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Abstract— Groupwise non-rigid registrations of medical im- of the registration algorithms referenced above), or fram a
ages define dense correspondences across a set of imagesneéfi explicitly groupwise algorithm [6].
by a continuous deformation field that relates each target imge There has been very little work on modelling dense 2D

in the group to some reference image. These registrations ga . .
be automatic, or based on the interpolation of a set of user- and 3D deformation fields. What work there has been has

defined landmarks, but in both cases, quantifying the normal €ither used the densely-sampled deformation vectorsttjirec
and abnormal structural variation across the group of imagel (e.g., [7], [8]), or has employed a smooth, continuous regme

structures implies analysis of the set of deformation fieldsWe  tation of them (e.g., [9]). Neither of these methods guaresit
contend that the choice of representation of the deformatio that the deformation field is diffeomorphic (although B spt

fields is an integral part of this analysis. This paper presets b teed diff hi . tai trivial
methods for constructing a general class of multi-dimensioal can Dbe guarantee iffeomorphic given certain non-trivia

diffeomorphic representations of deformations. We demortsate,  constraints on the control-point displacements [10]).
for the particular case of the polyharmonic clamped-plate plines, We contend that the appropriate representation should be

that these representations are suitable for the descriptio of continuous and diffeomorphic, as only a diffeomorphic rep-
deformations of medical images in both two and three dimenshs,  santation allows a smooth and unambiguous one-to-one

using a set of (2D) annotated MRI brain slices and a set of (3D) d bet I ints i ir of i
segmented hippocampi with optimised correspondences. correspondence between all points in any pair of Images.

The class of diffeomorphic representations also defines a ne The importance of a one-to-one mapping is clear when the
Euclidean metric on the space of patterns, and, for the casefo question of modelling and analysis is considered. Most mod-
compactly-supported deformations, on the corresponding iffeo-  elling strategies are based on the idea of a training set of
morphism group. In an experimental study, we show that this oy amples that all contain different instantiations of thens
non-Euclidean metric is superior to the usual ad hoc Eucliden t of obiects/struct th | f delli
metrics in that it enables more accurate classification of Igal Set 0 .0 Jects/struc L,Jres — here aré examples o mo elling
and illegal variations. strategies where objects can appear or become hidden, but
for the purposes of this paper, we will take the simplest
assumption that all the relevant structures will appear in
all the examples in our training set. In spatial terms, this
translates to the assumption that there is some one-to-one

. INTRODUCTION spatial correspondence across the set of images. NoteHagre t
ON-RIGID registration algorittms [1], [2], [3], [4], we are only considering the analysis of the spatial vaiitgbil
[5] automatically generate dense (i.e., pixel-to-pixel asf generalised structures present in images, as opposed to
voxel-to-voxel) correspondences between pairs and grofipshe explicit modelling of the images themselves. Modelling
images with the aim of aligning corresponding ‘structuresimages would mean considering pixel-value deformatiom dat
The deformation fields implicit in this correspondence eimt as well as pixel (position) deformation data, which leadghto
information about the variability of structures across $e¢. fundamental problem that spatial and pixel-value defoionat
In order to analyse this variability quantitatively we ne®d area priori incommensurate.
be able to analyse the set of deformation fields. Such asalysiThe smoothness constraint may be physically violated in
must be based (either implicitly or explicitly) on a parf@u the case of intrasubject correspondence, where, for exampl
mathematical representation of the deformation field. Thiggans may slide against one another. However, from the poin
paper describes a suitable representation for the analysisof view of pixelated images with finite resolution, such a
deformation fields, and demonstrates its use on medicalémagampled motion can always be represented as a continuous
in 2D and 3D. The focus of the work is on a common lowdiffeomorphic deformation.
dimensional representation of warps from a group of images,There will be specific instances from medical image analysis
either based on a set of pairwise registrations (e.g., usi®y where the assumption of one-to-one correspondence fails, f
o example, where an additional structure such as a tumour
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values when compared with those seen across the training &&im [23]:

When we are considering the correspondence between dis- N
crete and bounded objects such as brains, it is also desirabl g m - /
that the warps themselves should be discrete and bounded. s -
This leads us to suggest that a suitable representation is /
Bn

that of the group of continuous diffeomorphisms with some =
appropriate set of boundary conditions.

Such a representation can be constructed using an approach N . B
based on Geodesic Interpolating Splines (GIS) [11], [12]. | + Z/\i . /df (f(f) — fl-) o0& —2;), (1)
previous work [11], [13] it has been shown that this approach =1 gn
also allows the construction of a metric on the space of . . . .
where L is some scalar differential operator, with Lagrange

knotpoint positions of fixed cardinality. This metric is aally t ' . R .
induced by a metric on the full group of Sobolev diﬁeogual LT. The first term in the Lagrangian is the smoothing

morphisms [13]; it should be noted that the ponharmonfg.rm’ or the energy of the displacement field; the second term

. ) ) with the (vector-valued) Lagrange multiplie{§i} ensure that
clamped-plate splines described in the current paper h%ﬁ% spline fits the data at the knotpoimté particular spline
compact support, and that this has important theoreticaliim

cations when it comes to this construction. Further disouss basis is then defined bY. speCIEyLng the choice of operator
and the boundary conditions of(Z).

of this point is beyond the scope of the current paper, and : S .

. o ) The general form of the functional minimiser is obtained by

interested readers should consult the specialist matheahat__, . . . .
solving the Euler-Lagrange equationsiiusing the technique

literature — e.g., [_14]’ [15] _ . . f Green’s functions, as follows. Taking partial and fuool
There are obvious connections between interpolating tESrivatives we obtain:

motion of a set of landmarks (either exactly or inexactly) fo
the purposes of registration, and of representing a densely a_fj _ f(fi) _ JE;
defined deformation in terms of the motion of some small o\

set of knotpoints. In a sense, the representation problem 90E 0 = (@) =T, @)
we wish to consider is the inverse problem of landmark- "~ ). R
based registration. We discuss the similarities and saamifi N
differences between these related topics in section Il ‘ZE - 9 (LTL) *(f) + Z Xié(f — )

Work on the analysis of shape variability (a simpler problem 0. (%) i—1
than that of image deformation) has used a range of rep- ;p - 1.
resentations; examples include polygonal [16] or splingl [1.. —— = 0 = (LTL) f(@)=—-< Z/\id(f— ). (3)
representations based on a small set of correspondingspoint Sf (@) 23

(landmarks), Fourier representations [18] or sphericatio@- We hence see that the general solution to (3) can be written
ics [19], medial based representations [20], or combinat@f in the form:

these [21]. The importance of the choice of representatasn h N
been demonstrated by the fact that explicitly optimizing th F(Z) = §(Z) + Z&iG(f’ ), (4)
representation can lead to improved model performance [22] P

In this paper we demonstrate the construction of the&ﬁ]ere'
diffeomorphic representations using a variety of splinedsa '
We show that these representations generate warps that are the generalised ‘affine’ functidng is a solution of:
suitable for the task in hand, giving biologically ‘plausb L§(@) =0, (5)
warps in both two and three dimensions, whilst being of a
relatively low dimensionality. We further study the sigo#nce
of the metric (geodesic) distances between warps, and show (L'L) G(&, §) o 6(Z — i), (6)
that using them provides a measure of atypical variation thﬁnd the set ofi; € R"

h discrimi h J b are the spline coefficients. Table | gives
as greater discriminatory power than naive measuresibageseection of commonly used Green’s functions, for varying
on the ad hoc use of a Euclidean metric on the space of w v

Uhoice of operatof and varying boundary conditions giiz).
parameters. The choice of a particular Green’s function depends on
the boundary conditions and smoothness appropriate to the
Il. THE GEODESICINTERPOLATING SPLINE problem considered. For example, the clamped-plate spline

(CPS) Green’s function is useful for discrete objects such

the Green’s functiorG is a solution of:

A. Interpolating Splines

. . T 1The equivalensmoothingspline would be a minimum of this Lagrangian
Consider a vector-valued spline functionf(Z), for a particular set of values offx;}.

