
SECURITY AND COMMUNICATION NETWORKS
Security Comm. Networks 2012; 00:1–15

DOI: 10.1002/sec

RESEARCH ARTICLE

An Exemplar-based learning approach for Detection and
Classification of Malicious Network streams in Honeynets
Fahim H. Abbasi1∗, Richard Harris1, Stephen Marsland1, and Giovanni Moretti1

1School of Engineering and Advanced Technology (SEAT), Massey University, Private Bag 11 222, Palmerston North, New Zealand
{F.Abbasi, R.Harris, S.R.Marsland, G.Moretti}@massey.ac.nz

ABSTRACT

Variants of malware and exploits are emerging globally at an ever-increasing rate. There is a need to automate their
detection by observing their footprints over network streams, but signature-based intrusion detection systems alone cannot
cope with the dynamic nature of modern security threats. In this paper we approach intrusion detection as a classification
problem and describe a system using exemplar-based learning to correctly classify known classes of malware and to detect,
learn and classify unknown malicious streams into classes. Copyright c© 2012 John Wiley & Sons, Ltd.

KEYWORDS

Intrusion Detection System (IDS), Malware, Normalized Compression Distance (NCD), Spamsum, Exemplar-based Learning
∗Correspondence

E-mail: f.abbasi@massey.ac.nz

Received . . .

1. INTRODUCTION

Our IT infrastructure and resources are threatened on a
daily basis by worms, viruses, botnets and even state-
sponsored cyber militants. The attacker’s motivation can
range from pranks, to personal gain, to lucrative business
models and cyber-espionage. The goals, however, are
the same; to gain unprivileged access to private data,
information and computing resources. Symantec, a major
anti-virus company reported blocking over 5.5 billion
malware attacks in 2011, with 403 million of these being
new variants of malware[1]. Intrusion detection systems
(IDS) are an important part of the fight again these attacks.

Current intrusion detection methods tend to be static,
rule-based systems such as firewalls and anti-virus
software. They typically match against the signatures of
known threats in packet content and apply rules to drop,
forward, log, or accept such packets. The signatures are
identified and analysed by techicians within a company
and added to the database used by the system [2]. This
process is labour intensive and requires a detailed analysis
of the malware or exploit. A good signature should be
specific enough to narrow down the exploit and avoid false
positives and yet be generic enough to catch variants of the
same exploit.

Another approach to intrusion detection has been to
learn or otherwise identify models of normal or expected

network traffic and raise an alarm when significant
deviations from this behaviour are identified. These are
known as anomaly-based IDS [3].

Before either signatures or a model of ‘normal’ traffic
can be created, one challenge is to discover the tools
and tactics that are being used by hackers. To this end,
apparently benign computer systems designed to keep
detailed logs of system activity are widely deployed
today by security researchers. These systems, known as
‘honeypots’, are designed to record a hacker’s activities to
gain an insight into the methods used. The logs typically
would include intruder keystrokes, processes, and system-
wide and network data.

As has already been mentioned, the specification of a
sufficiently specific signature is not easy. However, the
matching of signatures is also a problem, since relatively
small variations in the packet data can make the overall
appearance look significantly different, which means that
it is not identified. This is a common approach in malware
[4]. Any attempt to make the signature matching too
generic leads to false positives, which greatly undermine
the confidence in the IDS, and can result in it being ignored
or disabled.

The most common methods of introducing variation
into packet data are data scrambling or transposition,
where the order of symbols forming the pattern changes,
but the inherent symbols remain the same. These

Copyright c© 2012 John Wiley & Sons, Ltd. 1
Prepared using secauth.cls [Version: 2010/06/28 v2.00]



An Exemplar-based learning approach for Detection and Classification of Malicious Network streams in HoneynetsFahim H. Abbasi et.al.

syntactically distinct, but symbolically similar, strings have
similar entropy measures and so can be identified in this
way using information theoretic measures such as the
Kolmogorov complexity [5]. However, this does not work
if new symbols are added, or the old ones are re-encoded,
although other string metrics can be useful here.

In this paper we describe an IDS that uses string
matching and compression on honeypot network data and
an exemplar-based learning system to detect variants of
known attacks while they being transferred over a network.
The similarity between known malicious stream samples
and the incoming traffic is calculated based on entropy
measures of the strings. Synergies are thus quantified to
yield a similarity score with a certain level of confidence,
and this is used to classify examples of known attacks,
and to add new classes of attack where there is no
known exemplar, so that the system can engage in lifelong
learning and continue to extend itself. We demonstrate our
approach on data from real honeypots.

2. ORGANIZATION

The remainder of this paper is organized as follows: ...

3. RELATED WORK

Generally IDS can be categorized under 2 main categories,
which are:

1. System or Host-based IDS (HIDS)
2. Network-based IDS (NIDS)

In order to solve the intrusion detection challenges,
researchers in the past have focused on many techniques,
which can be categorized under the following main
categories, which are:

1. Misuse-based intrusion detection
2. Anomaly-based intsudion detection
3. Hybrid detection
4. Scan detection
5. Profiling Modules

Another interesting way to categorize Intrusion detec-
tion techniques, is by determining the study perspective or
the algorithm or approach as:

1. Header-based detection
2. Payload/content-based detection
3. Hybrid approach
4. System calls based
5. TCP/IP data based
6. Binary/executable analysis based
7. Network flow aggregation based

Within machine learning they can be categorized as:

1. Statistical method based detection

2. Classification based detection
3. Clustering based detection
4. Information theoretic based detection

Misuse detection is used to identify unique patterns of
unauthorized activity, and use these patterns to predict
and detect subsequent similar attempts. Lee et al. [6]
applied association rules in audit data and network traffic
for misuse detection. Mukkamala et al. [7] applied SVM
on host and network logs to identify attacks and misuse
patterns causing computer security breaches. Kruegel and
Toth [8] designed an algorithm to generate a decision
tree for fast detection of malicious events from network
data. Chebrolu et al. [9] applied the CART-tree algorithm
on the KDD cup 1999 intrusion detection dataset and
eliminated features that did not contribute to the ranking,
which increased overall accuracy of the system. They also
investigated feature selection and classification algorithm
involving bayesian networks on host data [9]

Anomaly detection systems raise alarms on detecting
significant deviations from normal patters or models. Liu et
al [10] used artificial neural network (ANN) techniques to
analyze sequences of system calls for anomaly detection
with good accuracy. Chen et al. [11] compared SVM
and ANN on 1999 DARPA evaluation set and BSM
audit data and found that SVM outperformed ANN. Liao
et al. [12] used KNN to classify program behaviours
as normal or intrusive based on their system calls. For
their dataset they observed a high accuracy with very
low false positive rate. Wang et al. [13] applied HMM
to host audit data to detect anomaly data quickly at a
lower mismatch rate. However the training phase requires
multiple passes. Soule et al. [14] used kalman filters
to recognize traffic patterns using a network-wide view.
Portnoy et al. [15] applied clustering anomaly detection
methods on both DARPA and KDD cup 1999 datasets
and obtained good results in terms of classifier accuracy
for known or labelled data, whereas, clustering unlabelled
data resulted in lower detection. Zhang and Zulkernine
[16] applied the random forest algorithm to the KDD cup
and DARPA datasets. They observed comparatively better
results than other unsupervised techniques, however the
classifiers performance got degraded over minority attacks.

