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Constructing Diffeomorphic Representations for the
Groupwise Analysis of Non-Rigid Registrations of

Medical Images
Stephen Marsland and Carole Twining

Abstract— Groupwise non-rigid registrations of medical im-
ages define dense correspondences across a set of images, defined
by a continuous deformation field that relates each target image
in the group to some reference image. These registrations can
be automatic, or based on the interpolation of a set of user-
defined landmarks, but in both cases, quantifying the normal
and abnormal structural variation across the group of imaged
structures implies analysis of the set of deformation fields. We
contend that the choice of representation of the deformation
fields is an integral part of this analysis. This paper presents
methods for constructing a general class of multi-dimensional
diffeomorphic representations of deformations. We demonstrate,
for the particular case of the polyharmonic clamped-plate splines,
that these representations are suitable for the description of
deformations of medical images in both two and three dimensions,
using a set of (2D) annotated MRI brain slices and a set of (3D)
segmented hippocampi with optimised correspondences.

The class of diffeomorphic representations also defines a non-
Euclidean metric on the space of patterns, and, for the case of
compactly-supported deformations, on the corresponding diffeo-
morphism group. In an experimental study, we show that this
non-Euclidean metric is superior to the usual ad hoc Euclidean
metrics in that it enables more accurate classification of legal
and illegal variations.

Index Terms— Diffeomorphisms, non-rigid registration, inter-
polating splines, geodesic interpolating splines

I. I NTRODUCTION

NON-RIGID registration algorithms [1], [2], [3], [4],
[5] automatically generate dense (i.e., pixel-to-pixel or

voxel-to-voxel) correspondences between pairs and groupsof
images with the aim of aligning corresponding ‘structures’.
The deformation fields implicit in this correspondence contain
information about the variability of structures across theset.
In order to analyse this variability quantitatively we needto
be able to analyse the set of deformation fields. Such analysis
must be based (either implicitly or explicitly) on a particular
mathematical representation of the deformation field. This
paper describes a suitable representation for the analysisof
deformation fields, and demonstrates its use on medical images
in 2D and 3D. The focus of the work is on a common low-
dimensional representation of warps from a group of images,
either based on a set of pairwise registrations (e.g., usingone
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of the registration algorithms referenced above), or from an
explicitly groupwise algorithm [6].

There has been very little work on modelling dense 2D
and 3D deformation fields. What work there has been has
either used the densely-sampled deformation vectors directly
(e.g., [7], [8]), or has employed a smooth, continuous represen-
tation of them (e.g., [9]). Neither of these methods guarantees
that the deformation field is diffeomorphic (although B splines
can be guaranteed diffeomorphic given certain non-trivial
constraints on the control-point displacements [10]).

We contend that the appropriate representation should be
continuous and diffeomorphic, as only a diffeomorphic rep-
resentation allows a smooth and unambiguous one-to-one
correspondence between all points in any pair of images.
The importance of a one-to-one mapping is clear when the
question of modelling and analysis is considered. Most mod-
elling strategies are based on the idea of a training set of
examples that all contain different instantiations of the same
set of objects/structures – there are examples of modelling
strategies where objects can appear or become hidden, but
for the purposes of this paper, we will take the simplest
assumption that all the relevant structures will appear in
all the examples in our training set. In spatial terms, this
translates to the assumption that there is some one-to-one
spatial correspondence across the set of images. Note here that
we are only considering the analysis of the spatial variability
of generalised structures present in images, as opposed to
the explicit modelling of the images themselves. Modelling
images would mean considering pixel-value deformation data
as well as pixel (position) deformation data, which leads tothe
fundamental problem that spatial and pixel-value deformations
area priori incommensurate.

The smoothness constraint may be physically violated in
the case of intrasubject correspondence, where, for example,
organs may slide against one another. However, from the point
of view of pixelated images with finite resolution, such a
sampled motion can always be represented as a continuous
diffeomorphic deformation.

There will be specific instances from medical image analysis
where the assumption of one-to-one correspondence fails, for
example, where an additional structure such as a tumour
appears. How this is represented post-registration, whether
as an extreme spatial deformation, an extreme pixel-value
deformation, or as some combination of the two, depends
on the exact registration algorithm chosen. If the former, this
would be indicated by the warp parameters assuming atypical
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values when compared with those seen across the training set.
When we are considering the correspondence between dis-

crete and bounded objects such as brains, it is also desirable
that the warps themselves should be discrete and bounded.
This leads us to suggest that a suitable representation is
that of the group of continuous diffeomorphisms with some
appropriate set of boundary conditions.

Such a representation can be constructed using an approach
based on Geodesic Interpolating Splines (GIS) [11], [12]. In
previous work [11], [13] it has been shown that this approach
also allows the construction of a metric on the space of
knotpoint positions of fixed cardinality. This metric is actually
induced by a metric on the full group of Sobolev diffeo-
morphisms [13]; it should be noted that the polyharmonic
clamped-plate splines described in the current paper have
compact support, and that this has important theoretical impli-
cations when it comes to this construction. Further discussion
of this point is beyond the scope of the current paper, and
interested readers should consult the specialist mathematical
literature – e.g., [14], [15].

There are obvious connections between interpolating the
motion of a set of landmarks (either exactly or inexactly) for
the purposes of registration, and of representing a densely-
defined deformation in terms of the motion of some small
set of knotpoints. In a sense, the representation problem
we wish to consider is the inverse problem of landmark-
based registration. We discuss the similarities and significant
differences between these related topics in section III.

Work on the analysis of shape variability (a simpler problem
than that of image deformation) has used a range of rep-
resentations; examples include polygonal [16] or spline [17]
representations based on a small set of corresponding points
(landmarks), Fourier representations [18] or spherical harmon-
ics [19], medial based representations [20], or combinations of
these [21]. The importance of the choice of representation has
been demonstrated by the fact that explicitly optimizing the
representation can lead to improved model performance [22].

In this paper we demonstrate the construction of these
diffeomorphic representations using a variety of spline bases.
We show that these representations generate warps that are
suitable for the task in hand, giving biologically ‘plausible’
warps in both two and three dimensions, whilst being of a
relatively low dimensionality. We further study the significance
of the metric (geodesic) distances between warps, and show
that using them provides a measure of atypical variation that
has greater discriminatory power than naı̈ve measures based
on the ad hoc use of a Euclidean metric on the space of warp
parameters.

II. T HE GEODESICINTERPOLATING SPLINE

A. Interpolating Splines

Consider a vector-valued spline function~f(~x),
~x ∈ R

n, ~f(~x) ∈ R
n, that interpolates between data values at

a set of knotpoints{~xi : i = 1 to N}, where ~f(~xi) = ~fi.
We will restrict ourselves to the class of splines that can be
expressed as the minimiser of a functional Lagrangian of the

form [23]:

E
[

~f
]

=

∫

Rn

d~x
∥

∥

∥L~f(~x)
∥

∥

∥

2

+

N
∑

i=1

~λi ·
(

~f(~xi) − ~fi

)

=

∫

Rn

d~x~f(~x) · (L†L)~f(~x)

+

N
∑

i=1

~λi ·
∫

Rn

d~x
(

~f(~x) − ~fi

)

δ(~x− ~xi), (1)

whereL is some scalar differential operator, with Lagrange
dual L†. The first term in the Lagrangian is the smoothing
term, or the energy of the displacement field; the second term
with the (vector-valued) Lagrange multipliers{~λi} ensure that
the spline fits the data at the knotpoints1. A particular spline
basis is then defined by specifying the choice of operatorL

and the boundary conditions on~f(~x).
The general form of the functional minimiser is obtained by

solving the Euler-Lagrange equations ofE using the technique
of Green’s functions, as follows. Taking partial and functional
derivatives, we obtain:

∂E

∂~λi

= ~f(~xi) − ~fi,

∴

∂E

∂~λi

= 0 ⇒ ~f(~xi) = ~fi, (2)

δE

δ ~f(~x)
= 2

(

L†L
)

~f(~x) +

N
∑

i=1

~λiδ(~x − ~xi)

∴

δE

δ ~f(~x)
= 0 ⇒

(

L†L
)

~f(~x) = −1

2

N
∑

i=1

~λiδ(~x − ~xi). (3)

We hence see that the general solution to (3) can be written
in the form:

~f(~x) = ~g(~x) +

N
∑

i=1

~αiG(~x, ~xi), (4)

where:

the generalised ‘affine’ function2 g is a solution of:

L~g(~x) = 0, (5)

the Green’s functionG is a solution of:
(

L†L
)

G(~x, ~y) ∝ δ(~x− ~y), (6)

and the set of~αi ∈ R
n are the spline coefficients. Table I gives

a selection of commonly used Green’s functions, for varying
choice of operatorL and varying boundary conditions on~f(~x).