—

Z e R™, f(Z) € R, that interpolates between data values at2we use the term ‘affine’ in inverted commas because althongsoine
a set of knotpointg{#; : i = 1to N}, Wheref(fi) — ﬁ cases this function does indeed correspond to the usualitaefirof an

. . . affine function (that is, a general linear function), thim@ always the case.
We will restrict ourselves to the class of spllnes that can %r example, if the operatol. was a fourth-order differential operator, the

expressed as the minimiser of a functional Lagrangian of theneralised ‘affine’ function would actually be cubic.



TABLE |
A SELECTION OFGREEN'S FUNCTIONS D" IS USED TO DENOTE THE UNIT BALL INR™, AND D™ IS ITS BOUNDARY.

Name Dim LTL Boundary G(&, )

conditions onf(Z)
thin-plate [24] | even (V?2)2 asymptotically |Z — g4~ log ||1Z —
(TPS) linear
thin-plate [24]| odd (V)2 asymptotically Z - gI*—
(TPS) linear
biharmonic 2 (V?2)2 f=f=0 lZ — 7% (A% — 1 — log A%),
clamped plate [25], on and outsidedD? Az ) = VP 23541
[26] (CPS) @9 = "=
triharmonic 3 (v2)3 f=f=0 12—l (A+ 4 —2),
clamped plate on and outside&)D? Az ) = VEPR—2E L
[25] (CPS) @9 = "=
Gaussian n | exp (—Z—;) ﬁlﬁggptotically exp (=B — 7|?)

as brains, whereas an image of knee cartilage would requir@nsformation. Using the index notation defined above,

asymptotically linear boundary conditions. we can also write the set of parameters in the form
{Mi:p=1,...n,A=1,...(n+1)}. So, we can now see

B. The Generalised ‘Affine’ Function t_Jy combining (9) .and (10) that the action of a gen_eral
o linear transformation on the entire set of knotpoints

Taking the general form off () given above (4), sub- ;. 71, (5(7;)} can be written in the compact form:
stituting into (1), and applying the set of constraints

—

{f(&)=fi:i=1,...N} (2), we obtain:

9"(%;) = Qiavhs (11)
El{a}] = > G(&,&)d; - d; = Gid;-d;,° (7)
i, where again we use the summation convention on repeated
where we defineG;; = G(Z;, Z;). indices.
. - - . g Taking components, the constraint equation (8) can now be
The spline coefficient$d; } and the generalised ‘affine func'.written as:

tion (5) are then obtained by optimising the above expressio
with the set of constraints (2), which we can now write as:
. o g"(@) = fI' = Gijof = Qiavh,
g(sz) = fi - Gijaj Vi= 1,... N. (8) = OL? _ G]—klf]ét _ G]—lekA,Yf‘ (12)
For operators where the boundary conditions are that the
deformation is asymptotically linear, the generalisedina® We could now substitute from (12) into (7) to obtain an explic
function is the general linear function. For this case, gidite expression for the energy as a function of the parameters of
notation of Camion and Younes [11], let us define: the general linear functiof~/, }; setting the first functional
oo " derivative of this expression to zero would then give the
{#i=1,...N} €R desired solution. However, it is simpler to use the chaiw rul

with Cartesian componentg; = {z!' : u=1,...n}.  for derivatives as follows:
x}v x?\, ooy 1 55/ = 2G, 0. (13)
Hence the matrixQ is of size N x (n + 1), with elements J
Qia, Wherei =1,...N, A=1,...(n+1). From (12):  of = G}' ff — G5,/ Qravh
By definition, the action of a general linear transformatjon . oy 1
on a single poinf = {z* : u = 1,...n} € R™ can be written = W = —GjmQma.
as. OE _ OE 0aj 14
s R ) S o7~ 9oy oo -
v g(&) e R", g“(x)—7n+1+275x , (10) A A
v=1 23 _ vey—1 _
. W =0 = ijOéijQOA =0
where {{+,...7% }:u=1,...n} are the set A B
of n(n+1) independent parameters that define the = Oy lma =0, (15)

3We adopt the summation convention that we sum over repeatices.  Substituting fora, from (12) then gives the final results for



the affine and spline parameters in closed form: energy for the time segmentto ¢ + dt is then given by:

vh = (QTG 1Q) 1y @G 1Y (16) Ab = / 4z 5(t, %) (L'L) (¢, %),
of = ij (ff—QJA’YA)- Rnl

Sy - oy 1 —, N b
For the case of the clamped-plate spline, the boundary co?lr-‘dE[v(t’x)] /dt /dm}(t’x) (L'L)d(t, 7). (18)

ditions are that the deformation is zero on and outside the o Rr

unit ball, which means that the generalised ‘affine’ functio We now consider a set of knotpoints, with paths
G(Z) in (4) is identically zero. The relation between the spling¢z;(t) : ¢ = 1,... N} whose motion we wish to interpolate. In
parameter§d;} and the knotpoint displacemer(tﬁ} for the the Lagrangian for the interpolating splines (1), the caxist
CPS is hence given by setting the affine parametets} to on the deformation field is that it reproduces the displacgme
zero in (12). Unless stated otherwise, when using the CPS, @fethe knotpoints — the obvious analogue of this is that
apply a Procrustes affine alignment (of the form given in (5)he velocity field is always such that the knotpoints move
to the sets of knotpointbeforethe boundary conditions areaccording to it. That is:

imposed. dz; (t)
Let us now consider using the splines defined in table I~ = vi(t) = 7(t,7i(t)) ¥ t € [0 1]and Vi =1,... N.
to represent the densely-sampled (i.e., at every pixedlvox (19)

position in the image) deformation field of an image, whereor a given set of knotpoint flowpaths;(¢) }, the Lagrangian

a point at original positionz is warped to a positio’ + IS

f(&). There will be some set of knotpoints (with associated 1

initial and final positions) and knotpoint displacements fo g (7 (1)1 = /dt/df{}’(t’j’) (LtL) #(t, 7)

which the interpolated displacement field matches our given

displacement field at all sample points, to some requireel lev 1

of accuracy (this point is discussed in detail in Sectiok 13). XN:/ /
=17

Rn

(m, 7 - df;t(”) 8(7 — 7(t),

We will call such a set of knotpoints and knotpoint displace-
ments a representation of the deformation fiﬁ@ﬂ). However,

such an interpolated deformation field is only guarantedwbto (20)
diffeomorphic in the limit of sufficiently small displacemis.