Information-theoretic approaches for intrusion detec-
tion have recently been explored by researchers. Lakhina
et al. [17] demonstrated the detection of a wide range
of anomalous network flows by examining their entropy
measures. Feinstein et al. [18] identified DDoS attacks by
examining the entropy of packet header fields. Wehner
[19] created a fast method for guessing the family of an
observed worm without disassembly, by comparing the
compressibility amongst binaries to determine their sim-
ilarity. For network traffic [19] used average compression
ratios of good or expected traffic and flagged anomalies on
deviations from it. There has been a significant amount of
work on network traffic characterization but little has been
done in compression-based clustering and classification for
traffic. This can be because compression is an expensive

2 Security Comm. Networks 2012; 00:1–15 c© 2012 John Wiley & Sons, Ltd.
DOI: 10.1002/sec

Prepared using secauth.cls



Fahim H. Abbasi et.al.An Exemplar-based learning approach for Detection and Classification of Malicious Network streams in Honeynets

operation in terms of CPU time. Kulkarni and Bush [20]
attempted a similar approach to monitor network traffic
without using compression. Work carried out by Evans and
Barnett [21] used compression to compare the complexity
of legal FTP traffic with illegal traffic, but at a header level
only, whereas we use entire TCP sessions. Kulkarni, Evans
and Barnett [22] performed denial of service measures
using compression ratios based on Kolmogorov complex-
ity by estimating the entropy of 1’s contained in the packet,
which has its limitations. Such techniques generally prove
to be quite efficient in determining worm and worm-like
activity. Eiland and Liebrock [23] detected network scans
from normal traffic using Kolmogorov complexity by esti-
mating the inverse compression ratio of scan and normal
traffic. This technique fails when applied to partition or
classify various types of attack traffic, as we have in our
dataset.

4. MACHINE LEARNING FOR
INTRUSION DETECTION

Intrusion detection technologies are reactive in nature.
They analyse user, system and network activity and from
them, attempt to recognize malicious patterns, whereupon
alarms can be generated or appropriate actions taken.
We treat intrusion detection as a classification problem,
where we can classify network and system events as
a set of known classes, or as an unknown class that
needs to be added to the database. Note that in our work
we do not consider benign network traffic. This is one
of the interesting features of a honeypot. Since it is a
network server with no actual functionality, and usually
low security, anybody using it (except when its logs are
being retrieved) must be a hacker who is using a resource
that they are not officially allowed to access, and so should
be identified by the intrusion detection system. For our
project we use honeypots in our existing honeynet setup
[24]

Where possible, such classification systems are super-
vised, so that a training set of pre-labelled data points
are used, and the inputs strings and similarity metrics
are used to learn a model that separates out the different
classes. Given this labelled data, there are a huge variety of
classification methods available in the literature. However,
many of them are ruled out by the fact that we want the
IDS to be able to extend itself during use. Our learning
process is in two stages: during initial setup, a set of
labelled data can be used to identify known categories of
attack, but later, when the IDS is in use, we want it to
identify inputs that do not match any currently-known class
(novelty detection) and automatically learn about these
new classes of attack, which will be unlabelled.

Determining similarity between packet/stream
profiles

To detect an intrusion, a misuse-based intrusion detection
system or IDS relies on signatures it has in its signature
database to compare with incoming network streams
and packets. These signatures are composed of distinct
syntactic features observed from past attacks. These
features are in the form of patterns or sub-strings.
Scrambling this information within packets can effectively
evade misuse-based IDS, however is it possible to work
around this shortcoming.

In the case of scrambled information or transposition,
the order of symbols forming the pattern changes, but the
inherent symbols remain the same. We believe that these
syntactically distinct but symbolically similar strings can
be measured effectively for similarity due to their similar
corresponding information or symbols. Thus scrambling
the information has little or no effect on the entropy of the
strings. However, if new symbols are added or replaced,
the entropy may change drastically. Information theory
provides several techniques to measure the similarity
between two strings. One way to do this is by noting
that each string contains information and the amount of
information stored in a string is quantifiable and can be
articulated by its Entropy or Kolmogorov Complexity [5].
From mathematics, we may use string metrics to determine
the approximate similarity or dissimilarity between strings.

Our Hypothesis
Applying the same theme to network streams, we can

now perform similarity measures between known attacks
or malicious streams and features extracted from incoming
network streams. The advantage over plain misuse-based
IDS is that instead of matching small patterns within
the streams or packets we shall now match information
patterns within them. This process can be automated and
intelligence can be added to the IDS by using machine
learning techniques to detect known and unknown or novel
malicious network streams

5. SIMILARITY METRICS

Edit distance is a class of distance functions, which map a
pair of strings x and y to a real number R. Smaller values
indicates greater similarity and a larger values represents
increasing dissimilarity between x and y. Levenshtein
distance and Hamming distance are examples of such
class of distance functions. [25]. Other similarity metrics
include Normalized Compression Distance (NCD)[5] and
an approximated edit distance metric like Spamsum [26]

At the heart of the IDS is a measure of the difference
between two strings, since the attacks are transferred
across the network using normal data streams. There
are a wide variety of string metrics, and in previous
work [27] we have compared a variety of them,
from standard techniques like Levenshtein distance and

Security Comm. Networks 2012; 00:1–15 c© 2012 John Wiley & Sons, Ltd. 3
DOI: 10.1002/sec
Prepared using secauth.cls



An Exemplar-based learning approach for Detection and Classification of Malicious Network streams in HoneynetsFahim H. Abbasi et.al.

Hamming distance, to information theoretic measures.
In that work we found that Normalized Compression
Distance (NCD) [5] quantifies similarities between various
network profiles in our dataset well. A related measure is
Spamsum [26].

Figure 1 shows an ROC analysis of the similarity
metrics studied. It can be seen that Spamsum and NCD
outperformed other similarity metrics, and so we focus
only on these two in this paper. These results were
computed using threshold-based nearest neighbour (T-NN)
[27] as the classification algorithm.

