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Abstract. We propose a Parallel Class Expression Learning algorithm
that is inspired by the OWLClass Expression Learner (OCEL) and its ex-
tension – Class Expression Learning for Ontology Engineering (CELOE)
– proposed by Lehmann et al. in the DL-Learner framework. Our algo-
rithm separates the computation of partial definitions from the aggrega-
tion of those solutions to an overall complete definition, which lends itself
to parallelisation. Our algorithm is implemented based on the DL-Learner
infrastructure and evaluated using a selection of datasets that have been
used in other ILP systems. It is shown that the proposed algorithm is suit-
able for learning problems that can only be solved by complex (long) defi-
nitions. Our approach is part of an ontology-based abnormality detection
framework that is developed to be used in smart homes.

Keywords: description logic learning, class expression learning, parcel,
parallel learning, abnormal behaviour detection.

1 Introduction

Description logic (DL) is a popular formalism used in knowledge representation.
Amongst its strengths are the availability of a formal semantics, the standardisa-
tion of description-logic-based languages by theW3C (RDFS and several versions
and flavours of OWL [1]), and the availability of robust tools to edit and reason
about ontologies.

The primary problem that motivates our research is the classification of nor-
mal and abnormal activities in a smart home environment, where elderly people
are monitored by a system that can alert medical professionals if abnormal be-
haviour is detected [2]. It is important in this scenario that we do not miss any
abnormal behaviours, in particular if these behaviours potentially pose a threat
to the person living in the smart home. In technical terms, this means that we
aim at avoiding false positives in the class of normal behaviours.

Using a symbolic (logic-based) approach in this context has the advantage
that systems can be designed that are inherently more trustworthy than sub-
symbolic machine learning approaches, as system decisions are traceable through
the proofs associated with classifications.

A common problem in symbolic AI is to find the “right” set of rules. Here, by
rules we mean the expressions that define concepts such as normal and abnormal
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behaviour. It takes a significant effort to create and maintain such a set of rules,
and comprehensive validation against real world data is needed to assess its
accuracy. An alternative approach is to learn the rules directly from sample
datasets. This has several advantages: if it can be demonstrated by means of a
formal proof that the learning algorithm produces expected rules and all available
data have been fed into the learning algorithm, then validation is no longer
necessary. Also, if new training data becomes available, the algorithm can be
easily reapplied and the new definitions can be created. In other words, the
system can easily be re-calibrated as needed.

However, this implies that we need to apply the learning algorithm often,
and on large datasets. Therefore, the scalability of the algorithm becomes a
major concern. Benchmark tests performed by Hellmann [3] indicate that the
DL-Learner [4] is a suitable starting point for the development of an expres-
sive and scalable DL learning algorithm. Our experiments with the use cases
described in [2] show that CELOE and its ancestor – OCEL – are the most suit-
able algorithms for solving this problem amongst the algorithms implemented
in DL-Learner. These algorithms generate expressions of increasing complexity
starting with explicitly defined classes in the ontology, and assess the accuracy
of these expressions against a training set consisting of positive and negative
examples. If an expression with a sufficiently high accuracy score is found, the
algorithm terminates and the expression is returned as the result of the compu-
tation.

Unfortunately, our experiments suggest that these algorithms do not have the
level of scalability necessary to be used in the smart home application domain,
particularly for smart home datasets generated from the uses cases in [2]. An
analysis of these algorithms reveals that the accuracy measure used to direct
the generation and evaluation of descriptions is a combination of correctness (no
negative examples are covered by the computed expression) and completeness
(all positive examples are covered). Motivated by the need for a higher accu-
racy in learning normal behaviour, we propose a DL learning algorithm that
separates this process into two steps: first the generation of correct rules (i.e.
they do not cover any negative examples) but not necessarily cover all positive
examples, and then the aggregation of those rules into a (sufficiently) complete
solution. In addition, there is no need to serialise these two steps: they can be
performed concurrently. In particular, multiple branches within the tree of possi-
ble descriptions can be traversed concurrently by multiple workers to find partial
results, while a central reducer aggregates partial results to the overall solution
until all positive examples are covered. The reducer also has the responsibility of
removing redundant definitions covering overlapping sets of positive examples.
We discuss several strategies to do this in section 3.

