iii) If Du ∪ e is independent while Dv ∪ e is a circuit: place e as a
loop incident to vl.

(iv) If both Du ∪ e and Dv ∪ e are circuits: place e as an isolated
loop.

Finally, if (5) holds, then e must a loop. This further implies that for any
unbalanced cycle D meeting ul or vl, D ∪ e is a circuit, so e could be a loop
incident to ul, vl or any other vertex. Place e as an isolated loop.

(Geometrically, the endpoints ul and vl of the long line l may be thought
of as two points at which the span of the points in l meet the span of the
elements of M that are not in l. The points of l that are ul-vl-links are
the points of M that are minimally in the span of {ul, vl}. Deleting an
endpoint ul corresponds to removing all points of l aside from possibly a
point parallel to vl. Asking if an element e ∈ l is in the closure of the
remaining elements, is asking whether e is in the span of (E(M) − l) ∪ vl.
The placement of e according to (1)-(4), then, just places e in the graph
appropriately—according to the form circuits take in a graph—so that the
graph so constructed is a graph for M .)

By construction, the resulting graph G is a canonical graph for M . More-
over, G is determined by the placement of the edges in W together with the
subgraph H[E−X]. Thus the number of canonical graphs for M is certainly
bounded by the number of such graphs H that may be constructed. This
number is at most the number of ways to place the edges in W , times the
number of ways to place the elements not in X. Using the upper bounds
on these numbers established above, we see that this product is less than(
2r
2

)(2r2 ) ·
((

2r
2

)
+ 2r

)5(2r2 )
. �
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We may now bound the length of line that may appear in an excluded

minor. Put n(r) =
(
2r
2

)(2r2 ) ·
((

2r
2

)
+ 2r

)5(2r2 )
.

Theorem 4.4. Let M be a rank-r excluded minor for the class of quasi-
graphic matroids. Then there is a positive integer k such that M does not
contain a line of length k as a restriction.

Proof. Suppose to the contrary that for some fixed r, for every positive
integer k, there is an excluded minor of rank r containing a line of length
at least k. In particular then, there is an excluded minor M with a line l
sufficiently long for the following argument to hold.

For each e ∈ l, consider the canonical graphs for M\e. By Lemma 1.2,
M is simple, so M\e is simple. Since for each e ∈ l there are, by Lemma
4.3, at most n(r) canonical graphs for M\e, we may assume l is sufficiently
long that there are three elements e, f, g ∈ l, such that there are graphs Ge,
Gf , and Gg, for M\e, M\f , and M\g, respectively, such that Ge\f, g =
Gf\e, g = Gg\e, f , and such that e, f , and g are links in each of the graphs
containing them. Let G be the graph obtained by adding e to Ge in parallel
with edges f and g. Then G is a graph for M , a contradiction. �

Proof of Theorem 3. Let r be a positive integer, and let M be an excluded
minor of rank r for the class of quasi-graphic matroids. By Theorem 4.4,
there is an integer k such that M does not contain a line of length k as
a restriction. Arbitrarily choose an element e ∈ E(M), and let G be a
graph for M\e. By Lemma 4.1, |V (G)| ≤ 2r. Since M has no line of

length k, neither does M\e. This implies |E(G)| ≤ (k − 1) ·
(
2r
2

)
. Hence

|E(M)| ≤ (k − 1) ·
(
2r
2

)
+ 1. There are only a finite number of matroids of

rank r on at most this number of elements. �

As for excluded minors for the classes of frame and lifted-graphic ma-
troids, it is now not difficult to establish a bound on the size, in terms of
rank, of an excluded minor for the class of quasi-graphic matroids.

Theorem 4.5. Let M be a rank-r excluded minor for the class of quasi-
graphic matroids. Then M does not contain as a restriction a line of length

greater than (8r + 2) · n(r) < (3r2)12r
2+1.

Proof. Let e ∈ E(M), and consider a graph G for M\e. By Lemma 4.3,
there are less than n(r) graphs for M\e. Hence if M has a line l of length
at least (8r + 2) · n(r), then it is guaranteed that there are 8r + 3 elements
e1, . . . , e8r+3 ∈ l such that the graphs Gi for M\ei (i ∈ {1, . . . , 8r + 3}) are
identical, up to relabelling of e1, . . . , e8r+3.

Construct an auxiliary graph H on vertex set 1, . . . , 8r + 3, in which i is
adjacent to j if ei is a link in Gj and ej is a link in Gi. The edge set of H is
complementary to the edge set of the graph Hc on 1, . . . , 8r+3, in which two
vertices i and j are adjacent if either ei is a loop in Gj or ej is a loop in Gi.
Each graph Gi has at most 2r vertices, and M\e is simple, so each graph Gi
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has at most 2r loops. Since no graph Gi has more than 2r of e1, . . . , e8r+3

as loops, |E(Hc)| ≤ 2r|V (H)|, and so |E(H)| ≥
(|V (H)|

2

)
− 2r|V (H)|. Since

this is greater than |V (H)|2/4 when |V (H)| > 8r+ 2, by Turán’s Theorem,
H contains a triangle. Let i, j, k be the vertices of this triangle. Then
Gi = Gj = Gk and ei, ej , and ek are links in each of the graphs in which
they appear, as required in the proof of Theorem 4.4. �

Substituting k = (8r+2)·n(r) into the expression bounding |E(M)| in the
proof of Theorem 3 gives a bound on the number of elements in an excluded
minor for the class of quasi-graphic matroids:

Corollary 4.6. Let M be a rank-r excluded minor for the class of quasi-

graphic matroids. Then |E(M)| < (8r + 2)n(r)
(
2r
2

)
< (3r2)12r

2+2.
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