In our previous work [27] we concluded that Threshold
based nearest neighbor or T-NN served as the best
clustering algorithm for our dataset. For a dataset having
N data points we want to find the nearest or closest point
in the metric space that is below the threshold value defined
as a parameter at the beginning of the algorithm. T-NN was
used as the best-fit clustering algorithm for our dataset.

In fact, Spamsum and NCD are highly correlated,
with a Pearson product-moment correlation coefficient
of r = 0.96 and coefficient of determination R2 = 0.93.
However, these scores do not tell the whole story, and
we identified places where only one of the two metrics
identified similarities, and we therefore decided to use
them both by basing the similarity decision by taking the
minimum score of the two as the criteria to determine
similarity.

In the next section we describe how we use this
similarity measure in order to classify input strings.

6. DATASETS

To evaluate the effectiveness of an IDS we require datasets
or traffic or attack generation tools. In the absence of
standard reference IDS datasets, it is difficult to evaluate
and compare different methods of detecting intrusions, and
to fine-tune a system for optimal results.

A good dataset should contain a greater coverage of the
various types of network traffic including labelled attacks,
while also being representative of the properties and nature
of network traffic. Unfortunately, no such standard datasets
exist. While various research groups have maintained their
own datasets for evaluation, they are not very reliable and
very few datasets are publicly available, One exception is
the MIT DARPA 1998 and 1999 dataset, also known as
the IDEVAL corpus. Though dated, the dataset comprises
of categorized or labelled traces of benign as well as
malicious network activity. J. McHugh [28] gave a critical
analysis and determined that results for synthetic data are
not practical to real data [28]. Hence the IDEVAL corpus
is not analogous to the properties of real network traffic.
Many datasets used by researchers focus on statistical
features extracted from network traffic and mainly headers
to identify anomalies instead of actual network dumps.
Features such as source and destination IP and Ports,
packet size, header size, bytes sent and received, flags,

protocol type fields and connection rate etc. These features
may serve to identify some types of anomalous traffic, but
cannot serve as a general rule for sophisticated attacks. We
are more interested in the packet/stream payloads, as they
contain representative digital fingerprints of exploits.

Werner created a manually analysed and labelled dataset
for Nebula [29] and was kind enough to share this dataset
for our IDS evaluation. The dataset comprises a set of
6631 unique attacks that he collected from two honeypot
instances during the last quarter of 2007. This dataset
contains 28 main labelled attack categories and a total of
55 labels including all subcategories. The labels for two
subcategories a and b of a main category c are expressed
by c.a and c.b. The malicious streams range from buffer-
overflows, to exploits, to shellcode to worm and worm
variants. The benign but suspicious streams include traffic
like HTTP GET,POST and OPTIONS requests, FTP and
TFTP download requests, Oracle and Mysql database
connection requests.

We also created our own dataset using a Dionaea
honeypot. Dionaea is a low interaction honeypot that
has proven to be quite useful for collecting binary
malware samples, binary network streams, shellcode and
extensive attack detail. We manually collected, labelled
and classified 6600+ samples using Dionaea bi-streams,
and labelled the dataset using Tillmann’s methodology.

7. EXEMPLAR LEARNING FOR
INTRUSION DETECTION

Inductive learning is the process of learning by examples.
A machine learner is trained to induce a general rule,
compare with other rules and perform classification of the
observation from a set of observed instances. Exemplar
learning involves choosing exemplars or instances from
a set of objects based on their resemblance to a certain
category or group by the learner. The identification of
an object as an exemplar or instance and the rules to
determine matching objects group membership are the two
key measurements that the exemplar theory depends on.

In machine learning terms, concept learning comes
under the category of supervised learning. A class labelled
dataset is provided to the algorithm to train on. The
algorithm or learner uses exemplars from this labelled
training data set to create generalizations to classify other
objects. Such algorithms are often referred to as instance
learning algorithms or lazy learning algorithms.

We have chosen to use exemplar learning, since we have
a labelled dataset of previously known attacks available,
and since at a later stage we expect that novel attacks,
which will be detected automatically by our system, will
be analysed by humans (or eventually other software
systems) in order to identify suitable responses to them.
Exemplar learning is also known as instance learning or
lazy learning.

4 Security Comm. Networks 2012; 00:1–15 c© 2012 John Wiley & Sons, Ltd.
DOI: 10.1002/sec

Prepared using secauth.cls



Fahim H. Abbasi et.al.An Exemplar-based learning approach for Detection and Classification of Malicious Network streams in Honeynets

Figure 1. An ROC curve comparing Hamming, Levenshtein, Jaro, NCD and Spamsum similarity measures clustered using T-NN [27]
. It can be seen that Hamming and Levenshtein distance measures perform poorly, with many false positives at the start and getting
worse towards the end. Jaro distance metric is much better, with true positive results until at the end a few false positives results start

to appear. NCD and Spamsum outperform the other similarity metrics.

Given the data and the similarity metric, there are two
problems for the exemplar learner:

1. To identify suitable exemplars or instances from the
training set (TR).

2. To learn an appropriate similarity threshold within
which the data points belong to the same class as
the exemplar class.

Once this is done, the acquired model consists of a set
of (exemplar data point, threshold) tuples. A schematic of
this is shown in figure 2 and figure 3.

Choosing the exemplars appropriately is important: a
poorly selected exemplar can result in a large number
of false positives, or a large number of exemplars being
required. This is particularly important when the training
dataset could be unbalanced or skewed, so that there are a
very small number of examples of some classes.

8. METHODOLOGY

8.1. Model Creation using exemplar-based
learning

In machine learning, the performance of a learning
classifier depends directly on the effectiveness of its
mathematical or statistical model. In other words, how well
the given dataset or algorithm output fits to the prescribed

model. Model selection, demands selecting the best or
most appropriate model from candidate models, to solve
a given machine learning problem.

We have an imbalanced labelled dataset of malicious
network streams that we want to classify. For classification
or supervised learning problems the classifier is trained
on classified examples and is expected to classify unseen
samples. It is assumed that every instance (input sample)
belongs to one, and only one, class. The model M
would include multiple instances of exemplar ε and
threshold τ tuples. Our model will be able to determine
the best exemplar(s) per category, and suggest the
optimal threshold for that exemplar, for classification. This
exemplar-based learning classifier model would work as
follows:

Which instance to select from the training set
(TR)?

Choosing an exemplar for each category is a difficult
task. A poorly selected exemplar may result in a single,
noisy exemplar, which in turn may result in a large
number of false positives. This may be due to the
imbalanced/skewed dataset or the nature of the samples in
it. It is required to prune the noisy exemplars (Edition 10)
and update the model with the appropriate exemplars and
threshold values per class (Condensation 10).

Security Comm. Networks 2012; 00:1–15 c© 2012 John Wiley & Sons, Ltd. 5
DOI: 10.1002/sec
Prepared using secauth.cls



An Exemplar-based learning approach for Detection and Classification of Malicious Network streams in HoneynetsFahim H. Abbasi et.al.