The choice of a particular Green’s function depends on
the boundary conditions and smoothness appropriate to the
problem considered. For example, the clamped-plate spline
(CPS) Green’s function is useful for discrete objects such

1The equivalentsmoothingspline would be a minimum of this Lagrangian
for a particular set of values of{~λi}.

2We use the term ‘affine’ in inverted commas because although in some
cases this function does indeed correspond to the usual definition of an
affine function (that is, a general linear function), this isnot always the case.
For example, if the operatorL was a fourth-order differential operator, the
generalised ‘affine’ function would actually be cubic.
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TABLE I

A SELECTION OFGREEN’ S FUNCTIONS. Dn IS USED TO DENOTE THE UNIT BALL INR
n , AND ∂D

n IS ITS BOUNDARY.

Name Dim L†L Boundary
conditions onf(~x)

G(~x, ~y)

thin-plate [24]
(TPS)

even (∇2)2 asymptotically
linear

‖~x − ~y‖4−n log ‖~x − ~y‖

thin-plate [24]
(TPS)

odd (∇2)2 asymptotically
linear

‖~x − ~y‖4−n

biharmonic
clamped plate [25],
[26] (CPS)

2 (∇2)2 f = f
′

= 0
on and outside∂D

2

‖~x − ~y‖2
`

A2 − 1 − log A2
´

,

A(~x, ~y) =

√
~x2~y2−2~x·~y+1

‖~x−~y‖

triharmonic
clamped plate
[25] (CPS)

3 (∇2)3 f = f
′

= 0
on and outside∂D

3

‖~x − ~y‖
`

A + 1

A
− 2

´

,

A(~x, ~y) =

√
~x2~y2−2~x·~y+1

‖~x−~y‖

Gaussian n exp
“

−∇2

4β

”

asymptotically
linear

exp
`

−β‖~x − ~y‖2
´

as brains, whereas an image of knee cartilage would require
asymptotically linear boundary conditions.

B. The Generalised ‘Affine’ Function

Taking the general form of~f(~x) given above (4), sub-
stituting into (1), and applying the set of constraints
{~f(~xi) = ~fi : i = 1, . . .N} (2), we obtain:

E [{~αk}] =
∑

i,j

G(~xi, ~xj)~αi · ~αj = Gij~αi · ~αj ,
3 (7)

where we define:Gij
.
= G(~xi, ~xj).

The spline coefficients{~αi} and the generalised ‘affine’ func-
tion (5) are then obtained by optimising the above expression
with the set of constraints (2), which we can now write as:

~g(~xi) = ~fi −Gij~αj ∀ i = 1, . . .N. (8)

For operators where the boundary conditions are that the
deformation is asymptotically linear, the generalised ‘affine’
function is the general linear function. For this case, using the
notation of Camion and Younes [11], let us define:

{~xi, i = 1, . . .N} ∈ R
n

with Cartesian components:~xi = {xµ
i : µ = 1, . . . n}.

Q
.
=







x1
1 x2

1 . . . xn
1 1

...
x1

N x2
N . . . xn

N 1






. (9)

Hence the matrixQ is of sizeN × (n + 1), with elements
QiA, wherei = 1, . . .N, A = 1, . . . (n+ 1).

By definition, the action of a general linear transformationg

on a single point~x = {xµ : µ = 1, . . . n} ∈ R
n can be written

as:

~x
g7−→ ~g(~x) ∈ R

n, gµ(~x) = γ
µ
n+1 +

n
∑

ν=1

γµ
ν x

ν , (10)

where
{{

γ
µ
1 , . . . γ

µ
n+1

}

: µ = 1, . . . n
}

are the set
of n(n+ 1) independent parameters that define the

3We adopt the summation convention that we sum over repeated indices.

transformation. Using the index notation defined above,
we can also write the set of parameters in the form
{γµ

A : µ = 1, . . . n, A = 1, . . . (n+ 1)}. So, we can now see
by combining (9) and (10) that the action of a general
linear transformation on the entire set of knotpoints
g : {~xi} 7→ {~g(~xi)} can be written in the compact form:

gµ(~xi) = QiAγ
µ
A, (11)

where again we use the summation convention on repeated
indices.

Taking components, the constraint equation (8) can now be
written as:

gµ(~xi) = f
µ
i −Gijα

µ
j = QiAγ

µ
A,

⇒ α
µ
j = G−1

jk f
µ
k −G−1

jk QkAγ
µ
A. (12)

We could now substitute from (12) into (7) to obtain an explicit
expression for the energy as a function of the parameters of
the general linear function{γµ

A}; setting the first functional
derivative of this expression to zero would then give the
desired solution. However, it is simpler to use the chain rule
for derivatives as follows:

From (7): E [{~αk}] = Gij~αi · ~αj = α
µ
i Gijα

µ
j

∴

∂E

∂αν
j

= 2Gjkα
ν
k. (13)

From (12): αν
j = G−1

jk f
ν
k −G−1

jk QkAγ
ν
A

∴

∂αν
j

∂γ
µ
A

= −G−1
jmQmA.

∂E

∂γ
µ
A

≡ ∂E

∂αν
j

∂αν
j

∂γ
µ
A

(14)

∴

∂E

∂γ
µ
A

= 0 ⇒ Gjkα
ν
kG

−1
jmQmA = 0

⇒ αν
mQmA = 0. (15)

Substituting forαν
m from (12) then gives the final results for
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the affine and spline parameters in closed form:

γ
µ
A =

(

QTG−1Q
)−1

AB
QT

BiG
−1
ij f

µ
j ,

4 (16)

α
µ
i = G−1

ij

(

f
µ
j −QjAγ

µ
A

)

.

For the case of the clamped-plate spline, the boundary con-
ditions are that the deformation is zero on and outside the
unit ball, which means that the generalised ‘affine’ function
~g(~x) in (4) is identically zero. The relation between the spline
parameters{~αi} and the knotpoint displacements{~fi} for the
CPS is hence given by setting the affine parameters{γµ

A} to
zero in (12). Unless stated otherwise, when using the CPS, we
apply a Procrustes affine alignment (of the form given in (5))
to the sets of knotpointsbefore the boundary conditions are
imposed.

Let us now consider using the splines defined in table I
to represent the densely-sampled (i.e., at every pixel/voxel
position in the image) deformation field of an image, where
a point at original position~x is warped to a position~x +
~f(~x). There will be some set of knotpoints (with associated
initial and final positions) and knotpoint displacements for
which the interpolated displacement field matches our given
displacement field at all sample points, to some required level
of accuracy (this point is discussed in detail in Section II-E.3).
We will call such a set of knotpoints and knotpoint displace-
ments a representation of the deformation field~f(~x). However,
such an interpolated deformation field is only guaranteed tobe
diffeomorphic in the limit of sufficiently small displacements.

C. Geodesic Interpolating Splines

The usual approach to constructing a large-deformation
diffeomorphism is to consider such a deformation as an
infinite sequence of infinitesimal deformations [11], [27],[12],
[28]; that is, we have an infinite sequence of the spline-part
generated by the Green’s functionG, and an infinite sequence
of infinitesimal affine transformations.