R

where the set of functiong); ()} are the Lagrange multipli-
ers. Taking derivatives:

: : : §—E — ﬁ(t f(t)) _ dfi(t)

C. Geodesic Interpolating Splines §Xi(t) ) Li dt

_The usua_l approach to _constructing a Iarge-d_eformatior.l' fE — 0= FEHE) = dmi(t). (1)
diffeomorphism is to consider such a deformation as an SXi(t) dt
infinite sequence of infinitesimal deformations [11], [22]2], SE N
[28]; that is, we have an infinite sequence of the spline-part ——_ = 2 (LTL) o(t,T) + in(tﬁ(f— Zi(t))
generated by the Green’s functiéf) and an infinite sequence ou(t, ) i=1
of infinitesimal affine transformations. ) oE _ 0

Consider a sequence of interpolating spline transformatio * 69(t, &)
being applied between the flowtimés= 0 and¢ = 1. Under

N
. Coe . . . 1 -
this sequence of infinitesimal deformations, consider &giar = (L'L)u(t, @) = —5 Z Xi(8)0(Z — Z;(t))
P that follows the flow; it starts at a general poif(0) € R™ i=1
and follows a path?(t). Between the times andt + dt, the (22)

particle that has reachatit) then moves t@(t +dt) =~ Z(t)+
dtd”fif). We define the time-dependant Eulerian velocity fiel
¥(t, 3) thus:

0, in an analogous manner to (4), (5), and (6), the general
olution can be written in the form:

Bt #(1)) = d“;i“, a7 it 7) = gt @ +Zaz @ @(1),  (23)

so that the particle? follows a path defined by this time- ;vhere the Green's functiodi(., ) is as defined previously

varying velocity field. We can now see that the analogue SZ].C-{igﬁ 5?22(; ﬁi@rgzteé?é(?o}nﬂ:ﬂgﬁgg%r:]e:?\gsf?gwet‘ifrfr;lr;e
the deformation fieldf (%) for the segment to ¢ + dt is the g\b P y

quantitydt-i(t, ). The analogue of the total deformation field syejocity fields for which this integral exists, and for whithe integral

is finite, belong to the relevant Sobolev space of functighs; associated

diffeomorphism group is the group of Sobolev diffeomorpiss which is

“Note that the expression fop” differs from [11], where there is a different to, say, the group of’* or C>° diffeomorphisms. See [14] for
typographical error and the second factor@f! has been omitted. further details.



giving us the infinite sequence of infinitesimal spline tfans can be considered as the square of a geodesic distancefuncti

mations and generalised ‘affine’ transformations. d on the space of knotpoint configurations (that is, patterns)
At each instant of flowtime, the closed-form solution for of a fixed cardinalityN. That is:

the spline parameter§o;(t)} and the generalised ‘affine’ . .

function g(t, %) is givﬁn (b))/} applying the constraint given d*(e,w) = Eopr[w], wherew = w({7:(0)} {#:(1)}), (31)

in (21). The results are the exact analogues of those giugfere ¢ is the identity transformation on the space. This

previously, except that (as above) at each time instantdistance function has the important property that it is firar

the components of the spline displaceme(if$'} are now under right-multiplication by an arbitrary elemetit of the

replaced by the components of the time-dependant velscitififfeomorphism group. That is:

of the knotpoints{v!'(¢)} (19). We define:

A1) 20 ) 1 d(e,w) =d(eo P, wo P) (32)
o) = ' ' ' (24) whereo is the group multiplicatio?y defined by:
d() a() ... an() 1 if ©: 7 O(F), U: T U(F),

Gij(t) = G(@:(t), 75(t)). (25) then¥ o @ : 7' W (&(2)). (33)

A generaltime-dependaniinear transformation is given by: ~ To see the importance of this invariance, consider the
following. We take a set of/ registered images, with a dense

gt E) = AL F Z yE ()2 correspond_ence defined across the set. _We select an image_z to
iy be the spatial reference, which then defines the set of spatia
= gM(6LT1) = Qia(bYi(), (26) warps{wa : A =1,...M — 1} between it and the rest of

) ) ) ] ] the images in the set. We can then compute the pairwise warp
so that, in the linear case, the solution for the affine anthepl gistance between image and imageQ thus:

parameters is:
d(wp,wa)- (34)

L) = (QTH)GHHQM)) 1 Q5. (G () (1),
0 = QTG (HQW) 4 QmOG O] () Suppose we now choose a different image, im#&gsay, as

i . i i (27) the new spatial reference. This means that the warp from the
af(t) = G () (v (1) — Qia()Va (1)) - (28) ' new reference to imagP is given bywp o wy'. The pairwise
For the case of the clamped-plate GIS, the generalisW@'P distance between imagand imageP with respect to
‘affine’ function is identically zero, so that: the new reference is
ol (t) = Gt (8)v) (). (29) d(wp owg',wo owg"). (35)

To summarize, for a given set of knotpoint pathg ()}, It is then clear that the pairwise warp distances between a
we can solve for the spline parametdgs;(¢)}, which then Set of registered images is only invariant to the choice of
give a total associated energy (the generalization of eguatSPatial reference image if the pairwise distance functin i
(5)) of: right-invariant.

The formulation of the GIS is right-invariant because it is
~ R . . written in terms of the Eulerian velocity field (17). Congide
Elar(t)] = /dtG(Ii(t)an(t)) (@(t)-a@;(t)).  (30) g path®d(t) in the diffeomorphism group, whose action on a
0 point Z, € R" is given by:
However_, this so!ution is or_wly for a given fi_xe_d set of knotpoi B(t) : o — D¢, 7o) = F(2). (36)
paths — in practice, we wish to also optimise over the paths
of the knotpoints with the initial and final knotpoint positis Note that if Z(0) # Z,, this corresponds to a path in the
(i.e., the points{Z;(0)} and{Z;(1)}) held fixed. This means diffeomorphism group that does not start at the identity
that we no longer have a closed-form solution. We therefofde Eulerian velocity field associated with this flow is:
have to numerically optimise the expression for the enengy i - 1, =
(30), where the free variables are the knotpoint paths eEtwe v (t, Z(t)) = 9%(t, o) = 0% (1, (t’x(t))).
their fixed endpoints. The implementation of this is desib ot ot
in section 1I-D. If we consider the flow®(¢) o ¥, where ¥ is some fixed

Then, as in section II-B, we take the initial and finaglement of the diffeomorphism group, it is trivial to shovath
knotpoint positions to be a representa’[ion of the d|ffe(‘§he Eulerian VelOCity field defined above is invariant undhes t
morphism generated by the interpolation. We denote su#Rnsformation —and hence we see that the energy of the flow,
a geodesic interp0|ating Sp"ne (G|S) dif‘feomorphism b?nd hence the metric distance along the flow, is right-ilamri
w{Z;(0)}, {Z(1)}). We also note that this metric provides us with a principled

As was shown by Camion and Younes [11], who consider&¢y of defining warps that interpolate between any two given

using the GIS for inexact landmark matching, the value of the, o o
Note that the exact definition of the group multiplicatiorifelis between

energy (30)_When OptimiSEd W.I.t. the variation of knOmOir}:{uthorS, and depending on the exact definition, the samdidancan be
paths with fixed endpoints has the important property thatdénoted as either left or right invariant.