Figure 2. For categories a, b, c, d, each with a set of samples such as a1 . . . an, a model can be defined as a list of tuples, where
each tuple comprises of an exemplar aε selected from the samples and a corresponding distance threshold value aτ . If there are

significant varieties within one class, there may be several exemplars from the same class.

Figure 3. The model written out to a csv file. Each row can be read as: The labelled exemplar ε , and the threshold τ . There can be
several exemplars from the same class, indicating rich variations within the class samples or candidate sub-classes. Otherwise if all

samples in the class are quite similar, then they can be represented by a single exemplar

Algorithm 1 shows our exemplar selection algorithm.
As a first step an n× n similarity matrix of samples in
the training set (TR) is calculated. From this matrix, an
exemplar ε for a category is chosen by comparing all
samples in a particular class to find the one with the lowest
overall distance (i.e. greatest similarity). This is done

by taking the minimum of the sum of all corresponding
similarity scores of the data points for each sample. This
sample then becomes our exemplar label.

The threshold value is then calculated by taking the
max of the corresponding similarity scores of this sample
with others in the same category. The optimal threshold

6 Security Comm. Networks 2012; 00:1–15 c© 2012 John Wiley & Sons, Ltd.
DOI: 10.1002/sec

Prepared using secauth.cls



Fahim H. Abbasi et.al.An Exemplar-based learning approach for Detection and Classification of Malicious Network streams in Honeynets

value is determined by testing for false-positives on each
data point below the initial threshold, until a value with no
false-positives is established. Note that this assumes that
each data point belongs to precisely one class, which is
true for the datasets that we have analysed. The algorithm
iterates over the remaining points for that category, until
all the points are accounted for by the model. Finally a
sanity check is performed on the model to ensure that
that the threshold τ satisfies the condition 0.1 < τ < 0.8.
Here a very tight threshold i.e. less than or equal to 0.1
will encompass very few or data points that are exactly
the same as the exemplar. This inhibits the ability of
the system to be able to detect variations in the form of
similar samples and not just the same samples. A very high
threshold i.e. greater than 0.8 would cause false-positives
due to negative class classification.

8.2. Lifelong Learning: Detecting and Adding
Novel Input Classes

Our previous work on exemplar-based learning for intru-
sion detection, incorporated creating a model (comprising
of exemplars and thresholds) from a known labelled train-
ing dataset and then trying to classify a large test/target
dataset with this model. This work was very much a two-
class classification problem, where all the samples in the
set were classified as one of the classes identified in the
model.

There were, however, a few unknown samples which
did not get classified/identified by any of the classes
in the model and were scattered across between the
boundaries of known classes in multidimensional space.
Identification and classification of these unknown or novel
data samples became a motivation to study and solve
the problem of novelty detection for our domain. In
the literature, the terms One-class classification, novelty
detection, outlier detection and concept learning refer to
different applications of the same problem.

Using the algorithm given in the previous section,
we are able to identify a set of exemplars and their
corresponding distance thresholds. New input data can
now be classified into one of the existing classes by simply
comparing it to each exemplar in order and checking if it
is within the appropriate threshold distance. However, we
also want to deal with novel exemplars that are introduced
and do not match any of the current classes in the model.
All such samples are added to a set of outliers. A pictorial
manifestation of this is shown in Figure 4.

Algorithm 2 describes a methodology to:

1. Classify the outliers into new classes
2. Select exemplars and thresholds for these new

classes
3. Add these new exemplars and thresholds to the

model to enhance classification.

Any data point not recognised as belonging to any class
is added to a list of outliers. The algorithm first calculates
the distance between the exemplars εmodel from the model

and all the points in the list of outliers. This results in
a n×m distance matrix of similarity scores. An initial
outlier exemplar εoutlier is chosen as the data point p in
the list of outliers with the lowest score to all the other
outlier data points and the current exemplars in the model
εmodel. The initial threshold τoutlier is set to the maximum
score observed from the corresponding scores for p. Next,
the exemplar εoutlier and threshold τoutlier are tested for
false positives.

For the novelty detection algorithm, the false positive
observations would be the exemplar εmodel data points
taken from the model. If any exemplar εmodel from the
input model has a similarity below the initial threshold
τoutlier of p, it is considered to be a false positive. While
the true positive values would be all data points in the list
of outliers, under the test threshold. In the case where false
positives exist, the threshold is adjusted to the maximum
true positive value that is less than the minimum cost false
positive observation. A sanity check is performed to ensure
that the threshold τoutlier value satisfies the condition
0.1 < τ < 0.8.

This new exemplar p or εoutlier and its adjusted
threshold τoutlier′ is then appended to a list of exemplars
in the model and this exemplar and the true positive data
points that it was able to classify are removed from the list
of outliers. The process is repeated until there are no more
items remaining in the list of outliers.

9. VALIDATION

9.1. Validation of the Exemplar Selection
Algorithm

In order to validate Algorithm 1 we conducted an
experiment in which we randomly selected samples
from the training set (TR) to create a model and
compare the results with the model provided by this
algorithm. A key question here would be that: how do
we determine a threshold value for the exemplar? Do
we need to run a sensitivity test for that? Such a test
will involve sliding the threshold in small increments
to determine the threshold value that will encompass
maximum classification. This will be time consuming and
far less efficient, as randomly selecting exemplars can
never guarantee good classification by the classifier, as
the classes may contain sub-classes, which might not get
classified at all by the randomly chosen exemplar.

As an initial, ‘straw-man’ test we created a training set
comprising of 300 samples, representing 30 known classes
and a test set comprising of 1200 samples from the same
30 classes. We used a set of exemplars chosen at random
from the training set, up to five for each class, and assigned
each of them a fixed threshold value of 0.5. We did this for
10 different random choices of exemplar sets, and saw an
overall accuracy of around 70% on average. We observed
that a large part of the problem with this method is that
0.5 is not a fair threshold to choose, and so we repeated

Security Comm. Networks 2012; 00:1–15 c© 2012 John Wiley & Sons, Ltd. 7
DOI: 10.1002/sec
Prepared using secauth.cls



An Exemplar-based learning approach for Detection and Classification of Malicious Network streams in HoneynetsFahim H. Abbasi et.al.