This approach follows the general ideas of the map-reduce architecture [5] and
therefore lends itself to parallelisation using either multiple threads that can take
advantage of multi-core processors, or may be developed for cloud computing
platforms such as Amazon EC2 in the future. It also has the advantage that
the resulting system shows anytime characteristics [6], which means that: i) it
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can return a correct solution even if it is interrupted before a complete solution
is computed, and ii) the solution is expected to improve (i.e., become more
complete) with increasing runtime of the system.

2 Related Work

Description logic learning has its roots in inductive logic programming (ILP)
[7,8,9]. In ILP, sets of positive and negative facts and some background knowl-
edge are given, and an ILP algorithm is used to compute a logic program that
describes all the positive and none of the negative examples. There are two funda-
mentally different strategies to compute this program: top-down and bottom-up
[7]. Combined strategies have also been investigated by different authors [10].

In description logic learning we are interested to find concepts that describe
all given positive examples, but do not describe any of the negative examples.
Our work is directly based on the DL-Learner framework [4], particularly the
CELOE and OCEL algorithms. Theses algorithms use a top-down strategy to
learn concepts. Starting with the root of the concept class hierarchy, concepts are
refined by means of specialisation until a suitable concept is found. The descrip-
tion learning space expansion is mainly directed by the accuracy (a combination
of correctness and completeness) of concepts with respect to the positive and
negative examples, the complexity of the expressions, the accuracy gained in
each expansion step, and some other factors. Note that the refinement opera-
tor used by these algorithms also has some implicit support for the bottom-up
strategy as it will generate complex expressions using disjunctions.

Lisi [11] has proposed an alternative top-down approach based on the hy-
brid AL-log language which combines ALC description logic and Datalog for
knowledge representation. This makes it possible to learn Datalog rules on top
of ontologies.

Several other approaches to concept learning have been proposed. This in-
cludes LCSLearn [12], an early bottom-up approach that creates concepts by
joining most specific concepts created for individuals (positive examples) us-
ing disjunction. This is a very simplistic approach that creates large concept
definitions that are not truly intentional in a sense that those definitions are
only enumerations of the sets of individuals they define. YinYang [13] is a hy-
brid learner that uses a combination of bottom-up (starting from most specific
concepts) generalisation and top-down specialisation strategies.

Our contribution is similar to DL-FOIL [14]: we separate the computation
of partial correct concepts from the computation of a complete concept. There
are two main differences however: (i) the algorithm proposed by [14] is serial by
nature as the computation of the partial correct concepts is executed in an inner
loop, while we use a parallel computation model, and (ii) we propose an extra
reduction step to compute an optimal set of partial concepts to be used in order
to compute the overall (complete) result. The above differences aim to bring some
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benefits: i) improved scalability of the algorithm due to parallelisation, ii) the any
time characteristic of the algorithm, which means that the algorithm can produce
correct (but not necessarily complete) solutions if interrupted prematurely, and
iii) the flexibility gained through a separate reduction step that allows us to
tradeoff completeness, number of partial definitions and the (average) lengths of
the partial definitions.

3 Algorithm

Our algorithm is inspired by the popular map-reduce framework [5] that is widely
used to process large amounts of data. Here, input data to be processed is divided
into several pieces (sub-problems) and processed by multiple workers (map step)
in parallel and then the intermediate results are aggregated (reduce step) into a
final result.

In the context of our work, the problem of finding a correct and complete
concept definition is mapped to workers responsible for refining and evaluating
candidate concepts. The actual refinement operator used for this is the refine-
ment operator proposed in [15], which is one of the refinement operators currently
supported by the DL-Learner framework. However, the operator is customised
by disabling the generation of disjunctions as the generalisation is done in a
separate reducer step. In addition, its numerical data properties refinement has
also been improved by using a better strategy for identifying the domain of the
refinement.