1

37)



warps [26]; the optimised flow in the space of diffeomorptésm Once we have obtained the spline paramefers()}, we
gives a geodesic on the space of warps, and the geodesin then calculate the energy for this particular set of fxoiot
distance allows us to calculate a warp on this geodesic bglfwpaths:

between the two initial warps. N T4l

E{g =AY Y G@(r).g(r)(@i(r) - @(r)), (45)

D. Implementation Issues =1 =1

We now conS|_der the nymencal_ opt.|m|sat|on OT (30‘?NhiCh is the discrete-sum approximation to the time intbigra
w.r.t the_ knotpo_mt paths{z;(t)} with _f|xed endpomt;. 30). Finding the optimal paths of the knotpoints betweeirth
T‘i do this, we first replace each _contl_nuum_ path Va”abj:%nstrained endpoints is then reduced to optimising theggne
{xi(t.)’t < EO’ 1]} by a corresponding piecewise-linear aP145) with respect to the free variabldg;(r), 7 = 2,...T}.
proximant{gi(r) : 7 =1,...T + 1}, where: The difference between this implementation and other imple

G(t) = #;i(t) wheret = (1 —1)A, V7 =1,...T+1 (38) mentations and approaches to diffeomorphic spline conmstru
tion are discussed in the next section. In the implementatio

_ 1 g i isa-li i
and A LT Since the piecewise Ilnea_r approximant path Fsed in this paper the standard MATLAB optimisation routine
only defined at a set of' + 1 discrete time values, we also

h i | th " time-derivati oy vere used, in effect a line search, since no gradient was
ave fo replace the continuous time-cerivative o_pergg y computed. A gradient descent algorithm for the optimisatio
an appropriate finite-difference operatbr We define: of the paths is described in [29]

D (T N }) G+ = Gil(T) I....T. (39) _ Oncewe have found a set of optimum knotpoint paths, we

2 A then have to calculate the movement of a sample pgisgy,
If ,(t) is the velocity along the corresponding continuum paf#der this diffeomorphism. Suppose that at timesteghis
#;(t), then we can see that: point has moved to positiop(r). By definition, p(1) = .

We compute:

pi(re)=a(s(—1). e .

Dp(t) = g(7,p(7)) + a;(t)G(p(T), q; (1)), 46
However, what we actually require is an approximant to the Pr) = §(n,p7) Z (Me @), &) (46)

i=1
continuum velocity at times = (7 — 1)A. We define: which is the interpolant of the velocity field. For the clardpe

forr=2,...7: plate casgj(r,-) = 0, whereas for the linear case:
1 1 1
Dg(r)==(Dg, | 7— = +D_;(T+_)) 41 — L - v
i =g (pi(r-5) 0i(rg)) e P ) = () + A (), @)
~ 0 (T 1)), =

iy - e (3 i e 1 where{p”(r)} are the Cartesian componentspéf), and the
ba(1) = Da <2> » DAT +1) = Di (T * 2> " ~sare the affine parameters as given above. We then calculate
(42) the position of the point at the next timestep;- 1:

We note that this second-order definition of the finite- p(r+ 1) = p(7) + ADp(7), (48)
difference operatoD is explicitly time-symmetric. This is in _ )
contrast to the first-order approximation: and hence the whole of the path for this sample goint

~ _ The final question that needs to be considered is how to
DM, (1) = M forr =1,...T,(43) choose the initialisation of the knotpoint patfjér). The sim-

. A plest choice is a constant-velocity straight line betwéentivo

=~ (T =1)4), endpoints, but for the polyharmonic clamped-plate spine we

which was the form used by both Camion & Younes [11] andave found quicker optimisation results by initializinging
Joshi & Miller [12]. The consequences of this explicitly nonthe geodesic paths for a single knotpoint, that is, compgutin
time-symmetric derivative are investigated in the nextisac the solution to (30) for the cask¥ = 1. See the Appendix for

We now have the sets of variablé¢g;(7)} and {Dg;(r)}. details.
Using these, we define the quantiti®sa(7) and G;;(7) by
using (24) and (25), where we simply replacgt) by g;(7).
Similarly, the solutions for the spline parametéeg’(7)} (and
the affine parameter§y’ (7)} for the linear case) are given. . .
by taking either eqLF;t?cgngs}) (27) and (28) (linear case) portant pomts of our formulation of the G_IS, gnd show ho_vv
(29) (clamped-plate case), and replacidig’ () by G—(), )ese properties carry over to the numerical implementatio
Q(t) by Q(r), and v} (t) by D¢} (r). So, for example, in given previously.
the clamped-plate case, the spline parameters are given bYt should be noted that this update is not time symmetric, tad we

E. lllustrative Examples
We here provide a few examples to demonstrate some of the

inverting the equation: should be using the interpolant of the velocity field at titapsr + 3.
N However, to do this we would first have to estimate the pasitibthis time.
N . N N Iterative solutions are possible, which give convergemca time-symmetric,
Dg; (T) = Z aj(T)G(qj (T), qi (T)) (44) self-consistent result. However, we have found in pradtizg the first-order

j=1 estimate given in the text is sufficient.
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Fig. 1. Top Row, from leftThe unwarped 190x190 pixel image with boundary circle, thevérd warp applied Fig. 2. The inverse consistency error (ICE)
to the image, the backward warp applied to the image, theatenation of the forward and backward warp$or Fig. 1, in units of pixel sizeTop: a plot
applied to the imageBottom Row:The corresponding grids. For the purposes of illustratibese are only of the ICE, with the initial positions of the
plotted every 10 pixels. The knotpoint initial positiondatk dots) and optimum paths (gray lines) are showknotpoints (gray circles) shown for reference,
on the inital grid. Bottom: the histogram of the ICE for pixel
centres inside the boundary circle only.

L L L , L
— Exact Solution

@ Backward and Forward, symmetric derivative ; sl
-=#- Backward solution, non-symmetric derivative
-4~ Forward solution, non-symmetric derivative

1) Inverse Consistency and Right Invariand#e first note
that the right-invariance of the continuum metric distance
is exact since the problem is formulated in terms of the s
Eulerian velocity field. In practice, the metric distance be
tween continuously-defined warp® and ¥ is definedto
be d(e,® o ¥~1), since this is what is calculated numer- :
ically (that is, all flows start at the identity). Hence, the 7 /4,/’
numerically-calculated values af(®,¥) are right-invariant 05 i
by definition, providing that the numerical implementation =
is also time-symmetric. Time symmetry is equivalent to the
requirement thati(e, ®) = d(e,®~'). In terms of knotpoint ’ B Fiow Time t= (cA)T, To20 o8 !
endpoints{Z;(0)} and {Z;(1)}, this can be expressed as the
requirement that the forward GIS warp({Z;(0)}, {Z;(1)}) Fig. 3. Knotpoint position as a function of flowtime for the Hharmonic

is the exact inverse of the Corresponding backward GIS Weﬁ; S GIS with one knotpointSolid black line: the exact solution (See
Appendix).Black circles:the forward and backward solutions for the second-

w({fi(l)}, {51(0)}) order difference operator. Note that these lie preciselyhenexact solution