Algorithm 1 Calculate model = train(labelled distance matrix, list of classes)

Require: list of class , similarity matrix
Ensure: list of outliers

1: for each class C in list of class do
2: find the datapoint p ∈ C that has minimum distance to all points in C
3: set initial threshold τ to max (distance from p to all elements of C)
4: if any exemplar is within threshold τ distance of p then
5: set threshold τ = first point below min(distance from p to exemplars)
6: check that 0.1 < τ < 0.8, otherwise set to bottom/top of range
7: end if
8: add(p, τ) to model
9: remove all points within distance τ of p

10: if any points in C remain then
11: leave C in list of classes
12: else
13: remove C from list of classes
14: end if
15: end for

Figure 4. Novelty detection

the experiment, but this time determined the threshold by
starting from 0.3 and increasing it in small increments
of 0.1 to determine the maximum classification. This is
time-consuming, but makes a fair test. We performed
10 iterations of this experiment and found an average
accuracy of 88%. In contrast, using our algorithm to select
exemplars and thresholds led to 95% accuracy, and used

only 49 exemplars instead of the 120 used by the random
method.

We found that the experiments based on randomly
selecting exemplars led to fluctuating results. The highest
accuracy results obtained via randomly picking exemplars
led to an overall accuracy of 92%, compared to 95%
using our algorithm. This is a significant increase in the

8 Security Comm. Networks 2012; 00:1–15 c© 2012 John Wiley & Sons, Ltd.
DOI: 10.1002/sec

Prepared using secauth.cls



Fahim H. Abbasi et.al.An Exemplar-based learning approach for Detection and Classification of Malicious Network streams in Honeynets

Algorithm 2 Calculate update model = add Exemplar(list of outliers,
similarity score matrix,model)

Require: list of class , similarity matrix, list of outliers
Ensure:

1: while outliers in list of outliers do
2: find the data point p that has minimum distance to all points in similarity score matrix
3: set initial threshold τ to max (distance from p to all outliers)
4: if any exemplar is within threshold τ distance of p then
5: set threshold τ = first point below min(distance from p to exemplars)
6: check that 0.1 < τ < 0.8, otherwise set to bottom/top of range
7: end if
8: remove all outliers within distance τ of p
9: add(p, τ) to model

10: end while

Method Exemplars % Accuracy

TNN-Fixed 120 70
TNN-Adaptive 120 88
TNN using Algorithm 1 49 95

Table I. Comparison of methods random exemplars vs selected
exemplars

classifier’s performance and provides an automated and
robust method of exemplar selection for model creation.
The relatively high average percentage (88%) in terms of
accuracy for the random exemplar-selection methodology
is due to the fact that we were picking five exemplars
per class and optimising the choice of threshold for each,
which is considerably more computationally expensive
than using our algorithm. It also points to the fact that
similarity within a category of network streams exists
because of the protocol design, which reduces complexity
and enhances the similarity for classification. The results
are summarized in table I

Compared to T-NN with adaptive thresholding, our
algorithm requires fewer exemplars with more definitive
thresholds. On the 300 sample training set, our algorithm
proposed only 49 exemplars compared to 150 exemplars.
Hence with one-third the size of exemplars, and with a
more accurate or definitive threshold in the model we get
at least a 10% increase in terms of accuracy.

9.2. Validation of the Novelty Detection
Algorithm

In order to validate Algorithm 2, we used Algorithm 1 to
create a model from a small training set (TR) comprising
of 50 samples representing five classes, and then deleted
the exemplars of two classes from it, as shown in figure
5. We then used the first step of Algorithm 1 to test on
a dataset that included both known and unknown classes.
This resulted in 80% correct classification in terms of

Method % Accuracy Outliers

Algorithm 1 70 1300
Algorithm 2 97 0

Table II. Learning with Algorithm 2

accuracy. The unknown samples were appended to the
outlier list as shown in figure 6.

Following this, the outlier list was used with Algorithm
2 to create new exemplars for these unknown classes, as
illustrated in 7. A full description of this experiment and
its results follows:

1. The model was trained with five classes, leading to
9 exemplars (2 for class 1, 3 for class 2, 1 for class
3, 2 for class 4, 1 for class 5).

2. Both exemplars for classes 1 and 4 were removed
from the model.

3. After classification, the system found that all
elements of class 1 and 4 were outliers, and none
of classes 1, 2, 3, 5 were outliers.

4. The novelty detection algorithm was applied and
three exemplars of class 1 and two of class 4 were
added to the model.

5. Thus the classes that were manually removed
earlier were automatically detected and added to the
model, and no others.

Finally, we tested the combination of the two algorithms
on a larger set of 6600 labelled samples with 50 classes.
We started with a small training set (TR), of around 300
samples representing 30 classes. Algorithm 1 was used to
learn a model of this dataset, and created 49 exemplars
representing 30 classes. The model was then tested on
an independent test set of around 6000 samples with all
50 classes represented. This resulted in an accuracy of
approx. 70%. The data points identified as outliers were
then learnt about using Algorithm 2 and their exemplars
appended to the model. A second test set (of the last 300

Security Comm. Networks 2012; 00:1–15 c© 2012 John Wiley & Sons, Ltd. 9
DOI: 10.1002/sec
Prepared using secauth.cls



An Exemplar-based learning approach for Detection and Classification of Malicious Network streams in HoneynetsFahim H. Abbasi et.al.

data points) was applied, giving classification results of
97% on this second test set, with all 50 classes represented
as summarized in table II

These results are very pleasing, and show that this
simple method of lifelong learning based on our exemplar
learning has distinct promise for the IDS application.

The question that motivated our first validation test was
that: can the novelty detection algorithm detect known
classes, which were removed from the model for testing?

The first test conducted for validating the algorithm
involved creating a model from a small training set,
removing exemplars from random classes from this model
and then performing classification. This resulted in a
partial or no classification for classes that were removed
from the model and a large list of outliers. These outliers
were then run through the novelty detection algorithm
to yield results. The results were quite satisfactory as
the algorithm correctly identified the missing classes and
proposed respective exemplars for their classification.

Our second validation test was motivated by the
question: How much does learning new and novel classes
increases the overall accuracy of the classifier?

For this test, we created a model from a carefully
created training set of approx 300 samples extracted from
a large dataset of 6600 samples. The model was used
to classify the test set, comprising of 6600 samples.
After classification, the classifier gave an overall accuracy
of 90%. A list outliers was identified and the novelty
detection algorithm was then applied to them to identify
novel classes and exemplars. These new exemplars were
then appended to the model for re-classification. The new
classification resulted in a an overall accuracy of 98%.

10. COMPARATIVE RESULTS

Using a small labelled test set comprising of 1200 samples
and a training set of 300 samples, we performed a
comparative analysis of the exemplar learning technique
with both of our prior techniques i.e. (a) Classification
using a fixed threshold and (b) Classification at the optimal
threshold obtained by adaptive thresholding. Both of these
techniques provide a good approximation, but do not
give a precise measurement in terms of: (a) the optimum
number of exemplars that are required per class and (b)
the optimum similarity threshold for those exemplars in
that class. Next, these results were compared with well-
known machine learning algorithms like nearest neighbour
and k-nearest neighbour, which do not require threshold
constraints, and finally concluded with a comparison using
our proposed exemplar-learning and novelty detection
algorithm.