The reduce step consists of combining the partial definitions until a complete
(or at least sufficiently good) coverage of the positive examples is obtained.
Often, this yields a set of partial definitions that is redundant in the sense that
multiple definitions cover the same positive examples, and that a proper subset
of definitions exists that is also complete with respect to the positive examples.
Here, we propose the use of a set coverage algorithm [16] to find such a subset.
This allows us to tailor the main algorithm, e.g. in order to compute smaller sets
of concepts, or sets of concepts with a shorter average expression length (lower
complexity).

An informal illustration of the algorithm is given in Figure 1. It shows the
interaction between the two parts of the algorithm: the reducer that aggregates
and compacts the partial definitions, and the worker(s) producing the partial
definitions. The coordination is done using an agenda. The agenda contains the
concepts to be refined, and an ordering of its nodes generated by an expansion
heuristic. This means that there is always a top element representing the most
promising concept for refinements based on the heuristic used. This element is
assigned to workers for processing. The current search heuristic is based on the
heuristic used in [17] that associates concepts with a score mainly based on their
accuracy (combination of correctness and completeness). In addition, a level of
penalty on complexity of the concepts (short expressions are preferred), bonus
on accuracy gained, etc. are also applied. In our learning heuristic, we also pe-
nalise long descriptions to avoid infinite deep searches because the refinement
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operator used in our learner is infinite. Instead, a description’s score is mainly
based on the correctness. Note that our learning heuristic can help to avoid in-
finite deep searches, but this does not avoid infinite loops in the whole learning
process because the refinement operator itself is infinite. Therefore, the termina-
tion is controlled by the accuracy of the definitions generated and the timeout
mechanism.

no 
yes 

add description 

no yes 

add partial definition 
yes 

no 

poll 

Fig. 1. Reducer-Workers interaction

For a more formal definition, we introduce some notations first. A learning
problem is a structure (K,E+, E−) that consists of a knowledge base K, a set of
positive examples E+ and a set of negative examples E−. We say that a concept
C covers an example e iff K � C(e). A concept C is called correct if it does not
cover any negative example and weak if it covers none of the positive examples.
We also refer to correct concepts as definitions. A definition is called a partial
definition if it covers at least one and less than all positive examples, and a
complete definition if it covers all positive examples.

There are some useful metrics to measure the amounts of correctness and
completeness of a concept C. Let R(C) be the set of individuals covered by C.
Then un(C) = E− \R(C) is the set of negative examples not covered by C, and
cp(C) = E+ ∩ R(C) the set of covered positive examples. We can then define
correctness, completeness and accuracy using predictive accuracy methodology
as follows:

correctness(C) =
|un(C)|
|E−|

completeness(C) =
|cp(C)|
|E+|
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accuracy(C) =
|cp(C)|+ |un(C)|

|E+ ∪ E−|

Our algorithm can now be defined in two parts. The computational heavy part
is done by the multiple workers: this is the refinement and the evaluation of
concepts. In particular, the evaluation of (complex) concepts (i.e., the check
whether a given example is defined by a concept) requires an ontology reasoner.
By default, Pellet [18] is used for this purpose.

The reducer creates a worker pool, which manages a number of workers, and
assigns new concepts for refinements and evaluations to worker pool until the
completeness of the combined partial definitions is sufficient. Then the reducer
tries to reduce the number of partial definitions in order to remove redundancies
using a reduction function. While the reducer computes sets of concepts, these
sets can be easily aggregated into a single concept using disjunction.

Algorithm 1 (Reducer Algorithm). For a given learning problem (K,E+,
E−), a noise value ε ∈ [0, 1] and a pool of workers, compute a set of partial
correct solutions {Ci} such that completeness(�i(Ci)) ≥ 1− ε.