Consider a sequence of interpolating spline transformations
being applied between the flowtimest = 0 and t = 1. Under
this sequence of infinitesimal deformations, consider a particle
P that follows the flow; it starts at a general point~x(0) ∈ R

n

and follows a path~x(t). Between the timest and t + dt, the
particle that has reached~x(t) then moves to~x(t+dt) ≈ ~x(t)+

dt
d~x(t)

dt
. We define the time-dependant Eulerian velocity field

~v(t, ~y) thus:

~v(t, ~x(t))
.
=
d~x(t)

dt
, (17)

so that the particleP follows a path defined by this time-
varying velocity field. We can now see that the analogue of
the deformation field~f(~x) for the segmentt to t + dt is the
quantitydt·~v(t, ~x). The analogue of the total deformation field

4Note that the expression forγµ
a differs from [11], where there is a

typographical error and the second factor ofG−1 has been omitted.

energy for the time segmentt to t+ dt is then given by:

∆E =

∫

Rn

d~x~v(t, ~x)
(

L†L
)

~v(t, ~x),

andE [~v(t, ~x)]
.
=

1
∫

0

dt

∫

Rn

d~x~v(t, ~x)
(

L†L
)

~v(t, ~x),5 (18)

We now consider a set of knotpoints, with paths
{~xi(t) : i = 1, . . . N} whose motion we wish to interpolate. In
the Lagrangian for the interpolating splines (1), the constraint
on the deformation field is that it reproduces the displacement
of the knotpoints – the obvious analogue of this is that
the velocity field is always such that the knotpoints move
according to it. That is:

d~xi(t)

dt

.
= ~vi(t) = ~v(t, ~xi(t)) ∀ t ∈ [0 1] and ∀ i = 1, . . .N.

(19)
For a given set of knotpoint flowpaths{~xi(t)}, the Lagrangian
is:

E [{~xi(t)}] =

1
∫

0

dt

∫

Rn

d~x~v(t, ~x) ·
(

L†L
)

~v(t, ~x)

+
N
∑

i=1

1
∫

0

dt

∫

Rn

d~x~λi(t) ·
(

~v(t, ~x) − d~xi(t)

dt

)

δ(~x− ~xi(t)),

(20)

where the set of functions{~λi(t)} are the Lagrange multipli-
ers. Taking derivatives:

δE

δ~λi(t)
= ~v(t, ~xi(t)) −

d~xi(t)

dt

∴

δE

δ~λi(t)
= 0 ⇒ ~v(t, ~xi(t)) =

d~xi(t)

dt
. (21)

δE

δ~v(t, ~x)
= 2

(

L†L
)

~v(t, ~x) +

N
∑

i=1

~λi(t)δ(~x − ~xi(t))

∴

δE

δ~v(t, ~x)
= 0

⇒
(

L†L
)

~v(t, ~x) = −1

2

N
∑

i=1

~λi(t)δ(~x − ~xi(t)).

(22)

So, in an analogous manner to (4), (5), and (6), the general
solution can be written in the form:

~v(t, ~x) = ~g(t, ~x) +

N
∑

i=1

αi(t)G(~x, ~xi(t)), (23)

where the Green’s functionG(·, ·) is as defined previously
(6). The spline parameters{αi(t)} and the generalised ‘affine’
function~g(t, ~x) now depend continuously on the flowtimet,

5Velocity fields for which this integral exists, and for whichthe integral
is finite, belong to the relevant Sobolev space of functions;the associated
diffeomorphism group is the group of Sobolev diffeomorphisms, which is
different to, say, the group ofCk or C∞ diffeomorphisms. See [14] for
further details.



5

giving us the infinite sequence of infinitesimal spline transfor-
mations and generalised ‘affine’ transformations.

At each instant of flowtimet, the closed-form solution for
the spline parameters{αi(t)} and the generalised ‘affine’
function ~g(t, ~x) is given by applying the constraint given
in (21). The results are the exact analogues of those given
previously, except that (as above) at each time instantt,
the components of the spline displacements{fµ

i } are now
replaced by the components of the time-dependant velocities
of the knotpoints{vµ

i (t)} (19). We define:

Q(t)
.
=







x1
1(t) x2

1(t) . . . xn
1 (t) 1

...
x1

N (t) x2
N (t) . . . xn

N (t) 1






, (24)

Gij(t)
.
= G(~xi(t), ~xj(t)). (25)

A generaltime-dependantlinear transformation is given by:

gµ(t, ~x) = γ
µ
n+1(t) +

n
∑

ν=1

γµ
ν (t)xν

⇒ gµ(t, ~xi(t)) = QiA(t)γµ
A(t), (26)

so that, in the linear case, the solution for the affine and spline
parameters is:

γ
µ
A(t) =

(

QT (t)G−1(t)Q(t)
)−1

AB
QT

Bi(t)G
−1
ij (t)vµ

j (t),

(27)

α
µ
i (t) = G−1

ij (t)
(

v
µ
j (t) −QjA(t)γµ

A(t)
)

. (28)

For the case of the clamped-plate GIS, the generalised
‘affine’ function is identically zero, so that:

α
µ
i (t) = G−1

ij (t)vµ
j (t). (29)

To summarize, for a given set of knotpoint paths{~xi(t)},
we can solve for the spline parameters{αi(t)}, which then
give a total associated energy (the generalization of equation
(5)) of:

E [~αk(t)] =

1
∫

0

dtG (~xi(t), ~xj(t)) (~αi(t) · ~αj(t)) . (30)

However, this solution is only for a given fixed set of knotpoint
paths – in practice, we wish to also optimise over the paths
of the knotpoints with the initial and final knotpoint positions
(i.e., the points{~xi(0)} and{~xi(1)}) held fixed. This means
that we no longer have a closed-form solution. We therefore
have to numerically optimise the expression for the energy in
(30), where the free variables are the knotpoint paths between
their fixed endpoints. The implementation of this is described
in section II-D.

Then, as in section II-B, we take the initial and final
knotpoint positions to be a representation of the diffeo-
morphism generated by the interpolation. We denote such
a geodesic interpolating spline (GIS) diffeomorphism by
ω({~xi(0)}, {~xi(1)}).

As was shown by Camion and Younes [11], who considered
using the GIS for inexact landmark matching, the value of the
energy (30) when optimised w.r.t. the variation of knotpoint
paths with fixed endpoints has the important property that it

can be considered as the square of a geodesic distance function
d on the space of knotpoint configurations (that is, patterns)
of a fixed cardinalityN . That is:

d2(e, ω) = Eopt[ω], whereω = ω({~xi(0)}, {~xi(1)}), (31)

where e is the identity transformation on the space. This
distance function has the important property that it is invariant
under right-multiplication by an arbitrary elementΦ of the
diffeomorphism group. That is:

d(e, ω) = d(e ◦ Φ, ω ◦ Φ) (32)

where◦ is the group multiplication6, defined by:

if Φ : ~x 7→ Φ(~x), Ψ : ~x 7→ Ψ(~x),

thenΨ ◦ Φ : ~x 7→ Ψ (Φ(~x)) . (33)

To see the importance of this invariance, consider the
following. We take a set ofM registered images, with a dense
correspondence defined across the set. We select an image to
be the spatial reference, which then defines the set of spatial
warps{ωA : A = 1, . . .M − 1} between it and the rest of
the images in the set. We can then compute the pairwise warp
distance between imageP and imageQ thus:

d(ωP , ωQ). (34)

Suppose we now choose a different image, imageB say, as
the new spatial reference. This means that the warp from the
new reference to imageP is given byωP ◦ ω−1

B . The pairwise
warp distance between imageQ and imageP with respect to
the new reference is

d(ωP ◦ ω−1
B , ωQ ◦ ω−1

B ). (35)

It is then clear that the pairwise warp distances between a
set of registered images is only invariant to the choice of
spatial reference image if the pairwise distance function is
right-invariant.

