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Abstract—Robot mapping, both indoor and outdoor, is typ-
ically based on sets of 3D measurements of the environment
(point clouds) coming from either laser range finders or RGB-
D cameras. While both of these sensors provide accurate data
about objects within a relatively wide range, they fail to pro-
vide directly informative readings about transparent or highly
reflective objects, which are commonly found in cluttered indoor
environments such as homes and offices.

This paper describes a method of recognising that there are
transparent objects within a scene and reconstructing them from
the limited information that is available. Our method is based
on reconstructing geometric properties of the missing objects
using inference from the shadows that are left. This provides an
estimation of the volume of missing objects.

We demonstrate the methods first on regular measurable
object to compare our estimation with measured data and present
the reconstruction of two exemplary transparent objects.

I. I NTRODUCTION

The aim of interacting with mobile robots in human envi-
ronments (whether the aim is household assistance or service
robotics within an office environment) necessitates the robot
being able to reliably sense and represent its environment.
Research over the past few years has resulted in the reliable
generation of consistent 3D maps of human environments
based on data from 3D laser scanners and RGB-D cameras,
which produce point cloud data. Depending on the sensor,
additional information such as pixel colour or remission values
may be attached to each measurement point.

Many of the problems of dealing with such data, such
as simultaneous localisation and mapping (SLAM) [2, 5]
and ‘closing the loop’ [7, 12], are generally well-researched.
However, there are limitations on the environmental materials
that the sensors can detect. Laser range finders and RGB-D
cameras have problems measuring distances to both transpar-
ent and reflective surfaces: laser beams get refracted, resulting
in faulty measurements at some locations and the same holds
true for the infrared pattern projected by RGB-D cameras.

An example of this ‘blindness’ is shown in Figure 1. On
the left is a 2D image of the scene, while on the right is a
2D projection of the corresponding 3D point cloud. There is
a cafetiere (or French Press) for making coffee on the table
(circled in the point cloud data), which is made of pyrex and
thus hard to see in both images. In particular, in the point
cloud data, only the handle can be seen. The 2D image also
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Fig. 1: Example of a scene with a transparent object.Left:
a photograph of the scene, andright: a 2D projection of the
corresponding 3D point cloud with points coloured by depth.
Note that the transparent French press (circled in black) only
provides point cloud information for the handle.

shows that transparent objects are hard to see using normal
camera images, except for reflections at certain angles.

However, note that there is some indication of the presence
of the cafetiere in the point cloud in that the ‘shadow’ of
the object is present. It is this shadow that provides the
information that we can use to reconstruct the object, as we
will demonstrate in this paper.

A. Related Work

There have been three principal approaches to the detection
and recognition of transparent objects in the literature; for a
review of methods, see [4]. In the first approach reflections
that appear from certain angles are used to infer information
about the pose of transparent objects [8], while in the second
physical properties of the materials are used [4, 13].

However, the techniques that bear most similarity to our
own are in the third class. These are based on either time
of flight (ToF) cameras (e.g., [6]) or the Microsoft Kinect, a
common RGB-D camera, such as [10] and very recently [9],
and the sensor that is used for the experiments in this paper.

In [6] the fact that in ToF intensity images any transparent
objects appear darker than their background is used to detect
potential transparent objects. The same scene is then viewed
from a different viewpoint, and the assumption of planarityis
used to reconstruct them via triangulation.
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Fig. 2: Result of scene analysis for the data shown in Figure 1:
(a) shows the detected clusters and their concave hulls pro-
jected onto the two detected planes, clusters are distinguished
by colour; (b) shows the detected clusters (blue) and the
projection of the corresponding concave hulls, red indicates
that the concave hull point does not have any points from the
planes in its neighbourhood, while for the green points one
of the points in cyan lies in their neighbourhood; (c) shows
the results of analysis of the detected holes: green indicates
that this part of the hole can be explained by a measurement
in front of it (blue points), while red points are holes that
are unexplained by the data, and therefore potentially from
reflective or transparent objects.

By way of contrast, machine learning methods can be used,
as in Lysenkov et al. [9, 10], where single frames taken by a
Kinect sensor are used to first detect positions for transparent
objects and then apply edge fitting to identify the object and
its pose from a set of trained objects.

Both [6] and [9, 10] attempt to grasp identified transparent
objects, providing feedback on correctness of their approaches.

Our approach is also based on data from a Kinect sensor,
but we do not require a learning process. Instead, we use a first
frame to detect transparent objects, and then, similar to [6],
acquire additional frames from different viewpoints. However,
we only assume that there is a planar surface underneath or
behind the transparent object (i.e., the floor or wall, or a table).