1: agenda := {�}
2: solutions := {}
3: uncovered positive examples := E+

4: create a worker pool
5: while |uncovered positive examples | > |E+| × ε do
6: wait for new partial definition(s) produced by workers
7: reduce(solutions)
8: return solutions

The worker algorithm refines a concept and evaluates the results of the refine-
ment. It will first check whether concepts are weak. If this is the case the concept
can be safely removed from the computation as no partial definition can be com-
puted through specialisation. If a concept is a partial definition (i.e., correct and
not weak), it is added to the (shared) partial definitions set. If a concept is not
weak, but also not correct (i.e., if it covers some positive and some negative
examples), it is added back to the agenda and therefore scheduled for further
refinement. Note that the concepts that have been refined can be scheduled for
further refinement. This is necessary as each refinement step only computes a
finite (and usually small) number of new concepts, usually constrained by a
complexity constraint. For example, a concept of a given size N could first be
refined to compute new concepts of a length N+1, and later it could be revisited
to compute more concepts of length N + 2, etc. This technique is used in the
original DL-Learner and discussed in detail in [17]. When implementing workers,
an additional redundancy check takes place to make sure that the same concept
computed from different branches in the search tree is not added twice to the
agenda.
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Algorithm 2 (Worker Algorithm). For a set of positive examples E+ and
a set of negative examples E−, refine a given concept C using a refinement
operator ρ, and evaluate the refinements.

1: refinements := ρ(C )
2: for all description ∈ refinements do
3: positive covered := positive examples covered by refinement
4: if description is not weak then
5: if description is correct then
6: add description to solutions
7: uncovered positive examples := uncovered positive examples \ posi-

tive covered
8: else
9: add description to agenda

For the actual reduction step, we have investigated three simple algorithms:

– GMPC (greedy minimise partial definition count)
– GMPL (greedy minimise partial definition length)
– GOLR (greedy online algorithm - first in first out)

As the names suggest, they are all greedy optimisation algorithms that are based
on sorting the partial definitions. Once the partial definitions are sorted, a new
solution set (called the reduction set) is created and solutions are added to this
set in descending order. A definition is added only if it covers at least one positive
example not yet covered by any other solution in the reduction set. Details are
given in algorithm 3.

We have used different sort criteria, resulting in the different algorithms. In
GMPC, we sort partial definitions according to the number of positive examples
they cover, preferring definitions that cover more positive examples. If two defi-
nitions cover the same number of positive examples, we use the lexicographical
order of the respective string representations as a tiebreaker. This is important
to make the results repeatable. Otherwise the order that is used when iterating
over definitions could depend on internal system hash codes which the applica-
tion does not control.

In GMPL, we sort definitions according to their expression lengths, preferring
definitions with a shorter length. If two definitions have the same expression
lengths, we again use the lexicographical order.

In GOLR, we use time stamps assigned to definitions when they are added to
the solutions, preferring definitions that have been added earlier. While the other
two heuristics have to be run in batch mode after a complete set of definitions
has been computed, this algorithms can be employed just in time, the reduction
can take place whenever a new definition is found and added. This algorithm
is therefore very space efficient compared to the other two. On the other hand,
how timestamps are assigned in an application may depend on thread scheduling.
This again cannot be controlled completely by the application, causing variations
in the results between runs.
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More formally, we define a generic reduction algorithm that is based on a sort
function as follows:

Algorithm 3 Generic greedy reduction algorithm based on sorting. For
a set of definitions D and a function cover : D → 2E

+

that associates partial
definitions with the sets of covered positive examples, compute a subset D′ ⊆ D
such that

⋃
d∈D cover(d) =

⋃
d∈D′ cover(d) = E+

1: D′ := ∅
2: positive covered := ∅
3: sort D
4: while D is not empty and positive covered ⊂ E+ do
5: d := poll(D)
6: if cover(d) � positive covered then
7: D′ := D′ ∪ d
8: positive covered := positive covered ∪ cover(d)
9: return D′

4 Validation

4.1 Methodology

We have implemented our algorithmusing Java. The package is called the ParCEL
(PARallel ClassExpressionLearning) and aminimal set of this package is available
at https://parcel-mu.googlecode.com/. The algorithm is also integrated into
the DL-Learner repository http://dl-learner.svn.sourceforge.net.