To test this, we consideredl@0 x 190 pixel image, with unit given by the solid black lineUpward pqin_ting t_riangles:Forward soluti_on
boundary circle as shown in Fig. 1. We selected 9 knotpoifff e fret-order ggggﬁg?ownwam pointing trianglesBackward solution
positions at random within the boundary circle and applied
random displacements to these knotpoints to generate the se
of endpoints{Z;(0)} and {Z;(1)}. In the figure, we show
the backward and forward GIS warps between these sets oé) Geodesic PathsFrom a numerical point of view, the
endpoints, calculated usirig = 20 discrete time-steps, usingjssye of time-symmetry is also related to the optimal paths
the biharmonic CPS GIS. If the time symmetry is retainegs the knotpoints. In (43) and (41) we gave the first and
numerically, then concatenating these two warps should 9i¥econd order finite-difference operators that approxiruetiee
the identity. We compute the inverse consistency error XICEqntinuum time-derivative. The first-order form is the osed
for each pixel in the original image by computing the str&ighp, hoth Camion & Younes [11] and Joshi & Miller [12] in their
line distance between the original position, and the pmSiti jmplementations of inexact landmark matching. The second-
after applying the concatenated warps. A plot of the ICE iqer form, which was the form used in our implementation,
shown in Fig. 2. The maximum ICE 82675 pixels, with & ig explicitly time-symmetric. To investigate the conseqees
mean value (taken over the interior of the circle only) ofyonlyf this, we will consider the simplest case of one knotpoint
0.0548 pixels, and this_ is for an original warp with maximum(N = 1) in one dimensiom{ = 1). The exact solution for both
displacement o20.3 pixels, and a mean displacement®$  ne knotpoint path and the optimal energy can be computed
pixels. We note that the apparent larger errors in the sUf-cjosed form (see Appendix for details). Figure 3 shows the
sampled grid. shown in Fig. 1 are due to the finite resolutigy;merical results for one knotpoint moving fror0.9 to 0.9
of MATLAB figures. when using either the first-order (43) or second order (41)

Spatial Position
°
!
Ne
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Fig. 4. An example artificial warp from a 200x200 pixel soufp left) to a

target usingl’ = 10 timesteps. The boundary circle is the circumcircle of the 5
image. The knotpoint positions are indicated by the graslest, the grids are

plotted at every 10 pixels, and all pictures are to the saratesghe plot at

the bottom right shows the calculated energy during themopétion against

the cumulative number of function evaluatior#), 000 function evaluations

took 950 seconds of CPU time.

o 1 2 3
Discrepancy Approximating

approximants to the time derivative. Both the forward and Warp

backward solutions are computed. The same initial estim%te i _ . .
. . . . ig. 5. Top Row:The unwarped image (the same image as was used in

of the_knOtpomt path (a constant velocity straight “ne)swa_:ig. 1), with initial knotpoint positions (white crosseshdathe unit circle

used in both cases. It can be seen that the result usibigek line), and the Cauchy warped imaggottom Row:The distribution

the second-order derivative is time symmetric (in that tffé point-to-point Euclidean distance discrepancies betwihe Cauchy warp

anci its approximant for all pixel positions within the unitote, in units of

forW"f‘rd and backward results matCh.)’ and matc_hes the EX@€lunwarped pixel size, and the approximating warp geseray the set of

solution. In contrast, the result obtained using just thst-fir knotpoints.

order approximation to the knotpoint velocity is neithend+-

symmetric (that is, the forward and backward solutions do no

match), nor does it match the exact result. the GIS representation?

‘We can also compare the computed values. of the energys, g ,ppose we are given a warp that is defined on a dense
with the exact result from (56) ot = 51.1579; the first- (¢ o pointsY, = {7} (typically the set of all pixel/voxel

order case gived = 55.2862, which is 8.1% greater than positions in an image), and the warped point positions are
the exact result, whereas the second-order case gives given by Y; = {71}. To approximate the warp, we use the
50.4854, which is1.3% lower. Note that we would not eXpethoIIowing iterative greedy algorithm:

an exact agreement, since the numerical result is only @4init For th t set of knotooint endpoints: (0

sum approximation to the true energy integral, with= 20 * Er € .curren set of knotpoint endpoints’;(0)},

timesteps. {#;(1)},i=1,...N, compute the GIS warp
To give a further example of the geodesic paths traced “é(]P T;"(‘Eﬁ”(o)}t’ {fi(l)})'d. .

out in the diffeomorphism group, we considered the artificia * aiculate the set ot warp discrepancies.

matching p_roble_m shqwn in Fig. 4. The source a_nd target are daise(Yo) = |winy(Yo) — Yal, (49)
200x200 pixel binary images, the source shape is a rectangle . . _ o
and the target is C-shaped object, with 10 correspondingpoi ~ Where| - | is the Euclidean point-to-point distance.

as shown in the figure. We used the biharmonic CPS, with thes Find the pointg, € Yo for which dgisc is a max-
boundary circle taken to be the circumcircle of the image, so imum, and add this point as a new knotpoint, with
that the corners remain fixed. En+1(0) = Yo, Tn41(1) = 4.

As can be seen in the figure, the original rectangle evolvess Repeat until the desired accuracy is achieved.
in a sensible manner, despite the large deformation redjuiré is obvious that we can always represent the desired warp
We also show the calculated enetfjy,. plotted as a function exactly by choosing every poinj, € Y, as a knotpoint
of the cumulative number of function evaluations during th@ny finite collection of non-coincident sample points with
optimisation. The30, 000 function evaluations took just undernon-coincident displacements can be represented using som
16 minutes of CPU-time for an un-compiled MATLAB imple-element of the diffeomorphism group [30]). However, in
mentation running on a single8Ghz Pentium 4 processor. practice, we will have some limit to the accuracy requireat. F

3) Approximating an Arbitrary Warp :So far, we have instance, for the case of warps derived from some registrati
shown how to generate diffeomorphic warps given knotpoiatgorithm, it may be appropriate to use the criterion that we
endpoints. The actual problem we wish to solve is givenlave an accurate enough representation of the warp when the
diffeomorphic warp, how do we represent that warp withiresampled approximately-warped image exactly matches the



resampled exactly-warped image. This will, of course, depeproblem in the context of registration [32] with the Coneist
on the particular resampling algorithm chosen. Landmark Thin-Plate Spline (CLTPS). They added a term to
In Fig. 5, we give an explicit example of a warp approxthe Lagrangian that depended on the consistency of the-trans
imant. The warp that we wish to approximate is generatédrmation and its inverse. However, we emphasize that gddin
by concatenating 20 random, localised Cauchy warps; eawhother weighted term to the Lagrangianrist the same
warp acts only within a defined ellipsoidal region, which isnathematically as imposing an exact constraint, but isacst
itself restricted to lie wholly within the unit circle. Fohé a trade-off between the bending energy of the deformation
purposes of illustration, we here define the unit circle d&ld and the inverse consistency criterion. More impoiyant
the inscribed circle of the image. Each Cauchy warp is such a formulation does not give a metric on the space of
parameterised, strictly diffeomorphic warp of an ellighdi transformations. However, it should be noted that their aim
region, which uses a 2D flat-space version of the cumulativeas to produce an algorithm suitable for registration, wher
density-function-based methods described in [31]. Withiid CPU time is more of an issue, rather than the inverse problem,
on the boundary of each ellipsoidal region, the Cauchy wagpfinding knotpoints to represent an arbitrary diffeomaspn,
is a C'-differentiable warp, where all points within the regiorwhich is the main focus of this paper.
translate in the same direction, with the magnitude of the For the flow-of-splines case, we will consider three différe
translation controlled by the motion of the central pointeT Lagrangian formulations. We define the common smoothing
description of a single Cauchy-based warp hence requitesm:
2+ 2+ 2 = 6 degrees of freedom, with0 x 6 = 120 degrees
of freedom for the concatenated warps. Bl = /dt/ 47 9(t,7) - (L1L) 5(t, 7). (50)
This warp is then applied to 890 x 190 pixel image. The
warped image isotresampled, but plotted as a shaded surface
with deformed faces/pixels. We then approximate this warffe paths of the landmarks/knotpoints are denoted by
using the greedy algorithm described above. The resultior t{Zi(t) : i = 1,... N}, wherez;(t) € R", with Cartesian com-
case of 30 knotpoints (equal &) x 2 x 2 = 120 degrees of ponents{(zi(t)),, u=1,...n}.
freedom) is given. Note that the Cauchy-based representati A) Joshi& Miller [12] consider inexact landmark matching:
is inherently local, and mathematically unrelated to thé& Gl
representation. However, for the sa_lme.number pf Qegrees E[7] +Z ) E(z) (g — (1),
of freedom, we see that the approximating warp is visually
extremely close to the Cauchy warp. The distribution of
discrepancies (49) for pixels inside the unit circle is give where {7} are the targets for the landmarks, and
the figure, with50% of the pixels having a discrepancy of less {(ED), +i=1,...N, p,v = 1,...n} the param-
than0.6 pixel units, and the maximum discrepancy beingp eters that determine the degree of end-point matching,
pixels. A further example, that of approximating 3D warps fo ONS th x R™ being then x n error covariance matrix
shapes is presented in a Section IV-B. for the ™" landmark. S
So far, we have just considered approximating singIeB) Cam|o_n& Younes [11] also consider inexact landmark
warps — in practice, we might wish to approximate a group ~ matching:
of warps using a common spatial reference. That is to say,
the set of intial knotpoints and initial knotpoint posit®iis Lp = E[7] + UZ/dt ‘
common to all the warps. The greedy algorithm given above