II. D ETECTING TRANSPARENTOBJECTS

Our detection of transparent objects requires the assumption
that at least one planar surface is present in the observed scene
and that the transparent object is placed either on top or in
front of that planar surface. This means that the ‘shadow’ of
the object lies on one or more planes. This is less restrictive
than comparable approaches (i.e. [6, 9, 10]) which assume that
the transparent object be placed on top of a planar surface.

In accordance with our assumption, the first step in the
detection is a segmentation of planar surfaces within the
scene, which proceeds in an iterative RANSAC fashion and
terminates if either the number of points that lie within the
plane is below a given threshold or the number of remaining
scene points to be analysed is sufficiently small.

Planes are represented as a point in the plane (d) and the
normal vectorn so that every pointpp in the plane satisfies:

pp · n − d = 0 (1)

All remaining points are clustered based on the Euclidean
distance between each point and its neighbours, reasoning
that each of these clusters belongs to one object or to nearby
multiple objects if they are positioned close together.

While transparent objects do not usually provide any points
on their surface, reflective objects often feature correct mea-
surements for portions of their surface. To determine if a
cluster reflects the actual size of the surface of the object,
we compare the cluster with the corresponding shadow on
the planar surface(s). This is done by computing the concave
hull of the object clusters and projecting these points ontothe
planar surface of the detected planes. To project a pointh

belonging to the concave hull, we write the equation for each
point pl on the line between the sensor and the hull point as:

pl = a (h − s0) + h (2)

wheres0 is the sensor location anda is a scalar value.
Obviously, the intersection of the plane defined in (1) and

the line in (2) corresponds to the projection of the pointh on
the plane observed from positions0. The intersection can be
computed by solving:

a =
−h · n + d

(h − s0) · n
(3)

For each of the projected points a radius search is performed
on the inliers of the planar surface that they are projected onto.
In the case of regular objects, where the shadow correspondsto
the measured cluster points, the distance between a projected
point of the cluster’s concave hull and the enclosing planar
inliers is quite small, thus the radius search will return one
(or more) points in the neighbourhood of the projected point.
Clusters that contain only partial measurements of the surface
of the object, observable from the current viewpoint, will
feature a substantial portion of projected points where the
radius search will not return any planar inlier; an illustration
is provided in Figure 3. The result of this is that the fraction
of projected points that do not have a corresponding point on
the plane to the total number of projected points gives a good
estimate whether a cluster resembles the object it belongs to.

With the methods discussed so far we are able to determine
if there is an object present in the scene that was only
partially measured (which is therefore potentially reflective),
but not whether any transparent objects are present, since they
typically do not yield any cluster of measurement points.

To detect those we now consider the ‘holes’ in our seg-
mented planar surfaces, where by ‘hole’ we mean regions
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Fig. 3: Projection of cluster hulls on the detected plane: (a)
photograph of the scene; (b) cutout of the corresponding point
cloud, coloured by depth from sensor; (c) planar inliers and
projected cluster hull points: red indicates that no point was
returned from the radius search; (d) 2D grid representationof
the planar surface, which is used to identify the ‘holes’ that
signify transparent objects.

within the boundaries of the convex hull of the planar surface
that have an absence of measurement points and are either
surrounded by measurement points or share a (partial) border
with another plane. These holes can easily be determined if we
transform the planar surface into a 2D grid and start a simple
region growing process from grid cells that do not contain any
point data. If multiple empty grid cells are connected to each
other, this region becomes a hole in the previously described
sense. The advantage of the grid representation is not only
that it becomes fast and easy to detect the hole regions, but by
choosing an appropriate grid cell size we gain some robustness
towards sensor noise, which is needed if we want to apply our
approach to RGB-D data from Kinect-like cameras.

An example for the 2D grid is shown in Figure 3d: Regularly
filled grid cells are coloured white and empty cells either in
blue (detected hole) or gray (outside of the planar surface).
Black points indicate the convex plane hull, if it diverges from
the border of the filled cells, while green marks the intersection
with other planes and red the grid points that lie behind another
planar surface.

Once the holes in the planar surfaces have been determined
in the 2D grid we can transform the corresponding grid cell
centres back into their 3D position in the frame. For each of
the resulting 3D points we define the ray from them towards
the origin (i.e. the position of the sensor). For each of these
rays we check if it intersects any of the acquired measurement
points, which can be done efficiently by creating an octree
from all points of the current frame that do not belong to

any of the planar surfaces. If the ray intersects a leaf of the
octree, we know that something was measured between the
camera and this particular part of the hole, thus its existence
is explained by the data as a regular occlusion. Alternatively,
if the ray does not intersect any leaf, then this part of the hole
region is not explained by the available data.