The formulation of the GIS is right-invariant because it is
written in terms of the Eulerian velocity field (17). Consider
a pathΦ(t) in the diffeomorphism group, whose action on a
point ~x0 ∈ R

n is given by:

Φ(t) : ~x0 7→ Φ(t, ~x0)
.
= ~x(t). (36)

Note that if ~x(0) 6= ~x0, this corresponds to a path in the
diffeomorphism group that does not start at the identitye.
The Eulerian velocity field associated with this flow is:

~vΦ(t, ~x(t))
.
=
∂Φ(t, ~x0)

∂t
≡ ∂Φ

(

t,Φ−1(t, ~x(t))
)

∂t
. (37)

If we consider the flowΦ(t) ◦ Ψ, where Ψ is some fixed
element of the diffeomorphism group, it is trivial to show that
the Eulerian velocity field defined above is invariant under this
transformation – and hence we see that the energy of the flow,
and hence the metric distance along the flow, is right-invariant.

We also note that this metric provides us with a principled
way of defining warps that interpolate between any two given

6Note that the exact definition of the group multiplication differs between
authors, and depending on the exact definition, the same function can be
denoted as either left or right invariant.
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warps [26]; the optimised flow in the space of diffeomorphisms
gives a geodesic on the space of warps, and the geodesic
distance allows us to calculate a warp on this geodesic halfway
between the two initial warps.

D. Implementation Issues

We now consider the numerical optimisation of (30)
w.r.t. the knotpoint paths{~xi(t)} with fixed endpoints.
To do this, we first replace each continuum path variable
{~xi(t), t ∈ [0, 1]} by a corresponding piecewise-linear ap-
proximant{~qi(τ) : τ = 1, . . . T + 1}, where:

~qi(τ)
.
= ~xi(t) wheret = (τ − 1)∆, ∀ τ = 1, . . . T + 1 (38)

and ∆ = 1
T

. Since the piecewise-linear approximant path is
only defined at a set ofT + 1 discrete time values, we also
have to replace the continuous time-derivative operatord

dt
by

an appropriate finite-difference operatorD. We define:

D~qi

(

τ +
1

2

)

.
=
~qi(τ + 1) − ~qi(τ)

∆
for τ = 1, . . . T, (39)

If ~vi(t) is the velocity along the corresponding continuum path
~xi(t), then we can see that:

D~qi

(

τ +
1

2

)

≈ ~vi

(

∆

(

τ − 1

2

))

. (40)

However, what we actually require is an approximant to the
continuum velocity at timest = (τ − 1)∆. We define:

for τ = 2, . . . T :

D~qi(τ)
.
=

1

2

(

D~qi

(

τ − 1

2

)

+D~qi

(

τ +
1

2

))

(41)

≈ ~vi ((τ − 1)∆) ,

D~qi(1)
.
= D~qi

(

3

2

)

, D~qi(T + 1)
.
= D~qi

(

T +
1

2

)

.

(42)

We note that this second-order definition of the finite-
difference operatorD is explicitly time-symmetric. This is in
contrast to the first-order approximation:

D(1)~qi (τ)
.
=
~qi(τ + 1) − ~qi(τ)

∆
for τ = 1, . . . T, (43)

≈ ~vi ((τ − 1)∆) ,

which was the form used by both Camion & Younes [11] and
Joshi & Miller [12]. The consequences of this explicitly non-
time-symmetric derivative are investigated in the next section.

We now have the sets of variables{~qi(τ)} and{D~qi(τ)}.
Using these, we define the quantitiesQiA(τ) andGij(τ) by
using (24) and (25), where we simply replace~xi(t) by ~qi(τ).
Similarly, the solutions for the spline parameters{αµ

i (τ)} (and
the affine parameters{γµ

A(τ)} for the linear case) are given
by taking either equation(s) (27) and (28) (linear case) or
(29) (clamped-plate case), and replacingG−1(t) by G−1(τ),
Q(t) by Q(τ), and vµ

j (t) by Dq
µ
j (τ). So, for example, in

the clamped-plate case, the spline parameters are given by
inverting the equation:

D~qi(τ) =

N
∑

j=1

~αj(τ)G(~qj(τ), ~qi(τ)). (44)

Once we have obtained the spline parameters{αµ
i (τ)}, we

can then calculate the energy for this particular set of knotpoint
paths:

E [{~qi}] = ∆

N
∑

i,j=1

T+1
∑

τ=1

G(~qi(τ), ~qj(τ))(~αi(τ) · ~αj(τ)), (45)

which is the discrete-sum approximation to the time integral in
(30). Finding the optimal paths of the knotpoints between their
constrained endpoints is then reduced to optimising the energy
(45) with respect to the free variables{~qi(τ), τ = 2, . . . T}.
The difference between this implementation and other imple-
mentations and approaches to diffeomorphic spline construc-
tion are discussed in the next section. In the implementation
used in this paper the standard MATLAB optimisation routines
were used, in effect a line search, since no gradient was
computed. A gradient descent algorithm for the optimisation
of the paths is described in [29].

Once we have found a set of optimum knotpoint paths, we
then have to calculate the movement of a sample point,~y say,
under this diffeomorphism. Suppose that at timestepτ , this
point has moved to position~p(τ). By definition, ~p(1) = ~y.
We compute:

D~p(τ) = ~g(τ, ~p(τ)) +
N
∑

i=1

~αi(τ)G(~p(τ), ~qi(τ)), (46)

which is the interpolant of the velocity field. For the clamped-
plate case~g(τ, ·) ≡ 0, whereas for the linear case:

gµ(τ, ~p(τ)) = γ
µ
n+1(τ) +

n
∑

ν=1

γµ
ν (τ)pν (τ), (47)

where{pν(τ)} are the Cartesian components of~p(τ), and the
γs are the affine parameters as given above. We then calculate
the position of the point at the next timestep,τ + 1:

~p(τ + 1)
.
= ~p(τ) + ∆D~p(τ), (48)

and hence the whole of the path for this sample point7.
The final question that needs to be considered is how to

choose the initialisation of the knotpoint paths~qi(τ). The sim-
plest choice is a constant-velocity straight line between the two
endpoints, but for the polyharmonic clamped-plate spine we
have found quicker optimisation results by initializing using
the geodesic paths for a single knotpoint, that is, computing
the solution to (30) for the caseN = 1. See the Appendix for
details.

E. Illustrative Examples

We here provide a few examples to demonstrate some of the
important points of our formulation of the GIS, and show how
these properties carry over to the numerical implementation
given previously.

7It should be noted that this update is not time symmetric, andthat we
should be using the interpolant of the velocity field at timestep τ + 1

2
.

However, to do this we would first have to estimate the position at this time.
Iterative solutions are possible, which give convergence to a time-symmetric,
self-consistent result. However, we have found in practicethat the first-order
estimate given in the text is sufficient.
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Fig. 1. Top Row, from left:The unwarped 190x190 pixel image with boundary circle, the forward warp applied
to the image, the backward warp applied to the image, the concatenation of the forward and backward warps
applied to the image,Bottom Row:The corresponding grids. For the purposes of illustration,these are only
plotted every 10 pixels. The knotpoint initial positions (black dots) and optimum paths (gray lines) are shown
on the inital grid.
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Fig. 2. The inverse consistency error (ICE)
for Fig. 1, in units of pixel size.Top: a plot
of the ICE, with the initial positions of the
knotpoints (gray circles) shown for reference,
Bottom: the histogram of the ICE for pixel
centres inside the boundary circle only.