can be generalised to include this case, by computing the sum )
of discrepancies (49) across the group. where the fixed parameter determines the mis-match

between the velocity field and the knotpoint velocities.

C) In the current paper (from (20)) finds knotpoints to
Il. COMPARISON WITH OTHER SPLINEBASED METHODS represent an arbitrary diffeomorphism:

dz;(t

— 0(t, (1))

)

As noted previously, there are other landmark/knotpoint
based methods of constructing exact or approximate diffeo- E[f] + Z/dt)\ < ) — d:E’i(t))
morphisms. When comparing such methods, there are two i dt '
important points to consider — the mathematical statemént o
the algorithm, and the details of the numerical impleméaat The first difference to note is that (A) and (B) are solved for
of the algorithm. specific values of the parameteféx(?); !} and o respec-

In terms of splines, we have two choices — to considévely, whereas the{Xi(t)} in (C) are Lagrange multipliers —
the deformation as a single discrete displacement evemts orthis means that (A) and (B) are both cases of a trade-off
the endpoint of some smooth, continuous flow. Consideritiggtween the energy of the velocity fiel#[¢] and a mis-
the deformation field approach, splines of the form given imatch term, whereas (@xactlyimposes arexactmatching
(1) have the problem that they are only guaranteed one-tmnstraint. This is equivalent to saying that (A) and (B) are
one for small enough displacements, and that they are math based osmoothingsplines, whereas our implementation
symmetric under interchange of the landmark/knotpointghi is based on arinterpolating spline formalism. It could be
and final positions. Johnson and Christensen addressed é#ngued that we can approach the exact matching by letting the
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coefficient(s) of the matching term tend to infinity. Howeve
from an implementation point of view, this is a poor choice

saying that care had to be taken in constructing Xhe» 0
limit — their approach was to construct an inexact matchi
to within somee-ball of the targets, and then perform a
interpolation to get exact matching. This, however, willyon
ever give an approximat_ion to t.he true exact match. Given t_ 6. Left Annotation (white line) and Fig. 7. An example
an exact match is what is required for the case of repregentiiotpoints (white circles) on the original brain 2D brain slice with the
diffeomorphisms, it seems sensible to include thigpriori slice. Right: The same knotpoints positionedbounding circle.

as in (C), rather than as the limit of some inexact matchirf§ anether brain slice.

process.

The second difference is that (A) does not lead to a metric,
whereas (B) and (C) (since they are both functionals of the
Eulerian velocity field) both lead to right-invariant mesi
on the space of knotpoint positions. The two aims of the
current paper are to construct representation(s) of arlitr
diffeomorphisms and to construct a symmetric metric on the
group of Sobolev diffeomorphisms — (B) could theoretically
construct such a representation, but at the cost of intinduc
further arbitrary parameter (i.e., the exact valuerathosen).
Attempting to numerically construct the limit of — oo
would suffer from the problems noted above.

The numerical problems with the implementations used in
(A) and (B) were discussed earlier (section 1I-E.2), where i
was shown that a non-time-symmetric implementation of Rig. 9. Close-up of a warped source image from Fig. 8 (lastroa). The
time-symmetric continuum algorithm can lead to appreeiabqleformed pixel grid is shown (white lines), plotted at ev8rpixels.
errors, in that in general, it will neither converge to thereot
exact solution, nor indeed to a time-symmetric solution.

are not resampled — the images are instead plotted as faceted
grayscale surfaces, so that the size and position of eagiedar

IV. REPRESENTINGDIFFEOMORPHISMS pixel is retained. The pairs of images were chosen to ithtstr
A. Representing 2D Diffeomorphisms cases where the required deformation was considerable, bot

L . . . . .In terms of the change in shape of the ventricles and skull,
When considering warps of 2D biological images, it is . . . ; :
nd in terms of the difference in scale and orientation of

obviously important that the generated warps are not o T){ . . ;
. . . , e slice as a whole. The resultant warped images do indeed
diffeomorphic, but also make some sense biologically. TO

investigate this, we considered a set of 2D T1-weighted pear to be biologically plausible, despite the relajielv

axial slices of brains, where the slices chosen show t émensmnallty of the representation used — structuresroth

lateral ventricles. For each image, the positions of therét an the labelled ones have been brought into approximate

ventricles and the skull were annotated by a radiologistguai gllgnment. Th|§ suggests tha.lt a de.nse .corres.pond_en.ce (for
nstance, one given by a non-rigid registration using masém

set of 163 points. We took a subset of 66 of these points to L)gn of mutual information) could also be represented bg¢he

the positions of our knots (see Fig. 6). Given a pair of images . . ) . ; . :
the knotpoint positions on the images give us the initial a rps without an mprdlnate increase in the d|_menS|on_aJIity
) L . e representation (i.e., the number of knotpoints reqiiiré
final positions of our knotpoint paths. We then calculated : .

L . . . was shown earlier that the GIS representation can be used
the geodesic interpolating spline warp corresponding éséeh

positions using the 2D biharmonic clamped-plate spline %% represent mathematically unrelated diffeomorphic warp

) : . , L 0 reasonable accuracy given the same dimensionality of
Green'’s function. The bounding circle for the spline is show : . : X
in Fig. 7. representation. Testing this assertion for warps from elens

Note that we did not affinely align the knotpoints beforgon'rlgld registrations is the subject of future work.
calculating the warp; hence the algorithm has to deal with a
non-trivial pseudo-affine part. Including the affine partuib B- Representing 3D Diffeomorphisms
have made the task easier. Example results are shown in.Fig. 8\e have shown that this geodesic interpolating spline basis
can generate biologically plausible warps in 2D; we now
It can be seen that the warps are indeed diffeomorphproceed to show that we can also do the same in 3D. We take
and appear to be very smooth (see, for example, the detslour dataset a set of segmented hippocampi. Each example
shown in Fig. 9), and biologically plausible, which wouldtnoconsists of a triangulated surface with 268 vertices, where
be true had a simpler scheme been used. The warped imatyesvertices for each example have been manipulated to give
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Fig. 8. Four examples of warp interpolation using the cladhplate spline. Pixel intensity is unchanged, but note thatimage structures are approximately
aligned. Top row: Unwarped source imagé/iddle row: Warped source imag&ottom row: Target image.