In the validation, we were not only interested in measuring the overall com-
putation time of the benchmark learning problems, but also in measuring how
quickly accuracy improved during the computation. We consider this to be im-
portant in scenarios where an application could intercept the learner once a
sufficiently complete solution has been computed. For this purpose, two differ-
ent sorts of experiments have been performed: i) a 10-fold cross validation to
measure the learning time and accuracy, ii) a training run on different levels of
parallelism to observe the accuracy improvement on the training set. The for-
mer follows the standard cross-validation methodology in statistics. In the later
experiment, we start a background watcher thread that frequently takes probes
from learner thread(s) and records them. This thread represents some overhead,
so the net computation times are in fact slightly less than the values given below.
We benchmarked our learner against the CELOE and OCEL algorithms.

In our experiments, we have used a number of datasets that have been used by
other authors in similar experiments [19,20] to benefit comparisons. All datasets
used in this paper, except the UCA1 which will be described later, can be found
in any DL-Learner release or in the DL-Learner repository. An overview of these
datasets is given in Tables 1 and 2. Note that DL-Learner is in the development
process. New revisions have been being issued very regularly and the learning
time and accuracy for the same dataset may change over the revisions. In our

https://parcel-mu.googlecode.com/
http://dl-learner.svn.sourceforge.net
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Table 1. Experiment datasets summary

Moral
simple

Forte Poker Carcino
genesis

Family
benchmark

UCA1

Classes 43 3 2 142 4 65
Classes assertions 4646 86 374 22,372 606 300
Object properties 0 3 6 4 4 4
Object property
assertions

0 251 1080 40,666 728 200

Data properties 0 0 0 15 0 11
Data property
assertions

0 0 0 11,185 0 200

Examples 102p/
100n

23p/
163n

4p/
151n

182p/
155n

- 73p/
77n

Table 2. Family benchmark datasets - Number of examples

Aunt Uncle Cousin Daughter Father Grandson Brother

Examples 41p/
41n

38p/
38n

71p/
71n

52p/
52n

60p/
60n

30p/
30n

43p/
30n

experiment, we have used DL-Learner version 1.0.1. In addition, we used the
default learning configuration for CELOE/OCEL and ParCEL for all datasets.

In our experiment, we also used an additional dataset – UCA1 – which is
extracted from the use case descriptions of the smart home domain we are pri-
marily interested in [2]. This use case describes an over-long shower scenario in a
smart home, in which the showering duration depends upon the season of year.
This dataset is supported by an underlying smart home ontology which contains
the basic concepts for describing the activities in smart homes and some context
information, particularly the temporal and spacial information. The scenario was
modelled using a Bayesian Network and then the network was used to generate
the simulation dataset. The actual dataset contains a set of showering activities,
their start times and durations.

For the experiments, we used a Linux server with a 8 x Intel Xeon E5440
@2.83GHz processor, 32GB memory and the Redhat 4.1.2 (Linux version 2.6.18)
operating system with a JRE 1.6.0 (64-bit) Java Virtual Machine (JVM). The
heap size of the JMV in our experiments is 5GB.

The length of definition reported is the length of the best description learnt
so far.

4.2 Result Summary

Table 3 shows a summary of the results. The reduction mechanism used here is
GMPC, i.e. we use a simple greedy algorithm to reduce the number of partial
definitions.
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Table 3. Experiment result summary (averages ± standard deviations of 10 folds)

problem time (s) accuracy (%) (avg. partial)∗

def. length
no. of
partial
def.