1) Inverse Consistency and Right Invariance:We first note
that the right-invariance of the continuum metric distance
is exact, since the problem is formulated in terms of the
Eulerian velocity field. In practice, the metric distance be-
tween continuously-defined warpsΦ and Ψ is defined to
be d(e,Φ ◦ Ψ−1), since this is what is calculated numer-
ically (that is, all flows start at the identity). Hence, the
numerically-calculated values ofd(Φ,Ψ) are right-invariant
by definition, providing that the numerical implementation
is also time-symmetric. Time symmetry is equivalent to the
requirement thatd(e,Φ) = d(e,Φ−1). In terms of knotpoint
endpoints{~xi(0)} and {~xi(1)}, this can be expressed as the
requirement that the forward GIS warpω({~xi(0)}, {~xi(1)})
is the exact inverse of the corresponding backward GIS warp
ω({~xi(1)}, {~xi(0)}).

To test this, we considered a190×190 pixel image, with unit
boundary circle as shown in Fig. 1. We selected 9 knotpoint
positions at random within the boundary circle and applied
random displacements to these knotpoints to generate the set
of endpoints{~xi(0)} and {~xi(1)}. In the figure, we show
the backward and forward GIS warps between these sets of
endpoints, calculated usingT = 20 discrete time-steps, using
the biharmonic CPS GIS. If the time symmetry is retained
numerically, then concatenating these two warps should give
the identity. We compute the inverse consistency error (ICE)
for each pixel in the original image by computing the straight-
line distance between the original position, and the position
after applying the concatenated warps. A plot of the ICE in
shown in Fig. 2. The maximum ICE is0.2675 pixels, with a
mean value (taken over the interior of the circle only) of only
0.0548 pixels, and this is for an original warp with maximum
displacement of20.3 pixels, and a mean displacement of6.5
pixels. We note that the apparent larger errors in the sub-
sampled grid shown in Fig. 1 are due to the finite resolution
of MATLAB figures.

Fig. 3. Knotpoint position as a function of flowtime for the 1Dbiharmonic
CPS GIS with one knotpoint.Solid black line: the exact solution (See
Appendix).Black circles:the forward and backward solutions for the second-
order difference operator. Note that these lie precisely onthe exact solution
given by the solid black line.Upward pointing triangles:Forward solution
for the first-order operator.Downward pointing triangles:Backward solution
for the first-order operator.

2) Geodesic Paths:From a numerical point of view, the
issue of time-symmetry is also related to the optimal paths
of the knotpoints. In (43) and (41) we gave the first and
second order finite-difference operators that approximateto the
continuum time-derivative. The first-order form is the one used
by both Camion & Younes [11] and Joshi & Miller [12] in their
implementations of inexact landmark matching. The second-
order form, which was the form used in our implementation,
is explicitly time-symmetric. To investigate the consequences
of this, we will consider the simplest case of one knotpoint
(N = 1) in one dimension (n = 1). The exact solution for both
the knotpoint path and the optimal energy can be computed
in closed form (see Appendix for details). Figure 3 shows the
numerical results for one knotpoint moving from−0.9 to 0.9
when using either the first-order (43) or second order (41)
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Fig. 4. An example artificial warp from a 200x200 pixel source(top left) to a
target usingT = 10 timesteps. The boundary circle is the circumcircle of the
image. The knotpoint positions are indicated by the gray circles, the grids are
plotted at every 10 pixels, and all pictures are to the same scale. The plot at
the bottom right shows the calculated energy during the optimisation against
the cumulative number of function evaluations.30, 000 function evaluations
took 950 seconds of CPU time.

approximants to the time derivative. Both the forward and
backward solutions are computed. The same initial estimate
of the knotpoint path (a constant velocity straight line) was
used in both cases. It can be seen that the result using
the second-order derivative is time symmetric (in that the
forward and backward results match), and matches the exact
solution. In contrast, the result obtained using just the first-
order approximation to the knotpoint velocity is neither time-
symmetric (that is, the forward and backward solutions do not
match), nor does it match the exact result.

We can also compare the computed values of the energy
with the exact result from (56) ofE = 51.1579; the first-
order case givesE = 55.2862, which is 8.1% greater than
the exact result, whereas the second-order case givesE =
50.4854, which is1.3% lower. Note that we would not expect
an exact agreement, since the numerical result is only a finite-
sum approximation to the true energy integral, withT = 20
timesteps.

To give a further example of the geodesic paths traced
out in the diffeomorphism group, we considered the artificial
matching problem shown in Fig. 4. The source and target are
200x200 pixel binary images, the source shape is a rectangle
and the target is C-shaped object, with 10 corresponding points
as shown in the figure. We used the biharmonic CPS, with the
boundary circle taken to be the circumcircle of the image, so
that the corners remain fixed.

As can be seen in the figure, the original rectangle evolves
in a sensible manner, despite the large deformation required.
We also show the calculated energyEcalc plotted as a function
of the cumulative number of function evaluations during the
optimisation. The30, 000 function evaluations took just under
16 minutes of CPU-time for an un-compiled MATLAB imple-
mentation running on a single1.8Ghz Pentium 4 processor.

3) Approximating an Arbitrary Warp :So far, we have
shown how to generate diffeomorphic warps given knotpoint
endpoints. The actual problem we wish to solve is given a
diffeomorphic warp, how do we represent that warp within

Fig. 5. Top Row:The unwarped image (the same image as was used in
Fig. 1), with initial knotpoint positions (white crosses) and the unit circle
(black line), and the Cauchy warped image.Bottom Row:The distribution
of point-to-point Euclidean distance discrepancies between the Cauchy warp
and its approximant for all pixel positions within the unit circle, in units of
the unwarped pixel size, and the approximating warp generated by the set of
knotpoints.

the GIS representation?
So, suppose we are given a warp that is defined on a dense

set of pointsY0 = {~y0} (typically the set of all pixel/voxel
positions in an image), and the warped point positions are
given by Y1 = {~y1}. To approximate the warp, we use the
following iterative greedy algorithm:

• For the current set of knotpoint endpoints{~xi(0)},
{~xi(1)}, i = 1, . . . N , compute the GIS warp
ω(N) = ω({~xi(0)}, {~xi(1)}).

• Calculate the set of warp discrepancies:

ddisc(Y0) = |ω(N)(Y0) − Y1|, (49)

where| · | is the Euclidean point-to-point distance.
• Find the point ~y0 ∈ Y0 for which ddisc is a max-

imum, and add this point as a new knotpoint, with
~xN+1(0) = ~y0, ~xN+1(1) = ~y1.

• Repeat until the desired accuracy is achieved.

It is obvious that we can always represent the desired warp
exactly by choosing every point~y0 ∈ Y0 as a knotpoint
(any finite collection of non-coincident sample points with
non-coincident displacements can be represented using some
element of the diffeomorphism group [30]). However, in
practice, we will have some limit to the accuracy required. For
instance, for the case of warps derived from some registration
algorithm, it may be appropriate to use the criterion that we
have an accurate enough representation of the warp when the
resampled approximately-warped image exactly matches the
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resampled exactly-warped image. This will, of course, depend
on the particular resampling algorithm chosen.

In Fig. 5, we give an explicit example of a warp approx-
imant. The warp that we wish to approximate is generated
by concatenating 20 random, localised Cauchy warps; each
warp acts only within a defined ellipsoidal region, which is
itself restricted to lie wholly within the unit circle. For the
purposes of illustration, we here define the unit circle as
the inscribed circle of the image. Each Cauchy warp is a
parameterised, strictly diffeomorphic warp of an ellipsoidal
region, which uses a 2D flat-space version of the cumulative-
density-function-based methods described in [31]. Withinand
on the boundary of each ellipsoidal region, the Cauchy warp
is aC1-differentiable warp, where all points within the region
translate in the same direction, with the magnitude of the
translation controlled by the motion of the central point. The
description of a single Cauchy-based warp hence requires
2+ 2+ 2 = 6 degrees of freedom, with20× 6 = 120 degrees
of freedom for the concatenated warps.