Fig. 10. Two views of a pair of source (left) and target (rjghippocampi
with knotpoints (circles), all to the same scale. The cqoesience between
the shapes is indicated by the shading.

the optimised correspondence [31]. Examples are shown *~

Fig. 10.

Pairs of hippocampi were chosen at random, and the sha
aligned using generalised Procrustes analysis. We used
triharmonic clamped-plate spline (see Table 1) as our G
basis, with each hippocampus being scaled to fit within the ui
sphere. The warp between source and target was approximi
using the greedy algorithm described previously.
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Fig. 11 shows the distribution of the discrepancies betwec

the aligned source and target, and_ the final warped SOUEGE 12, The maximum, median and mean discrepancies (irs wfitheir
and target, for a set of 70 knotpoints. It can be seen thatpective initial values, so that all graphs start@®% by definition), for

the distribution of discrepancies as a whole has been dhif;lr@”'k”m points only, as a function of the number of knotstaDia shown

. . om 4 randomly selected pairs of hippocampi.
towards smaller values. In Fig. 12, we show the maximum, Y P PP P
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Fig. 13. Left: The distances between the discrete structures variBsght: Example shapes generated from the Statistical Shape Mddéekadiscrete

structures dataset for varying model parameter (Mahalardibtance). The change in scale as the model parametes\varcaused by the fact that the points
have been Procrustes aligned.

N
o

discrete. This was not seen in the training set, and therefor
should not be allowed. We then calculated the CPS geodesic
warps generated by taking the 6 points that define each pair
of triangles as knotpoints, and warping between examples
generated by the model for varying model parameter and
the model mean shape. The CPS was a suitable choice of
: Green’s function because the triangles are discrete @hject
R ] T 1 2 3 4 The variation of the geodesic distance from the mean shape,
Model Parameter plotted against the model parameter (which is equivalent to
Fig. 14. Geodesic distance versus model parameter for tiueet structure th€ Mahalanobis distance, a distance defined from a Eudlidea
dataset of Figure 13. metric on the space of point positions) is shown in Fig. 14.
Positive values of the model parameter, which correspond to

) _ ) ] increasing separation of the triangles, show a relatignbbi
median and mean discrepancies for non-knot points only ag@en model parameter and geodesic distance that is vesy clo

function of the number of knotpoints for 4 random pairs of; |inear, but for negative values of the parameter (detmgas
hlppoc_:ampL Note that the nature of our greedy a_llgonthm f%_@zparation), the geodesic distance diverges at the prealise
selecting knotpoints means that the maximum discrepancyyis the parameter that corresponds to zero separation. The
not guaranteed to decrease monotonically. However, &ethijimiting case of zero separation corresponds to coincident
graphs show that the algorithm quickly reaches a reasonagigp|acements of originally non-coincident points, whitly
representation of the required warp, for a number of knoiiSoi yefinition, cannot be represented by a diffeomorphic tamsf
that is appro>.<|ma_tely 25% pf the number of vertices. Thel OtRhation. Hence, as we approach this non-diffeomorphic Jimit
warp approximation (that is, up to 70 knotpoints) for a pafe gistance of the required diffeomorphic transformatiom

of hippocampi typically took a few hours to compute, using ghe identity element of the diffeomorphism group diverges.

-
o N
T T

from Mean Shape

Geodesic Distance

o
o
T

non-compiled MATLAB implementation. This theoretical divergence is reflected in the numerical im
plementation by the asymptotic behaviour of the computed
V. MODELLING DISCRETESTRUCTURES distance as shown in the Figure.
A. A Simple Example The geodesic distance therefore allows us to differentiate

There are numerous examples in biological and medid¥¢tween physical and non-physical variations in a way that
images of cases where a pair of structures remain discrétgive linear models cannot.
although the spacing between them varies considerablgscro
a population, for example, the lateral ventricles in theirora B- Using the Geodesic Distance to Classify Variations
We constructed a simple dataset to investigate the problem&/e now consider the role of the geodesic distance in
associated with modelling such a variation; the basic ideadlassifying legal and illegal variations in real biolodickata.
shown on the left of Fig. 13. Elements of the dataset comprigée take as our dataset the annotated outlines of the anterior
6 points defining two triangles, with the separatiohetween lateral ventricles as used in section IV-A in the axial brain
the two triangles constrained to remain positive. A tragninslices. Each example consists of 40 knotpoints (see Fig. 15)
set of 100 examples was generated, with the separation beling set of training examples was Procrustes aligned and then
chosen at random. A standard method for analyzing sustaled to fit inside the unit circle. A linear SSM was built
a dataset is to build a statistical shape model (SSM) [16tpm this training set in the usual way. We then used this
the training set was Procrustes aligned, and a linear S®&M to generate random example shapes. These examples
constructed. were classified as legal if the outlines of the ventriclesrditl

The model correctly displayed only one mode of variationntersect either themselves or each other, and illegalaibe.
example shapes generated by the model are shown on The training set of shapes were all defined to be legal.
right of Fig. 13. As was expected, this simple linear model We then computed the GIS warps with= 10 timesteps,
can generate illegal shapes — when the model parameter wegihg the biharmonic CPS basis, between the classified set
below a threshold of approximateh?2.22 standard deviations, of shapes and the mean shape from the model. Computation
the triangles intersected, so that the structures weremgelo times were typically between twenty minutes and an hour
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Fig. 15. Top: Two examples from the training séottom: Legal (eft) and

illegal (_right) e}(amples generated by the S‘SM. Krjotpoints are indicated by
black circles; lines are for the purposes of illustration. Fig. 17. Detail of Fig. 16. (i) A training shape that appeaisafassified, but
actually contains an annotation error and self-intereacf{grey arrow), (ii)
an illegal shape generated by the model, with self-intéiaedgrey arrow),

o (ii) a legal shape generated by the model, correctly dieski
— —
v LngIgIsEI)f::rranes
@ lllegal Examples o
8 A Training Set i : . .
s 3t . of the knotpoint configurations between the illegal and llega
s * o| examples.
g2t ° I~ The correspondences that we have used in this example are
§ ] - . 2 o a subset of the correspondences that we would expect to be
Sl . 3 Py 285 "] generated by a successful non-rigid registration of thegesa
‘ §o 4 | Increasing the density of points in the training shapes doul
o ¥ . . . . . . have left the Mahalanobis distance essentially unchartged,
0 Mahalan2bis Distance 4 the result for the GIS warp would have improved, giving

a greater separation between the two sets of shapes. This
Fig. 16. Mahalanobis versus geodesic distances from thenrskape for 1S because, in the limit where the lines become infinitely
black circles:illegal shapes generated by the SSJwy triangles:legal shapes densely sampled, what was formerly only a ‘topological’
generated by the SSMhite triangles: the training set. change would become the difference between a diffeomorphic
and a non-diffeomorphic mapping, as was the case in the first
i i simple example. Then, as previously, the geodesic distimce
per example, depending on the degree of deformation. Thg jjiegal shapes would diverge, approaching infinity as th
geodesic distance from the mean is compared with the Maka, jing density increased. We can now extend this result to
lanobis distance from the mean in Fig. 16. It is immediatelye case of modelling the deformation fields for the nonerigi
obvious that we cannot separate the legal and illegal stapes.qistration: a linear model of such deformation fields wdoul
using the Mahalanobis distance. However, using the geodegifer the same problem as the linear SSM, where now the
distance, it is possible to construct a simple classifiee (58verlapping structures would correspond to a folding of the