CELOE ParCEL CELOE ParCEL CELOE ParCEL ParCEL

Moral 0.148 ±
0.03

0.024 ±
0.012

100 ± 0 100 ± 0 3 ± 0 1.517 ±
0.053

2.1 ±
0.316

Forte 6.664 ±
3.524

0.064 ±
0.06

98 ±
4.216

100 ± 0 12 ±
1.054

9.167 ±
3.15

1.9 ±
0.738

Poker-straight 0.36 ±
0.709

0.274 ±
0.189

94.333 ±
13.152

93.238 ±
8.834

11.7 ±
0.675

10.9 ±
1.308

1.7 ±
0.675

UCA1 OOMem∗∗

@2259s
29.747 ±
5.768

91.238 ±
6.409

100 ± 0 9 ± 0 12.75 ±
0

4 ± 0

CarcinoGenesis int.∗∗∗

@2000s
int.∗∗∗

@2000s
54.618 ±
2.711

55.865 ±
9.516

4.8 ±
0.422

55.865 ±
9.516

72.7 ±
3.433

Aunt 34.129 ±
14.94

0.256 ±
0.151

96.25 ±
11.859

100 ± 0 19 ± 0 8.267 ±
0.492

3.1 ±
0.316

Brother 0.191 ±
0.157

0.026 ±
0.015

100 ± 0 100 ± 0 6 ± 0 5.5 ±
0.707

1 ± 0

Uncle 34.129 ±
14.94

0.293 ±
0.178

96.25 ±
11.859

98.75 ±
3.953

19 ±
14.94

8.4 ±
0.378

3 ± 0

Cousin 471.555 ±
284.734

0.544 ±
0.199

94.286 ±
6.564

100 ± 0 23.4 ±
2.591

8.5 ±
0

2 ±
0

Daughter 0.023 ±
0.019

0.027 ±
0.025

100 ± 0 100 ± 0 5 ± 0 5.25 ±
1.087

1.1 ±
0.316

Father 0.023 ±
0.104

0.031 ±
0.03

100 ± 0 100 ± 0 5 ± 0 5.5 ±
0.527

1 ± 0

Grandson 0.054 ±
0.059

0.075 ±
0.066

100 ± 0 100 ± 0 7 ± 0 7.4 ±
0.459

1.3 ±
0.483

Note: ∗: For ParCEL ∗∗: Out Of Memory
∗∗∗: Interrupted

In general, CELOE performed better on smaller datasets with simple def-
initions required like Daughter, Father, and Grandson in the Family dataset.
This can be attributed to the more complex runtime architecture of ParCEL
that requires additional overhead for thread creation and synchronisation. How-
ever, when either the data or the queries become more complex, the ParCEL
outperforms CELOE. This is apparent in the Family dataset: CELOE is much
better in answering simple queries that require less reasoning, while ParCEL
performs better on complex queries on derived relationships. There are two rea-
sons for this: (i) ParCEL obviously better utilises the multi-core processor(s) due
to its parallel architecture, and (ii) different ParCEL workers explore different
branches of the search tree at the same time, while CELOE may spend longer
time to explore branches that at the end do not yield results, (iii) ParCEL plays
a tradeoff between the readability of the learning result again the accuracy and
learning time using the combination of specialisation and generalisation.
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Most importantly for our application scenario, ParCEL outperformed CELOE
on the UCA1 dataset, both on learning time and accuracy. Although the length
of the definition produced by ParCEL is longer than CELOE, it is readability
and describes well our scenario. For examples, one of the learnt results for the
concept normal showering is the disjunction of the following partial definitions:

1. EXISTS activityHasDuration.(hasDurationValue >= 4.5 AND

hasDurationValue <= 15.5)