This warp is then applied to a190× 190 pixel image. The
warped image isnot resampled, but plotted as a shaded surface
with deformed faces/pixels. We then approximate this warp
using the greedy algorithm described above. The result for the
case of 30 knotpoints (equal to30 × 2 × 2 = 120 degrees of
freedom) is given. Note that the Cauchy-based representation
is inherently local, and mathematically unrelated to the GIS
representation. However, for the same number of degrees
of freedom, we see that the approximating warp is visually
extremely close to the Cauchy warp. The distribution of
discrepancies (49) for pixels inside the unit circle is given in
the figure, with50% of the pixels having a discrepancy of less
than0.6 pixel units, and the maximum discrepancy being2.25
pixels. A further example, that of approximating 3D warps for
shapes is presented in a Section IV-B.

So far, we have just considered approximating single
warps – in practice, we might wish to approximate a group
of warps using a common spatial reference. That is to say,
the set of intial knotpoints and initial knotpoint positions is
common to all the warps. The greedy algorithm given above
can be generalised to include this case, by computing the sum
of discrepancies (49) across the group.

III. C OMPARISON WITH OTHER SPLINE-BASED METHODS.

As noted previously, there are other landmark/knotpoint
based methods of constructing exact or approximate diffeo-
morphisms. When comparing such methods, there are two
important points to consider – the mathematical statement of
the algorithm, and the details of the numerical implementation
of the algorithm.

In terms of splines, we have two choices – to consider
the deformation as a single discrete displacement event, oras
the endpoint of some smooth, continuous flow. Considering
the deformation field approach, splines of the form given in
(1) have the problem that they are only guaranteed one-to-
one for small enough displacements, and that they are not
symmetric under interchange of the landmark/knotpoint initial
and final positions. Johnson and Christensen addressed this

problem in the context of registration [32] with the Consistent
Landmark Thin-Plate Spline (CLTPS). They added a term to
the Lagrangian that depended on the consistency of the trans-
formation and its inverse. However, we emphasize that adding
another weighted term to the Lagrangian isnot the same
mathematically as imposing an exact constraint, but is instead
a trade-off between the bending energy of the deformation
field and the inverse consistency criterion. More importantly,
such a formulation does not give a metric on the space of
transformations. However, it should be noted that their aim
was to produce an algorithm suitable for registration, where
CPU time is more of an issue, rather than the inverse problem,
of finding knotpoints to represent an arbitrary diffeomorphism,
which is the main focus of this paper.

For the flow-of-splines case, we will consider three different
Lagrangian formulations. We define the common smoothing
term:

E[~v] =

1
∫

0

dt

∫

d~x ~v(t, ~x) ·
(

L†L
)

~v(t, ~x). (50)

The paths of the landmarks/knotpoints are denoted by
{~xi(t) : i = 1, . . . N}, where~xi(t) ∈ R

n, with Cartesian com-
ponents{(~xi(t))µ , µ = 1, . . . n}.

A) Joshi& Miller [12] consider inexact landmark matching:

LA = E[~v] +

N
∑

i=1

(~yi − ~xi(1))µ(Σ(i))−1
µν (~yi − ~xi(1))ν ,

where {~yi} are the targets for the landmarks, and
{(Σ(i))−1

µν : i = 1, . . .N, µ, ν = 1, . . . n} the param-
eters that determine the degree of end-point matching,
Σ(i) ∈ R

n × R
n being then×n error covariance matrix

for the ith landmark.
B) Camion& Younes [11] also consider inexact landmark

matching:

LB = E[~v] + σ

N
∑

i=1

1
∫

0

dt

∥

∥

∥

∥

d~xi(t)

dt
− ~v(t, ~xi(t))

∥

∥

∥

∥

2

,

where the fixed parameterσ determines the mis-match
between the velocity field and the knotpoint velocities.

C) In the current paper (from (20)) finds knotpoints to
represent an arbitrary diffeomorphism:

LC = E[~v] +

N
∑

i=1

1
∫

0

dt~λi(t) ·
(

~v(t, ~xi) −
d~xi(t)

dt

)

.

The first difference to note is that (A) and (B) are solved for
specific values of the parameters{(Σ(i))−1

µν } and σ respec-
tively, whereas the{~λi(t)} in (C) are Lagrange multipliers –
this means that (A) and (B) are both cases of a trade-off
between the energy of the velocity fieldE[~v] and a mis-
match term, whereas (C)exactly imposes anexactmatching
constraint. This is equivalent to saying that (A) and (B) are
both based onsmoothingsplines, whereas our implementation
is based on aninterpolating spline formalism. It could be
argued that we can approach the exact matching by letting the
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coefficient(s) of the matching term tend to infinity. However,
from an implementation point of view, this is a poor choice –
it is not cleara priori how large ‘large’ is in terms of the
value of a parameter. Joshi & Miller [12] noted this point,
saying that care had to be taken in constructing theΣ → 0
limit – their approach was to construct an inexact matching
to within someǫ-ball of the targets, and then perform an
interpolation to get exact matching. This, however, will only
ever give an approximation to the true exact match. Given that
an exact match is what is required for the case of representing
diffeomorphisms, it seems sensible to include thisa priori
as in (C), rather than as the limit of some inexact matching
process.

The second difference is that (A) does not lead to a metric,
whereas (B) and (C) (since they are both functionals of the
Eulerian velocity field) both lead to right-invariant metrics
on the space of knotpoint positions. The two aims of the
current paper are to construct representation(s) of arbitrary
diffeomorphisms and to construct a symmetric metric on the
group of Sobolev diffeomorphisms – (B) could theoretically
construct such a representation, but at the cost of introducing a
further arbitrary parameter (i.e., the exact value ofσ chosen).
Attempting to numerically construct the limit ofσ → ∞
would suffer from the problems noted above.

The numerical problems with the implementations used in
(A) and (B) were discussed earlier (section II-E.2), where it
was shown that a non-time-symmetric implementation of a
time-symmetric continuum algorithm can lead to appreciable
errors, in that in general, it will neither converge to the correct
exact solution, nor indeed to a time-symmetric solution.

IV. REPRESENTINGDIFFEOMORPHISMS

A. Representing 2D Diffeomorphisms

When considering warps of 2D biological images, it is
obviously important that the generated warps are not only
diffeomorphic, but also make some sense biologically. To
investigate this, we considered a set of 2D T1-weighted MR
axial slices of brains, where the slices chosen show the
lateral ventricles. For each image, the positions of the lateral
ventricles and the skull were annotated by a radiologist using a
set of 163 points. We took a subset of 66 of these points to be
the positions of our knots (see Fig. 6). Given a pair of images,
the knotpoint positions on the images give us the initial and
final positions of our knotpoint paths. We then calculated
the geodesic interpolating spline warp corresponding to these
positions using the 2D biharmonic clamped-plate spline as
Green’s function. The bounding circle for the spline is shown
in Fig. 7.

Note that we did not affinely align the knotpoints before
calculating the warp; hence the algorithm has to deal with a
non-trivial pseudo-affine part. Including the affine part would
have made the task easier. Example results are shown in Fig. 8.

It can be seen that the warps are indeed diffeomorphic,
and appear to be very smooth (see, for example, the detail
shown in Fig. 9), and biologically plausible, which would not
be true had a simpler scheme been used. The warped images

Fig. 6. Left: Annotation (white line) and
knotpoints (white circles) on the original brain
slice. Right: The same knotpoints positioned
on another brain slice.

Fig. 7. An example
2D brain slice with the
bounding circle.

Fig. 9. Close-up of a warped source image from Fig. 8 (last column). The
deformed pixel grid is shown (white lines), plotted at every3 pixels.

are not resampled – the images are instead plotted as faceted
grayscale surfaces, so that the size and position of each warped
pixel is retained. The pairs of images were chosen to illustrate
cases where the required deformation was considerable, both
in terms of the change in shape of the ventricles and skull,
and in terms of the difference in scale and orientation of
the slice as a whole. The resultant warped images do indeed
appear to be biologically plausible, despite the relatively low
dimensionality of the representation used – structures other
than the labelled ones have been brought into approximate
alignment. This suggests that a dense correspondence (for
instance, one given by a non-rigid registration using maximisa-
tion of mutual information) could also be represented by these
warps without an inordinate increase in the dimensionalityof
the representation (i.e., the number of knotpoints required). It
was shown earlier that the GIS representation can be used
to represent mathematically unrelated diffeomorphic warps
to reasonable accuracy given the same dimensionality of
representation. Testing this assertion for warps from dense
non-rigid registrations is the subject of future work.