Fig. 16) that separates the two groups, with only one examplg,, The GIS cannot, by definition, generate such a folding
shape being misclassified (the black circle just below the, li gince it is guaranteed to be diffeomorphic.

labelled (ii) in Fig. 17). If we look at the misclassified pbin
detail (Fig. 17), we see that the training shape (i) has dgtua
been mis-annotated — the outline contains a self-intdoseet
and is hence illegal. If we adjust the classifier in light abth  The modelling of the dense deformation fields that are
then shapes (i) and (ii) will be correctly classified, butha produced by non-rigid registration algorithms is an impaott
(iii) will be incorrectly classified as illegal, although @an topic that has not yet been studied sufficiently. This paper
be seen that it is very close to being illegal, since the twentributes to the topic by describing a suitable represiemt
ventricular outlines nearly meet. of the deformation fields that is diffeomorphic and has an in-
It should be noted that, unlike the simpler example coffrerent non-Euclidean metric. The method is based on Gendesi
sidered earlier, these knotpoint motions can actually peere Interpolating Splines, which are defined by a set of knotfsin
sented by a diffeomorphic mapping — all that ‘intersectgehewith the spline basis of the representation defined by a Green
are the smooth outlines drawn between the knotpoints, whiftimction and boundary conditions. These can be altered to
were for the purposes of illustration, and to provide a sampbuit the task in hand. We give examples of some suitable
visual method of classification. What the geodesic distanGreen’s functions, and focus particularly on the polyhamino
is actually detecting here is a difference in the ‘topologylamped-plate spline, which has the boundary conditioas th

VI. CONCLUSIONS
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it is zero on and outside the unit ball, and vanishes smoothly APPENDIX

at the boundary. We contend that these are suitable boundary EXACT SOLUTIONS FOR ASINGLE KNOTPOINT
conditions for many biological tasks because many bioklgic £ ihe polyharmonic clamped-plate GIS with one knotpoint
structures are discrete objects, and the background te th?ﬁ, — 1), (29) and (30) reduce to:

objects should not be warped.

>

1 2
We choose to use Geodesic Interpolating Splines because Blat)] = /dtm’ (51)
they generate general diffeomorphic (i.e., smooth and one- 0
to-one) functions, as well as having an inherent metric. Thghere Z(t) € D" is the path of the knotpoint, with the
assumption of diffeomorphic mappings is important becausgnstraint that the endpoint&0) and Z(1) are held fixed.
as mentioned in the introduction, conventional approathesgxact solutions to this energy-minimisation can then be
modelling assume a dense correspondence between thecsfiputed, for both varying dimensionality, and varying
of examples in the model training set. The assumption ofqder of clamped-plate spline. We give here as examples the
meaningfuldense correspondence between every examplepimarmonic case in one and two dimensions.
a group of images will not always be true. But the target we For the biharmonic CPS in one dimension, the Green’s
are working towards is a groupwise registration strate@y thfunction is [25]:
is capable of taking a group of images and separating them 9
into subset(s) where the meaningful dense correspondenc&z,y) = = (1 —zy)* — (1 —zy)(z —y)* + = |z —y|>. (52)
assumption holds across each subset, and a set of outliers, 3 3
where the assumption fails. The failure of this assumptidgh wThe unit ball in one dimensioi' is just the line segment
be indicated either by atypical values of the warp paramsgtefz| < 1. That is, the point$z| = 1 are fixed under the action
or by atypical values of the pixel-value deformation fields, of the flow. Substituting into (51):
a combination of the two. However, we cannot quantitatively 1 )
define what we mean by atypical unless we have a way of Ela(t)] = /dt 3 (dfc(t)) (53)
( .
0

quantifying what we mean by typical, which means some 1—a2(¢))3 \ dt
sort of modelling strategy has to be applied to the mutually

corresponding subset. Part of that strategy will be a difinit The Euler-Lagrange equations are:
of distance on the space of smooth, diffeomorphic warps. OF  d (OE \ _ (1) = dx(t)
ox(t) dt \0i(t)) Codt
We have demonstrated how to represent diffeomorphic d?x(t) 3x(t) dx(t) 2
warps in both two and three dimensions, and have shown that = a2z (1—22(t) \_ dt ’ (54)

we need a relatively low-dimensional representation ireord hich has th lution:
to capture most of the variation between pairs of imagesW— ich has the solution:
using just 70 knotpoints chosen from a set of 268 vertices a(t) = sin (tan~ (At + B)) (55)
enabled us to represent the warp between 2 hippocampi in .1

) ) : B = tan (sin” ' (z(0))) ,
three dimensions to reasonable accuracy. This suggedts tha .
the representation can accurately represent real biabgic A = tan (sin”' (2(1))) - B,
variations with a reasonably small number of knotpointse On with: Eopy = 3A% (56)

benefit of our approach is that using the greedy algorithm . . )
described in the paper, the knotpoints are not positionedFOr the case of the biharmonic clamped-plate GIS in two

equally densely across the image plane, as in conventioflfN€nsions ¢ = 2) we use the expression for the Green's

grid-based approaches, but where they are needed, so eha{‘fHCtion given in Table |. The energy to be optimised is then

effective local dimensionality of the warps can be adjusted 9'Ven by:

dz\? _

Finally, we have compared the metric inherent to the repre- E[Z(t)] = /dt (d—f> (1-27) 2 (57)

sentation with the Mahalanobis distance — a Euclidean metri

on the space of pgrameters that is used by conventlonaflmﬁlellth’ as before, the constraint that the endpoif(®) and(1)

modelling strategies. Our experiments have shown that the ) o : . -
2 . are held fixed. This is the energy for paths in the Poincasé di

geodesic distance can reliably separate out legal andallle

variations from a set of two dimensional ventricle shapes

generated by a shape model. By comparison, the Mahalanogﬂtfg.les of varying centre and radius that intersect the tirte

distance is completely unsuited to this non-linear task fight angles. In polar coordinates, we take the pointaet st
pietely ' at (rg,0p) att = 0, and finish at(r1,60,) at¢ = 1. For the

_ _ casety # 61:
In our future work, we plan to consider using the method

to fully analyse groups of non-rigid registrations of a edyi r(0) = kcos(0 — ) — \/k? cos®(0 — ¢) — 1, (58)
ical i i i i i +1
of medical images, including the construction of non-linea H60) = A + B tanh™! [( f2—1 T cot(6 — w)) ’} (59)

odel of the hyperbolic plane [33]; the geodesics are arcs of

models on the relevant subspace of the diffeomorphism group



where the polar angle (rather thant) is taken as the [7]
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A. Guimond, J. Meunier, and J.-P. Thirion, “Average brainodels:

dependent variable. The sign in the exponent is chosen such A convergence study,” INRIA, Sophia Antipolis, Tech. RepR-8731,

thatt is real. The parameters, ), A and B are determined

(8]
by fitting to the endpoints. That is:

N 1+ 7“3 N 1+ r%
RO - 2T0 ’ - 2T1 ) (60) [9]
_ Rpcosth — Rycosth
() = B gy Rosinds (61)
Ry R,
cos(Bp — 1)  cos(fy — )’ (62)
Vk2 — [11]
B = ltanh ! M
k
1
[12]
2 _
— tanh™! % . (63)
[13]
2
A — —Btann [TVl (64)
K [14]
The remaining special case is whén= 6. Then:
[15]
0(t) = 6y =01, (65)
r(t) = tanh(at+0), (66) [16]
where:b = tanh '(r), a =tanh™*(r;) — b. (67)

[17]
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