2. EXISTS activityHasDuration.(hasDurationValue >= 15.5 AND

hasDurationValue <= 19.5) AND EXISTS activityHasStarttime.Spring

3. EXISTS activityHasDuration.(hasDurationValue >= 15.5 AND

<= 19.5) AND EXISTS activityHasStarttime.Summer

4. EXISTS activityHasStarttime.Autumn AND ALL activityHasDuration.

(hasDurationValue >= 4.5 AND hasDurationValue <= 19.5

One of the most difficult learning problems in our experiment is the Carcino-
Genesis dataset. Learning results for this dataset reported in [14,20] show that
CELOE gives the best accuracy in comparison with other learners with a cer-
tain learning configuration. In our experiment, neither CELEO nor ParCEL
could find an accurate definition on the training dataset before they ran out of
memory. CELOE runs out of memory in around 2100 seconds and ParCEL can
run for approximately 15800 seconds with the same JVM heap size. The exper-
iment result shows that ParCEL outperformed CELOE on the training dataset
by 36%. However, the accuracy for the testing dataset is not significantly dif-
ferent: 54.618% ± 2.711% for CELOE and 55.597% ± 9.516% for ParCEL. The
above accuracy is obtained at 2000 seconds when CELOE is approaching the out
of memory exception. Although ParCEL can run for more than 15800 seconds,
we only let it run the same amount of time as CELOE since our experiments
demonstrate that the accuracy does not improve significantly for the longer runs.
Note that this result is generated by the default learning configuration and it
may be different for the refined learning configuration. For example, show that
the predictive accuracy can be improved by allowing a level of noise in training
dataset. However, this has not yet been studied in our research.

A paired t-test rejected the null hypothesis (that the running times came from
the same distribution) at the 5% confidence level, for both the running times
and accuracies in Table 3. However, while an F test showed that the accuracies
were normally distributed, this was not true for the running times, and so this
result should be treated with caution.

4.3 Performance Improvement Comparison

We have used a monitoring thread as described above to investigate the level
of approximation that the learners can achieve. This is shown in figure 2. The
slightly odd values on the x-axis are due to the fact that they were taken from
the timestamps when the monitoring thread returns data. CELOE computes a
solution of about 0.55 accuracy very quickly (the first probe already returns this
values), but then “stays flat”. On the other hand, the ParCEL almost reaches
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Fig. 2. Learning using the Carcino Genesis dataset

maximum accuracy, i.e., a level of completeness of more than 0.95. The figure
also shows the impact of the number of threads: adding more threads can speed
up the computation.

Figure 3 shows details for the UCA1 dataset. In this case, CELOE cannot
compute a very accurate result before it times out, whereas ParCEL succeeds.
Adding more threads can again speed up the computation significantly.

Fig. 3. Learning using the UCA1 dataset
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4.4 Definition Aggregation

Finally, we conducted an experiment to compare the three reduction algorithms
discussed earlier. Here we measured the length of descriptions and the number
of descriptions defined. To compare the description length, we use the method
defined above, i.e., we measure the lengths of the virtual disjunction we could cre-
ate from the set of partial definitions. Comparison between reduction strategies
is given in Table 4. The results shows that GMPC gives the shortest definition
in most of the experiments and thus the definitions are more readable. On the
other hand, GORL produces the longest definitions in all the experiments. How-
ever, GMPC requires all partial definitions to be kept until the learning finishes
while the GORL can perform the reduction on the fly when the learning is hap-
pening. This may give us a selection on the tradeoff between the readability of
the learnt definition and the memory used by the learner as well as the learning
time.

Table 4. Definition length comparison between algorithms and reduction strategies
(averages ± standard deviations of 10 folds)

CELOE GMPC GOLR GMPL

dataset def. length no. of
partial
def.

avg. par-
tial def.
length

no. of
partial
def.

avg. par-
tial def.
length

no. of
partial
def.