For comparison we performed a two-stage experiment
to answer the following questions:

How to select the exemplars or instances
required per class for classification?

We designed an experiment such that step-wise increments
of 10 exemplars (ε = ε+ 10), are picked randomly from
the training set starting from ε = 10 till ε = 90 exemplars.
Before this we sampled on a smaller scale by randomly
selecting 1 upto 9 exemplars from the training set (TR) in
increments of 1. In each iteration, a set of exemplars were
produced that were then subjected to the second stage. The
second stage answers.

How to select the optimal threshold required per
instance per class?

To answer this question we used an adaptive threshold
method that requires small step-wise threshold increments
of τ = τ + 0.25 starting from 0.0 till 1.0 creating
a confusion matrix for each class individually and
determining the optimum threshold τ for the whole test
set.

Comparisons

For comparison of the classification techniques, we divided
the methodologies into three main categories:

1. Methodologies that involve threshold for classifi-
cation or threshold-based e.g. fixed and adaptive
thresholds.

2. Methodologies that involve just instances for
classification or instance-based learning e.g. nearest
neighbour and k-nearest neighbour

3. A hybrid methodology that uses both instance-
based learning guided by the threshold for classifi-
cation e.g. threshold-based exemplar-learning tech-
niques

Accuracy results for (1) fixed threshold and (2)
optimized thresholds (3) nearest neighbour and (4) k-
nearest neighbour at k = 3 and 5 were plotted using
an XY Scatter plot for each exemplar set. Additionally,
results from our proposed exemplar-learning and novelty
detection algorithm were added for comparison.

The results from this experiment are shown in Figure 8 ,
it can be seen that as the number of exemplars increases, it
increases the accuracy since the chances of getting a better
classification increases with it, due to better coverage. This
however does not guarantee the best or optimal exemplar
selection for each class, as the exemplars are picked
randomly from the training set. The performance of the (a)
optimized threshold technique is better than (b) the fixed
threshold, as enumerating through every possible result
to yield the best one, on average, gives approximately
8% better results. Results from nearest neighbour and the
k-nearest neighbour algorithm have been added to the
results for comparison. Here it can be seen that the nearest
neighbour algorithm performs very well as the number
of exemplars increases and is found to be better than (a)
and (b). For the k-nearest neighbour algorithm, we are not

10 Security Comm. Networks 2012; 00:1–15 c© 2012 John Wiley & Sons, Ltd.
DOI: 10.1002/sec

Prepared using secauth.cls



Fahim H. Abbasi et.al.An Exemplar-based learning approach for Detection and Classification of Malicious Network streams in Honeynets

Figure 5. Original model, with highlighted samples that will be removed from the model for testing the novelty detection algorithm

Figure 6. List of outliers found by the novelty detection algorithm

Figure 7. New Exemplar εnovel and Threshold τnovel pairs proposed by the algorithm. The highlighted samples/exemplars are the
samples from the same class that we initially removed from the original model

certain about the value of k, so we use 2 iterations using
k = 3 and 5 respectively. It can be observed here and also

in table ?? , that as the size of k increases, the accuracy
decreases as it is believed to add more false positives

Security Comm. Networks 2012; 00:1–15 c© 2012 John Wiley & Sons, Ltd. 11
DOI: 10.1002/sec
Prepared using secauth.cls



An Exemplar-based learning approach for Detection and Classification of Malicious Network streams in HoneynetsFahim H. Abbasi et.al.

Figure 8. A comparison of classification methodologies showing accuracy results for: (1) Fixed threshold (2) Optimum threshold using
step-wise thresholding (3) Nearest Neighbour (4) k-Nearest Neighbour and (5) for exemplar learning. Results are calculate at varying
number of exemplars for techniques 1-4. It can be seen here that exemplar learning results using T-NN outweigh results of other

techniques.

to the results, which eventually have a greater vote and
thus impact gravely on the accuracy of the classifier.
Finally, results of exemplar learning (Algorithm 1) have
been added to the graph. It can be seen in Figure 8 that
using Algorithm 1 results in 30 exemplars with a percentile
accuracy of approximately 90%, with some outliers. Next
we apply Algorithm 2 on the outliers which results in
approximately 80 exemplars with an overall 98% accuracy
result.

Comparison with instance selection Algorithm,
ENN

Instance selection algorithms can be classified into 3
main groups namely, edition algorithms, condensation
algorithms and hybrid algorithms [30]

Edition algorithms edit out noise instances as well as
close border class. e.g ENN [30],

Condensation algorithms aim to condense the selection
set from the training set, while retaining points close to the
class boundary. e.g. CNN, RNN, SNN. [30]

Hybrid algorithms aim to increase classification
accuracy by using a combination of approaches from
edition and condensation algorithms. e.g. instance-based
learning family of algorithms IB3 [30]. Our proposed
instance selection algorithm is a hybrid algorithm

of incremental type as it performs both edition and
condensation at a per class level to select the the most
appropriate instances for creating and extending the model.

Difference between ENN and our proposed
algorithm

ENN [30] is an edition algorithm which uses a
decremental search. ENN starts by considering the entire
selection set S as the training set i.e. S = TR and then
removes all such points/selections which have a negative
class neighbour majority discovered by k − nn.

Our proposed instance selection algorithm is a hybrid
instance selection algorithms of incremental search type,
which starts with an empty selection set i.e. S = []. After
that it creates an n× n similarity matrix of all points
in the training set (TR), then for each class it finds the
point with the shortest distance to all the other points
in that same class/category. This point is chosen to be
the initial instance or the exemplar for that class, and is
added to the list of selections. Next an optimal threshold is
calculated in a way to avoid any possible false positives
i.e. points/samples from other classes This threshold is
also added to the selection list in correspondence to its
exemplar or instance. The process is iterated for the
remainder points/prototypes in the class, till we have

12 Security Comm. Networks 2012; 00:1–15 c© 2012 John Wiley & Sons, Ltd.
DOI: 10.1002/sec

Prepared using secauth.cls



Fahim H. Abbasi et.al.An Exemplar-based learning approach for Detection and Classification of Malicious Network streams in Honeynets

Exemplars Accuracy @ Fixed
Threshold

Accuracy using
adaptive threshold

Accuracy using
Nearest Neighbour

Accuracy using k-
NN, k=3

Accuracy at k=5

10 0.452157337 0.544964664 0.571024735 0.109010601 0

20 0.576236749 0.640812721 0.721024735 0.417137809 0.1642226150

30 0.759805654 0.817226148 0.884628975 0.5422261480 0.3131625440

40 0.811627081 0.900676605 0.923233216 0.78524735 0.565282686

50 0.822666334 0.877459058 0.925088339 0.853533569 0.66934629

60 0.835433643 0.898047689 0.955778444 0.869257951 0.752385159

70 0.83998132 0.903421871 0.959452297 0.898144876 0.792667845

80 0.854127104 0.904411873 0.963250883 0.926855124 0.856713781

90 0.8854324 0.907568 0.967844523 0.944169611 0.878091873

Table III. Comparison of algorithms using incremental number of exemplars

enough instances/exemplars and thresholds to classify
the training set with maximum accuracy and minimum
exemplars. Compared to ENN this method can guarantee
a comparatively small number of exemplars/instances that
are required for classification, as shown in table ??.