B. Representing 3D Diffeomorphisms

We have shown that this geodesic interpolating spline basis
can generate biologically plausible warps in 2D; we now
proceed to show that we can also do the same in 3D. We take
as our dataset a set of segmented hippocampi. Each example
consists of a triangulated surface with 268 vertices, where
the vertices for each example have been manipulated to give
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Fig. 8. Four examples of warp interpolation using the clamped-plate spline. Pixel intensity is unchanged, but note thatthe image structures are approximately
aligned.Top row: Unwarped source image,Middle row: Warped source image,Bottom row:Target image.

Fig. 10. Two views of a pair of source (left) and target (right) hippocampi
with knotpoints (circles), all to the same scale. The correspondence between
the shapes is indicated by the shading.

the optimised correspondence [31]. Examples are shown in
Fig. 10.

Pairs of hippocampi were chosen at random, and the shapes
aligned using generalised Procrustes analysis. We used the
triharmonic clamped-plate spline (see Table I) as our GIS
basis, with each hippocampus being scaled to fit within the unit
sphere. The warp between source and target was approximated
using the greedy algorithm described previously.

Fig. 11 shows the distribution of the discrepancies between
the aligned source and target, and the final warped source
and target, for a set of 70 knotpoints. It can be seen that
the distribution of discrepancies as a whole has been shifted
towards smaller values. In Fig. 12, we show the maximum,

Fig. 11. Distribution of vertex discrepancy between sourceand target (grey
bars), and warped source and target (white bars). Units as inFig. 10.

Fig. 12. The maximum, median and mean discrepancies (in units of their
respective initial values, so that all graphs start at100% by definition), for
non-knot points only, as a function of the number of knots. Data is shown
from 4 randomly selected pairs of hippocampi.
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Fig. 13. Left: The distances between the discrete structures varies.Right: Example shapes generated from the Statistical Shape Model of the discrete
structures dataset for varying model parameter (Mahalanobis distance). The change in scale as the model parameter varies is caused by the fact that the points
have been Procrustes aligned.

Fig. 14. Geodesic distance versus model parameter for the discrete structure
dataset of Figure 13.

median and mean discrepancies for non-knot points only as a
function of the number of knotpoints for 4 random pairs of
hippocampi. Note that the nature of our greedy algorithm for
selecting knotpoints means that the maximum discrepancy is
not guaranteed to decrease monotonically. However, all three
graphs show that the algorithm quickly reaches a reasonable
representation of the required warp, for a number of knotpoints
that is approximately 25% of the number of vertices. The total
warp approximation (that is, up to 70 knotpoints) for a pair
of hippocampi typically took a few hours to compute, using a
non-compiled MATLAB implementation.

V. M ODELLING DISCRETESTRUCTURES

A. A Simple Example

There are numerous examples in biological and medical
images of cases where a pair of structures remain discrete,
although the spacing between them varies considerably across
a population, for example, the lateral ventricles in the brain.
We constructed a simple dataset to investigate the problems
associated with modelling such a variation; the basic idea is
shown on the left of Fig. 13. Elements of the dataset comprise
6 points defining two triangles, with the separations between
the two triangles constrained to remain positive. A training
set of 100 examples was generated, with the separation being
chosen at random. A standard method for analyzing such
a dataset is to build a statistical shape model (SSM) [16];
the training set was Procrustes aligned, and a linear SSM
constructed.

The model correctly displayed only one mode of variation;
example shapes generated by the model are shown on the
right of Fig. 13. As was expected, this simple linear model
can generate illegal shapes – when the model parameter went
below a threshold of approximately−2.22 standard deviations,
the triangles intersected, so that the structures were no longer

discrete. This was not seen in the training set, and therefore
should not be allowed. We then calculated the CPS geodesic
warps generated by taking the 6 points that define each pair
of triangles as knotpoints, and warping between examples
generated by the model for varying model parameter and
the model mean shape. The CPS was a suitable choice of
Green’s function because the triangles are discrete objects.
The variation of the geodesic distance from the mean shape,
plotted against the model parameter (which is equivalent to
the Mahalanobis distance, a distance defined from a Euclidean
metric on the space of point positions) is shown in Fig. 14.

Positive values of the model parameter, which correspond to
increasing separation of the triangles, show a relationship be-
tween model parameter and geodesic distance that is very close
to linear, but for negative values of the parameter (decreasing
separation), the geodesic distance diverges at the precisevalue
of the parameter that corresponds to zero separation. The
limiting case of zero separation corresponds to coincident
displacements of originally non-coincident points, which, by
definition, cannot be represented by a diffeomorphic transfor-
mation. Hence, as we approach this non-diffeomorphic limit,
the distance of the required diffeomorphic transformationfrom
the identity element of the diffeomorphism group diverges.
This theoretical divergence is reflected in the numerical im-
plementation by the asymptotic behaviour of the computed
distance as shown in the Figure.

The geodesic distance therefore allows us to differentiate
between physical and non-physical variations in a way that
naı̈ve linear models cannot.

B. Using the Geodesic Distance to Classify Variations

We now consider the role of the geodesic distance in
classifying legal and illegal variations in real biological data.
We take as our dataset the annotated outlines of the anterior
lateral ventricles as used in section IV-A in the axial brain
slices. Each example consists of 40 knotpoints (see Fig. 15).
The set of training examples was Procrustes aligned and then
scaled to fit inside the unit circle. A linear SSM was built
from this training set in the usual way. We then used this
SSM to generate random example shapes. These examples
were classified as legal if the outlines of the ventricles didnot
intersect either themselves or each other, and illegal otherwise.
The training set of shapes were all defined to be legal.

We then computed the GIS warps withT = 10 timesteps,
using the biharmonic CPS basis, between the classified set
of shapes and the mean shape from the model. Computation
times were typically between twenty minutes and an hour
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Fig. 15. Top: Two examples from the training set.Bottom:Legal (left) and
illegal (right) examples generated by the SSM. Knotpoints are indicated by
black circles; lines are for the purposes of illustration.

Fig. 16. Mahalanobis versus geodesic distances from the mean shape for
black circles:illegal shapes generated by the SSM,grey triangles:legal shapes
generated by the SSM,white triangles:the training set.

per example, depending on the degree of deformation. The
geodesic distance from the mean is compared with the Maha-
lanobis distance from the mean in Fig. 16. It is immediately
obvious that we cannot separate the legal and illegal shapesby
using the Mahalanobis distance. However, using the geodesic
distance, it is possible to construct a simple classifier (see
Fig. 16) that separates the two groups, with only one example
shape being misclassified (the black circle just below the line,
labelled (ii) in Fig. 17). If we look at the misclassified point in
detail (Fig. 17), we see that the training shape (i) has actually
been mis-annotated – the outline contains a self-intersection –
and is hence illegal. If we adjust the classifier in light of this,
then shapes (i) and (ii) will be correctly classified, but shape
(iii) will be incorrectly classified as illegal, although itcan
be seen that it is very close to being illegal, since the two
ventricular outlines nearly meet.

It should be noted that, unlike the simpler example con-
sidered earlier, these knotpoint motions can actually be repre-
sented by a diffeomorphic mapping – all that ‘intersects’ here
are the smooth outlines drawn between the knotpoints, which
were for the purposes of illustration, and to provide a simple
visual method of classification. What the geodesic distance
is actually detecting here is a difference in the ‘topology’

Fig. 17. Detail of Fig. 16. (i) A training shape that appears misclassified, but
actually contains an annotation error and self-intersection (grey arrow), (ii)
an illegal shape generated by the model, with self-intersection (grey arrow),
(iii) a legal shape generated by the model, correctly classified.

of the knotpoint configurations between the illegal and legal
examples.

