
Beat: A tool for visualizing the execution of object
orientated concurrent programs

Paul Johnson and Stephen Marsland
School of Engineering and Technology

Massey University
Palmerston North, New Zealand

p.johnson@clear.net.nz, s.r.marsland@massey.ac.nz

ABSTRACT
The transition from single core to multicore processors has
lead to a greater need for programmers to become famil-
iar with concurrent programming. In particular there is a
need to help programmers new to concurrent programming
to understand how to utilize multiprocessor systems. We
feel that visualization tools could be extremely helpful to
these programmers. In this paper we present a novel design
for a program trace visualizer we call Beat.

Categories and Subject Descriptors
D.2.5 [Testing and Debugging]: Tracing

Keywords
Software visualization, Concurrency

1. INTRODUCTION
The design of Beat is similar to UML sequence diagrams but
modified to use an approach inspired by media software such
as video and audio editors. Beat is implemented as Eclipse
plugin for concurrent Java programs and uses HTML to dis-
play the generated visualization. Our goals for Beat are to
create a tool useful for debugging concurrent programs and
also for assisting programs learning to program concurrently.

2. DESIGN
Rather than representing object instances as a ”life-line” like
in UML[6] we use ”tracks” like video editing software[1] with
the methods being executed represented as blocks that take
up the entire track. Our reason for doing this is because
it allows us space to include the source code text of the
method that is being executed. We feel that this will help
programmers using our software as a learning tool to relate
their source code to its concurrent execution.

Like Uml we use lines to represent flow of control or a thread
through the instances.

Similar to systems such as saUML[7] and also performance
visualizations such as Suns VisualVM[5] we make extensive
use of color, however we use it to differentiate the threads
of a program instead of indicating thread state. To provide
indications of thread state we use icons representing concur-
rent actions and dashed lines to represent when a thread is
inactive.

Basic interactions such as resizing and reordering columns
are provided.

We feel that our approach is visually less cluttered than
existing solutions while still communicating a great deal of
information.

One limitation of our approach is the amount of screen
needed to effectively display the amount of information pro-
duced, our experiences developing and using the visualiza-
tion suggest a minimum screen size of about 22” is required
to be effective.

Unlike UML we don’t intend that Beat will be a tool for vi-
sualizing programs in general, the use of the source code ties
it to a single language, to support more than one language
would require at least some redesign.

3. IMPLEMENTATION
We chose to implement Beat for the Java language using the
Eclipse IDE[3].

Our implementation is divided into 4 parts: plugin infras-
tructure that coordinates the process of running the pro-
gram and creating the visualization, a preprocessor to in-
strument code with information probes, a simple runtime
class to gather and record the data and the visualization
itself.

The plugin infrastructure coordinates tasks such as running
the preprocessor, compiling the preprocessed program, run-
ning the preprocessed program, loading the data and dis-
playing the visualization. This is implemented as a launcher
extension for Eclipse which allows users to launch the visu-
alization using the green run arrow used to run regular Java
programs.

Much of the work of implementing the plugin went into cre-
ating the preprocessor to instrument the code to add meth-
ods that record events and the time they occur within a



Figure 1: Beat Screenshot

program. To do this we used part of the Java Development
Tools (JDT)[2] which come with Eclipse. The JDT contains
a framework for parsing and creating an abstract syntax tree
that can be manipulated and written back out to a file to
add the probes.

The second part of the data gathering is a simple class which
contains the probe method which adds the recorded event
to an in memory list, when the class receives a thread or
program exit message it writes the in memory data out to a
file named after the thread that is being traced.

Finally we apply a number of fixes to the raw data to make
it suitable for display. HTML5[4] is used to display the
visualization as it handles text well and is something we
have a great deal of experience with. An HTML template
file is used to generate the text portions and is styled and
positioned using CSS. The thread lines and icons are drawn
using the canvas vector drawing object that is part of the
HTML 5 standard. A web browser embedded in Eclipse is
used to display the generated file.

The obvious limitation to our implementation is that it suf-
fers from the “probe effect” where observing the program
changes it, unfortunately we haven’t made any measure-
ments of this effect all though we have tried to limit its
effect by carefully programming. Our software is available
for download at http://github.com/pj/beat by using the git
version control system.

4. CONCLUSIONS
Though there are design and technical limitations to our ap-
proach a number that Beat supports our goal of making a
tool useful for debugging and for programmers learning con-
currency. By implementing our software as an Eclipse plugin
for Java we make it easy for people to use and integrate with

their existing programming setup.

5. REFERENCES
[1] Apple - final cut studio - final cut pro 7, 2010.

[2] Eclipse java development tools (jdt) overview, 2010.

[3] Eclipse.org home, 2010.

[4] Html5 (including next generation additions still in
development), 2010.

[5] visualvm: Home, 2010.

[6] J. Arlow and I. Neustadt. Uml and the Unified Process:

Practical Object-Oriented Analysis and Design.
Addison-Wesley Longman Publishing Co., Inc., Boston,
MA, USA, 2002.

[7] S. Xie, E. Kraemer, R. E. K. Stirewalt, L. K. Dillon,
and S. D. Fleming. Assessing the benefits of
synchronization-adorned sequence diagrams: two
controlled experiments. In SoftVis ’08: Proceedings of

the 4th ACM symposium on Software visualization,
pages 9–18, New York, NY, USA, 2008. ACM.