Differences with ENN can be highlighted as follows:

1. Starts with S = []
2. Does not use kNN
3. Uses a similarity matrix
4. Computation and instance selection is done on a per

class basis
5. Selects fewer exemplars

Experiment
We conducted an experiment to empirically compare the

performance of ENN with our proposed model selection
algorithm:

1. Created a training set (TR) comprising of 334
samples, selected from the dataset using the criteria
of 10 or less available instances per class.

2. Implement ENN on this training set TR to select
instances/exemplars.

3. Implement our proposed Model Selection
Algorithm on the training set TR to select
instances/exemplars.

4. Compared the results.

Results
1. Out of a total of 334 samples, ENN was able to

reduce the TR by 4.2%, resulting in a total of 320
instances or a selection set comprising of approx
95% of the TR.

2. The exemplar selection algorithm selected 36
instances/exemplars out of the 334, thus reducing

Algorithm Exemplars/Instances
Selected

% reduction in TR

ENN 320 4.2
Algorithm 1 36 88.75

Table IV. Comparison with ENN

the TR to be approximately 89% with a selection
set comprising of only about 11% of the TR. With
this model, the classifier was able to get an overall
accuracy of approx 90% on a reasonable test set.

11. CONCLUSIONS AND FUTURE
WORK

We have demonstrated the use of machine learning algo-
rithms, especially exemplar-based learning to determin-
istically and automatically create a model comprising of
exemplars and threshold pairs. We have also demonstrated
the effectiveness of novelty detection to detect novel sam-
ples and classify them to increase the overall accuracy of
the classifier.

In the future we would like to apply this methodology
to classify system-wide events and behavior profiles of
binary malware and investigate other problems where this
methodology might work.

Security Comm. Networks 2012; 00:1–15 c© 2012 John Wiley & Sons, Ltd. 13
DOI: 10.1002/sec
Prepared using secauth.cls



An Exemplar-based learning approach for Detection and Classification of Malicious Network streams in HoneynetsFahim H. Abbasi et.al.

ACKNOWLEDGEMENTS

We would like to thank Tilmann Werner for contributing
his stream dataset for the evaluation of our IDS. Fahim
ul Huda Abbasi is supported by the Pakistani Higher
Education Commission (HEC).

REFERENCES

1. Symantec. Symantec internet security threat
report 2011 trends 2011. URL http:
//www.symantec.com/content/en/us/
enterprise/other_resources/b-istr_
main_report_2011_21239364.en-us.
pdf.

2. Phoha V. Internet security dictionary, vol. 1.
Springer-Verlag New York Inc, 2002.

3. Scarfone K, Mell P. Guide to intrusion detection and
prevention systems (idps). NIST Special Publication
2007; 800(2007):94.

4. Ptacek T. Insertion, evasion, and denial of service:
Eluding network intrusion detection. Technical
Report, DTIC Document 1998.

5. Cilibrasi R, Vitányi P. Clustering by compression.
Information Theory, IEEE Transactions on 2005;
51(4):1523–1545.

6. Lee W, Stolfo S, Mok K. A data mining framework
for building intrusion detection models. Security
and Privacy, 1999. Proceedings of the 1999 IEEE
Symposium on, 1999; 120 –132, doi:10.1109/
SECPRI.1999.766909.

7. Sung A, Mukkamala S. Identifying important
features for intrusion detection using support vector
machines and neural networks. Applications and the
Internet, 2003. Proceedings. 2003 Symposium on,
2003; 209 – 216, doi:10.1109/SAINT.2003.1183050.

8. Kruegel C, Toth T. Using decision trees to improve
signature-based intrusion detection. Recent Advances
in Intrusion Detection, Lecture Notes in Computer
Science, vol. 2820, Vigna G, Kruegel C, Jonsson
E (eds.). Springer Berlin Heidelberg, 2003;
173–191, doi:10.1007/978-3-540-45248-5 10.
URL http://dx.doi.org/10.1007/
978-3-540-45248-5_10.

9. Chebrolu S, Abraham A, Thomas JP. Feature
deduction and ensemble design of intrusion detection
systems. Computers & Security 2005; 24(4):295 –
307, doi:10.1016/j.cose.2004.09.008. URL http:
//www.sciencedirect.com/science/
article/pii/S016740480400238X.

10. Liu Z, Florez G, Bridges S. A comparison of input
representations in neural networks: a case study in
intrusion detection. Neural Networks, 2002. IJCNN
’02. Proceedings of the 2002 International Joint
Conference on, vol. 2, 2002; 1708 –1713, doi:10.
1109/IJCNN.2002.1007775.

11. Chen WH, Hsu SH, Shen HP. Application of svm and
ann for intrusion detection. Comput. Oper. Res. Oct
2005; 32(10):2617–2634, doi:10.1016/j.cor.2004.03.
019. URL http://dx.doi.org/10.1016/j.
cor.2004.03.019.

12. Liao Y, Vemuri V. Use of k-nearest neighbor
classifier for intrusion detection. Computers
& Security 2002; 21(5):439 – 448, doi:
10.1016/S0167-4048(02)00514-X. URL http:
//www.sciencedirect.com/science/
article/pii/S016740480200514X.

13. Wang W, Guan X, Zhang X, Yang L. Profiling
program behavior for anomaly intrusion
detection based on the transition and frequency
property of computer audit data. Computers
& Security 2006; 25(7):539 – 550, doi:
10.1016/j.cose.2006.05.005. URL http:
//www.sciencedirect.com/science/
article/pii/S0167404806000903.

14. Soule A, Salamatian K, Taft N. Combining filtering
and statistical methods for anomaly detection.
Proceedings of the 5th ACM SIGCOMM conference
on Internet Measurement, IMC ’05, USENIX
Association: Berkeley, CA, USA, 2005; 31–31.
URL http://dl.acm.org/citation.cfm?
id=1251086.1251117.