The correspondences that we have used in this example are
a subset of the correspondences that we would expect to be
generated by a successful non-rigid registration of the images.
Increasing the density of points in the training shapes would
have left the Mahalanobis distance essentially unchanged,but
the result for the GIS warp would have improved, giving
a greater separation between the two sets of shapes. This
is because, in the limit where the lines become infinitely
densely sampled, what was formerly only a ‘topological’
change would become the difference between a diffeomorphic
and a non-diffeomorphic mapping, as was the case in the first
simple example. Then, as previously, the geodesic distancefor
the illegal shapes would diverge, approaching infinity as the
sampling density increased. We can now extend this result to
the case of modelling the deformation fields for the non-rigid
registration; a linear model of such deformation fields would
suffer the same problem as the linear SSM, where now the
overlapping structures would correspond to a folding of the
warp. The GIS cannot, by definition, generate such a folding
since it is guaranteed to be diffeomorphic.

VI. CONCLUSIONS

The modelling of the dense deformation fields that are
produced by non-rigid registration algorithms is an important
topic that has not yet been studied sufficiently. This paper
contributes to the topic by describing a suitable representation
of the deformation fields that is diffeomorphic and has an in-
herent non-Euclidean metric. The method is based on Geodesic
Interpolating Splines, which are defined by a set of knotpoints,
with the spline basis of the representation defined by a Green’s
function and boundary conditions. These can be altered to
suit the task in hand. We give examples of some suitable
Green’s functions, and focus particularly on the polyharmonic
clamped-plate spline, which has the boundary conditions that



14

it is zero on and outside the unit ball, and vanishes smoothly
at the boundary. We contend that these are suitable boundary
conditions for many biological tasks because many biological
structures are discrete objects, and the background to those
objects should not be warped.

We choose to use Geodesic Interpolating Splines because
they generate general diffeomorphic (i.e., smooth and one-
to-one) functions, as well as having an inherent metric. The
assumption of diffeomorphic mappings is important because,
as mentioned in the introduction, conventional approachesto
modelling assume a dense correspondence between the set
of examples in the model training set. The assumption of a
meaningfuldense correspondence between every example in
a group of images will not always be true. But the target we
are working towards is a groupwise registration strategy that
is capable of taking a group of images and separating them
into subset(s) where the meaningful dense correspondence
assumption holds across each subset, and a set of outliers,
where the assumption fails. The failure of this assumption will
be indicated either by atypical values of the warp parameters,
or by atypical values of the pixel-value deformation fields,or
a combination of the two. However, we cannot quantitatively
define what we mean by atypical unless we have a way of
quantifying what we mean by typical, which means some
sort of modelling strategy has to be applied to the mutually
corresponding subset. Part of that strategy will be a definition
of distance on the space of smooth, diffeomorphic warps.

We have demonstrated how to represent diffeomorphic
warps in both two and three dimensions, and have shown that
we need a relatively low-dimensional representation in order
to capture most of the variation between pairs of images –
using just 70 knotpoints chosen from a set of 268 vertices
enabled us to represent the warp between 2 hippocampi in
three dimensions to reasonable accuracy. This suggests that
the representation can accurately represent real biological
variations with a reasonably small number of knotpoints. One
benefit of our approach is that using the greedy algorithm
described in the paper, the knotpoints are not positioned
equally densely across the image plane, as in conventional
grid-based approaches, but where they are needed, so that the
effective local dimensionality of the warps can be adjusted.

Finally, we have compared the metric inherent to the repre-
sentation with the Mahalanobis distance – a Euclidean metric
on the space of parameters that is used by conventional linear
modelling strategies. Our experiments have shown that the
geodesic distance can reliably separate out legal and illegal
variations from a set of two dimensional ventricle shapes
generated by a shape model. By comparison, the Mahalanobis
distance is completely unsuited to this non-linear task.

In our future work, we plan to consider using the method
to fully analyse groups of non-rigid registrations of a variety
of medical images, including the construction of non-linear
models on the relevant subspace of the diffeomorphism group.

APPENDIX

EXACT SOLUTIONS FOR ASINGLE KNOTPOINT

For the polyharmonic clamped-plate GIS with one knotpoint
(N = 1), (29) and (30) reduce to:

E [~x(t)] =

1
∫

0

dt

(

d~x
dt

)2

G(~x(t), ~x(t))
, (51)

where ~x(t) ∈ D
n is the path of the knotpoint, with the

constraint that the endpoints~x(0) and ~x(1) are held fixed.
Exact solutions to this energy-minimisation can then be
computed, for both varying dimensionalityn, and varying
order of clamped-plate spline. We give here as examples the
biharmonic case in one and two dimensions.

For the biharmonic CPS in one dimension, the Green’s
function is [25]:

G(x, y) =
1

3
(1− xy)3 − (1− xy)(x− y)2 +

2

3
|x− y|3. (52)

The unit ball in one dimensionD1 is just the line segment
|x| ≤ 1. That is, the points|x| = 1 are fixed under the action
of the flow. Substituting into (51):

E[x(t)] =

1
∫

0

dt
3

(1 − x2(t))3

(

dx(t)

dt

)2

. (53)

The Euler-Lagrange equations are:

∂E

∂x(t)
− d

dt

(

∂E

∂ẋ(t)

)

= 0, ẋ(t)
.
=
dx(t)

dt
,

⇒ d2x(t)

dt2
= − 3x(t)

(1 − x2(t))

(

dx(t)

dt

)2

, (54)

which has the solution:

x(t) = sin
(

tan−1(At+B)
)

, (55)

B = tan
(

sin−1(x(0))
)

,

A = tan
(

sin−1(x(1))
)

−B,

with: Eopt = 3A2. (56)

For the case of the biharmonic clamped-plate GIS in two
dimensions (n = 2) we use the expression for the Green’s
function given in Table I. The energy to be optimised is then
given by:

E [~x(t)] =

1
∫

0

dt

(

d~x

dt

)2
(

1 − ~x2
)−2

, (57)

with, as before, the constraint that the endpoints~x(0) and~x(1)
are held fixed. This is the energy for paths in the Poincaré disc
model of the hyperbolic plane [33]; the geodesics are arcs of
circles of varying centre and radius that intersect the unitcircle
at right angles. In polar coordinates, we take the point to start
at (r0, θ0) at t = 0, and finish at(r1, θ1) at t = 1. For the
caseθ0 6= θ1:

r(θ) = k cos(θ − ψ) −
√

k2 cos2(θ − ψ) − 1, (58)

t(θ) = A+B tanh−1

[

(

√

k2 − 1 cot(θ − ψ)
)±1

,

]

(59)
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where the polar angleθ (rather than t) is taken as the
dependent variable. The sign in the exponent is chosen such
that t is real. The parametersk, ψ,A andB are determined
by fitting to the endpoints. That is:

R0
.
=

1 + r20
2r0

, R1
.
=

1 + r21
2r1

, (60)

tan(ψ) =
R0 cos θ1 −R1 cos θ0
R1 sin θ0 −R0 sin θ1

(61)

k =
R0

cos(θ0 − ψ)
=

R1

cos(θ1 − ψ)
, (62)

B =



tanh−1

(

R1

√
k2 − 1

k

)±1

− tanh−1

(

R0

√
k2 − 1

k

)±1




−1

, (63)

A = −B tanh−1

(

R0

√
k2 − 1

k

)±1

. (64)

The remaining special case is whenθ0 = θ1. Then:

θ(t) = θ0 = θ1, (65)

r(t) = tanh (at+ b) , (66)

where: b = tanh−1(r0), a = tanh−1(r1) − b. (67)
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