A visualization is given by Figure 2c, where the centres
of empty voxel cells, transformed back into the scene, are
coloured in green, if they can be explained by some measure-
ment – the intersected octree leaves are shown in blue. Red
points indicate that no octree leaf was positioned between this
grid cell and the sensor. Not surprisingly the hole caused by
the cafetiere in Figure 2c features a lot of red points. However
regular objects, like the paper trays on the right of the scene in
Figure 2c, can exhibit some of these points on their edges, due
to sensor noise. Thus we defined a threshold for the fraction
of unexplained empty grid cells in relation to the total of the
cells defining a hole, to determine that a transparent (or at
least, only partially measured object) is present in the current
frame. In our experiments a threshold of0.5 worked well, i.e.
we assume a transparent object if 50% or more of the grid cells
defining a hole could not be explained by measured data. Via
the location of the hole in the 3D point cloud of the current
scene we also have a good estimate about the position of the
transparent object.

III. R ECONSTRUCTION

In section II we presented a simple approach to determining
whether or not a transparent or only partially measured spec-
ular object is present in a single RGB-D frame / laser scan.
In such a case we can use the information gathered by several
frames from different viewpoints in order to give an estimate
of the size and position of the object. Once this has been
done the individual frames have to be transformed into the
same reference frame. This problem is well studied and several
robust solutions exist like ICP [1], so we do not consider this
problem here, although a good registration is crucial for the
subsequent reconstruction process.

The basic idea for the reconstruction itself is pretty simple:
While a single frame / scan does not provide sufficient
information to estimate the size and shape of an object without
prior knowledge, it does provide information via the occlusion
that the object caused. From a single frame we can only deduce
that somewhere between the camera and the hole on the planar
surface there must have been some object that refracted or
otherwise obstructed the measurements of the sensor. This
basically leaves a volume that resembles a cone, except that
its base is composed of the shape of the detected hole on the
planar surface. In the remainder of this paper we will refer
to such a volume as an (occlusion)frustum. Such a frustum
can be constructed for each individual frame. If all frames are
registered consistently than we can easily conclude that the
object that caused the occlusion in each individual frame has
to be part of the intersection of all frusta.

Thus, the more observations from different viewpoints we
gather from the object in question, the more precise our



estimation of the object becomes, since the intersection can
only shrink with additional information. If viewed as an iter-
ative process the intersection operation first takes the frustum
of some arbitrary initial frame and then fuses it with the
new information provided by the next frame: all parts of the
initial frustum which do not fit the newly gathered data from
the second frame are removed. The caveat in this is that if
the registration of the frames is skewed, then the resulting
intersection will be skewed as well – there might be parts
where we ‘chiseled’ away too much or not enough. However,
if the registration error is not too large then we will still get
a reasonable estimate of the objects volume.

In order to compute the intersections we chose a sample-
point-based approach. In a first step we create a point sample
representing the planar occlusion caused by the transparent
object. If only a very coarse approximation is desired then it
can be sufficient to simply reuse the centres of the empty voxel
grid cells, otherwise the hole region can be resampled with
a desired density. The results presented in section IV were
obtained using random point samples with a density of10
points per cm2, but we believe that a less dense representation
will also provide good results, although we have not yet
performed any experiments in that direction.

In a similar way to the method by which transparent objects
are detected, a ray is project from each sample point to the
origin (i.e., the camera position) using equation (2). If parts
of the occlusion could be explained by regular measurement
points, for example if an object is a combination of transparent
and non-transparent materials, then the rays are only appro-
priately sampled from the planar surface to the measurement
points on the rays, thus expressing the knowledge that the
space between the sensor and the measured point is free and
we don’t have any information about the volume between the
measurement point and the planar surface.

Using the same poses that we obtained from registering the
individual frames, we can transform the points of all sampled
occlusion frusta into a common reference frame. As a next
step we simply create an octree containing all sample points
and afterwards iterate over all leaves: If a leaf contains enough
sample points and we detect all labels of the involved frames,
this leaf is considered to be part of the intersection. Otherwise
we can discard the leaf, since it only contained a few points,
thus meaning that it was on or near the borders of the frusta
or was not part of the intersection (since in at least one frame
this particular volume was not occluded, i.e. in that frame
the leaf’s volume is between the camera and some regular
measurements).

IV. RESULTS

In our current experiments we used data provided by Mi-
crosoft Kinect and Asus Xtion Live sensors. However since we
only rely on the 3D information of the point clouds we believe
that we can achieve results of at least the same quality if we
were to use a 3D laser scanner instead, since the point clouds
provided by a laser scanner usually feature much less noise.