avg. par-
tial def.
length

Moral 3 ± 0 2.1 ±
0.316

1.517 ±
0.053

3.4 ±
0.966

2.15 ±
1.263

3 ± 0 1.667 ±
0

Forte 12 ±
1.054

1.9 ±
0.738

9.167 ±
3.15

2.3 ±
0.675

7.708 ±
0.429

2.3 ±
0.675

7.617 ±
0.209

Poker-straight 11.7 ±
0.675

1.7 ±
0.675

10.9 ±
1.308

2.7 ±
0.483

9.883 ±
1.457

2.7 ±
0.483

9.483 ±
0.976

UCA1 9 ± 0
@OOMem

4 ± 0 12.75 ±
0

9.7 ±
1.059

13.479 ±
0.217

5.5 ±
1.179

13.063 ±
0.466

Aunt 19 ±
0

3.1 ±
0.316

8.267 ±
0.492

8.9 ±
2.079

7.75 ±
0.289

8.3 ±
1.418

7.477 ±
0.308

Brother 6 ± 0 1 ± 0 5.2 ±
0.422

1 ± 0 5.6 ±
0.516

1 ± 0 5.1 ±
0.316

Uncle 19 ±
14.94

3 ±
0

8.4 ±
0.378

7.1 ±
1.287

7.917 ±
0.163

6.8 ±
1.135

7.746 ±
0.482

Cousin 23.4 ±
2.591

2 ± 0 8.5 ±
0

8.2 ±
4.158

8.5 ±
0.575

5.7 ±
1.252

8.095 ±
0.208

Daughter 5 ± 0 1.1 ±
0.316

5.25 ±
1.087

1.5 ±
0.527

7.55 ±
2.409

1.4 ±
0.843

5.333 ±
0.471

Father 5 ± 0 1 ± 0 5.5 ±
0.527

1 ± 0 5.2 ±
0.422

1 ± 0 5.3 ±
0.483

Grandson 7 ± 0 1.3 ±
0.483

7.4 ±
0.459

2.9 ±
0.568

7.525 ±
0.553

2.5 ±
0.707

7.2 ±
0.502
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5 Conclusion

Our approach to parallelising the class expression logic learning shows promising
results on the datasets used in the evaluation. By dividing the learning process
into two separate stages, one for generating correct but potentially incomplete
definitions and another one for aggregating the partial definition to a complete
(or nearly complete) solution, we were able to spread the task over several sub-
processes that can run in parallel. As a result, we are able to utilise multi-core
machines and potentially also cloud computing, which makes the task of descrip-
tion logic learning more scalable.

Since the aggregation of partial solutions is now not integrated in the refine-
ment procedure anymore but runs as a separate thread concurrently to it, we are
able to easily test different strategies for aggregating the partial definitions. The
ones that we have tested are greedy strategies which avoid exhaustive search for
an optimal aggregate and therefore scale more easily.

The main motivation for our research is the classification of normal and ab-
normal activities in a smart home environment, in which UCA1 is one of our
simulation datasets. With this dataset, DL-Learner gave the best solution with
91.2% accuracy before it ran out of memory (with 5GB heap space allocated
and 38 minutes run time). Describing this problem requires a description with
the minimal length around 42 to 73 and this may be one of the potential causes
that exploded DL-Learner memory. Generally, 91.2% accuracy is a good learning
result. However, in this application domain, any false positive or false negative
classifications may affect strongly on the inhabitant safety and thus an accurate
definition is preferred to a readable one. With the combination of specialisation
and generalisation and the parallelisation approach, we are preliminarily getting
success with the first datasets in our research. In addition, completeness of the
partial definitions may provide us an interesting dimension in our classification:
belief of the classification.

In most of the datasets in our experiment, our learner algorithm gives a
promising result both in accuracy and learning time. The only dataset that our
learner could not give a better result is CarcinoGenesis. It shows that our learn-
ing currently does not deal well with noise data and this is a future development
for our learner so that it can deal with various learning problems.
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20. Železný, F., Srinivasan, A., Page, D.L.: Lattice-Search Runtime Distributions May
Be Heavy-Tailed. In: Matwin, S., Sammut, C. (eds.) ILP 2002. LNCS (LNAI),
vol. 2583, pp. 333–345. Springer, Heidelberg (2003)


	An Approachto Parallel Class Expression Learning
	Introduction
	Related Work
	Algorithm
	Validation
	Methodology
	Result Summary
	Performance Improvement Comparison
	Definition Aggregation

	Conclusion
	References