15. Portnoy L, Eskin E, Stolfo S. Intrusion detection
with unlabeled data using clustering. In Proceedings
of ACM CSS Workshop on Data Mining Applied to
Security (DMSA-2001, 2001; 5–8.

16. Zhang J, Zulkernine M, Haque A. Random-forests-
based network intrusion detection systems. Systems,
Man, and Cybernetics, Part C: Applications and
Reviews, IEEE Transactions on sept 2008; 38(5):649
–659, doi:10.1109/TSMCC.2008.923876.

17. Lakhina A, Crovella M, Diot C. Mining anoma-
lies using traffic feature distributions. Proceed-
ings of the 2005 conference on Applications, tech-
nologies, architectures, and protocols for com-
puter communications, SIGCOMM ’05, ACM:
New York, NY, USA, 2005; 217–228, doi:10.
1145/1080091.1080118. URL http://doi.acm.
org/10.1145/1080091.1080118.

18. Feinstein L, Schnackenberg D, Balupari R, Kindred
D. Statistical approaches to ddos attack detection
and response. DARPA Information Survivability
Conference and Exposition, 2003. Proceedings,
vol. 1, 2003; 303 – 314 vol.1, doi:10.1109/DISCEX.
2003.1194894.

19. Wehner S. Analyzing worms and network traffic
using compression. Journal of Computer Security
2007; 15(3):303–320.

20. Kulkarni A, Bush S. Active network management
and kolmogorov complexity. inproceedings of IEEE
OpenArch, 2001; 27–28.

21. Evans S, Barnett B. Network security through
conservation of complexity. MILCOM 2002., vol. 2,

14 Security Comm. Networks 2012; 00:1–15 c© 2012 John Wiley & Sons, Ltd.
DOI: 10.1002/sec

Prepared using secauth.cls

http://www.symantec.com/content/en/us/enterprise/other_resources/b-istr_main_report_2011_21239364.en-us.pdf
http://www.symantec.com/content/en/us/enterprise/other_resources/b-istr_main_report_2011_21239364.en-us.pdf
http://www.symantec.com/content/en/us/enterprise/other_resources/b-istr_main_report_2011_21239364.en-us.pdf
http://www.symantec.com/content/en/us/enterprise/other_resources/b-istr_main_report_2011_21239364.en-us.pdf
http://www.symantec.com/content/en/us/enterprise/other_resources/b-istr_main_report_2011_21239364.en-us.pdf
http://dx.doi.org/10.1007/978-3-540-45248-5_10
http://dx.doi.org/10.1007/978-3-540-45248-5_10
http://www.sciencedirect.com/science/article/pii/S016740480400238X
http://www.sciencedirect.com/science/article/pii/S016740480400238X
http://www.sciencedirect.com/science/article/pii/S016740480400238X
http://dx.doi.org/10.1016/j.cor.2004.03.019
http://dx.doi.org/10.1016/j.cor.2004.03.019
http://www.sciencedirect.com/science/article/pii/S016740480200514X
http://www.sciencedirect.com/science/article/pii/S016740480200514X
http://www.sciencedirect.com/science/article/pii/S016740480200514X
http://www.sciencedirect.com/science/article/pii/S0167404806000903
http://www.sciencedirect.com/science/article/pii/S0167404806000903
http://www.sciencedirect.com/science/article/pii/S0167404806000903
http://dl.acm.org/citation.cfm?id=1251086.1251117
http://dl.acm.org/citation.cfm?id=1251086.1251117
http://doi.acm.org/10.1145/1080091.1080118
http://doi.acm.org/10.1145/1080091.1080118


Fahim H. Abbasi et.al.An Exemplar-based learning approach for Detection and Classification of Malicious Network streams in Honeynets

IEEE, 2002; 1133–1138.
22. Kulkarni A, Bush S. Detecting distributed denial-of-

service attacks using kolmogorov complexity met-
rics. Journal of Network and Systems Management
2006; 14(1):69–80.

23. Eiland E, Liebrock L. An application of information
theory to intrusion detection. Information Assurance,
2006. IWIA 2006. Fourth IEEE International Work-
shop on, 2006; 16 pp. 134, doi:10.1109/IWIA.2006.
3.

24. Abbasi F, Harris R. Experiences with a generation
iii virtual honeynet. Telecommunication Networks
and Applications Conference (ATNAC), 2009 Aus-
tralasian, IEEE; 1–6.

25. Cohen W, Ravikumar P, Fienberg S. A comparison
of string distance metrics for name-matching tasks.
Proceedings of the IJCAI-2003 Workshop on Infor-
mation Integration on the Web (IIWeb-03), Citeseer,
2003; 73–78.

26. Tridgell A. Efficient algorithms for sorting and
synchronization. Doktorarbeit, Australian National
University 1999; .

27. Abbasi F, Harris R, Morretti G, Haider A, Anwar N.
Classification of malicious network streams in hon-
eynets - accepted for publication. Global Telecommu-
nications Conference, 2012. GLOBECOM ’12. IEEE,
vol. 12, 2012; 6 pp. 35, doi:10.1109/GLOCOM.2012.
1578391.

28. McHugh J. Testing intrusion detection systems:
a critique of the 1998 and 1999 darpa intrusion
detection system evaluations as performed by lincoln
laboratory. ACM Trans. Inf. Syst. Secur. Nov 2000;
3(4):262–294, doi:10.1145/382912.382923. URL
http://doi.acm.org/10.1145/382912.
382923.

29. Werner T, Fuchs C, Gerhards-Padilla E, Martini P.
Nebula-generating syntactical network intrusion sig-
natures. Malicious and Unwanted Software (MAL-
WARE), 2009 4th International Conference on, IEEE,
2009; 31–38.

30. Garcia S, Derrac J, Cano J, Herrera F. Proto-
type selection for nearest neighbor classification:
Taxonomy and empirical study. Pattern Analysis
and Machine Intelligence, IEEE Transactions on
march 2012; 34(3):417 –435, doi:10.1109/TPAMI.
2011.142.

Security Comm. Networks 2012; 00:1–15 c© 2012 John Wiley & Sons, Ltd. 15
DOI: 10.1002/sec
Prepared using secauth.cls

http://doi.acm.org/10.1145/382912.382923
http://doi.acm.org/10.1145/382912.382923

	1 Introduction
	2 Organization
	3 Related Work
	4 Machine learning for Intrusion Detection
	5 Similarity Metrics
	6 Datasets
	7 Exemplar Learning for Intrusion Detection
	8 Methodology
	8.1 Model Creation using exemplar-based learning
	8.2 Lifelong Learning: Detecting and Adding Novel Input Classes

	9 Validation
	9.1 Validation of the Exemplar Selection Algorithm
	9.2 Validation of the Novelty Detection Algorithm

	10 Comparative Results
	11 Conclusions and Future work