(a) (b) (c)

Fig. 4: Example of misclassification: (a) photo of the captured
frame; (b) projected concave hull, for the red points no
neighbour was returned by the radius search; (c) analysis of
the hole: red points are unexplained, green points are explained
by measurements (in blue).

The implementation was done inC++ and makes use of the
Point Cloud Library (see [11]) and its many data structures.

A. Detection Results

As a first evaluation for our detector we took a small set
of frames (30 in total), each containing at least one planar
surface and at least one object on top of or in front of
the planar surface. The objects that we used were either (1)
regular (i.e. they can be measured without any problems), (2)
reflective (so that they provided only partial measurements) or
(3) transparent (i.e., providing very few measurements). There
were 32 regular objects, 7 reflective ones, and 9 transparent
ones. 16 of the 30 frames contained at least one non-regular
object. The detection rates of this small experiment are shown
in Table I and suggest that our approach is worthy of further
investigation. Of the 16 frames that contained at least one
non-regular object, 14 of them were correctly identified as
containing the objects.

The false positives for the regular objects are caused by our
choice of parameters when to split two clusters of points. We
used a maximal Euclidean distance of 2 cm for points to belong
to the same cluster. This can cause some objects to be split into
two distinct clusters, while larger thresholds will cause distinct
objects to be fused into one cluster. Depending on the data a
misclassification can cause three negative entries in the table: if
the projected concave hull of a specular object for a large part
approximated the shape of the occlusion, it will be labelledas
a regular object (thus resulting in one false positive and one
false negative). However, if the analysis of correspondinghole
features a large portion of unexplained empty grid cells, the
same object can additionally cause a false positive transparent
object to be detected. An example is shown in Figure 4. To
avoid such types of misclassification the information of the
analysis of the concave hulls needs to be combined with the
analysis of the holes, which we have not done, yet.

A better choice of the required thresholds (currently set by
hand) should lead to further improvements and we intend to
test this on a larger dataset in the future.

B. Reconstruction Results

As a first experiment for the reconstruction we applied our
method to the occlusion caused by a non-transparent object.



TABLE I: Detection Results

true positives false positives false negatives precision recall F1 score

Regular 32 4 0 88.9 % 100.0 % 94.1 %
Reflective 5 0 2 100.0 % 71.4 % 83.3 %
Transparent 8 4 1 66.7 % 88.9 % 76.2 %

(a) (b)

Fig. 5: Partial view of the point clouds from the mug recon-
struction: Point clouds and variously colour occlusion frustra
from two different viewpoints of the mug.

This way we are able to compare the results of our reconstruc-
tion with some actual measurements to provide evidence of
how well the approach works. Apart from the fact that we fed
the detected holes, caused by the occlusion of the mug, directly
to our reconstruction, this experiment does not differ from
the subsequent experiments. The object chosen was a normal
coffee mug. We observed it from 4 different points of view
The frusta computed from each of the 4 frames (transformed
into the common reference frame) are presented in Figure 5a
and 5b respectively. Comparison between the real observed
data (which we interpret as some kind of ground truth) and
the volume estimated by our reconstruction shows that while
the reconstruction is not perfect, it should be sufficient for
manipulation tasks.

After the promising results from the mug reconstruction,
we applied our method to several transparent objects. In the
following we show the results for the reconstruction of a glass
and a French press, sporting a non-transparent handle, each
composed of images of the scene from six different points of
view (see Figures 6 and 8). To provide an impression of the
quality of the reconstruction we present the registered point
cloud from two perspectives, first together with the registered
occlusion frusta and secondly with the intersection resulting
from the frusta. The results are in Figure 7 for the glass and
Figure 9 for the cafetiere.

V. CONCLUSION AND FUTURE WORK

In this paper we have presented a novel and simple approach
to estimate the size, shape and position of transparent objects
in point cloud data. Our results indicate that the resultingesti-
mation will be suitable for collision avoidance or interactions
like grasping of the transparent objects.

Currently, we are working on an alternative representation

Fig. 6: The six different point of views used to reconstruct the
glass on the tabletop.

(a) (b)

(c) (d)

Fig. 7: Reconstruction result for dataset shown in Figure 6:(a)
and (b) show the occlusion frusta (colours used to distinguish
between each frame); (c) and (d) display the resulting inter-
section (for viewing purposes completely coloured in blue).

for describing the transparent objects. While the filled leaves
of the octree give a good impression for the size and shape of
the object its volume is constructed from cuboid elements (i.e.
the octree leaves). This can, depending on the chosen size of
the leaves, lead to a ’blocky’ representation of the surface,
which might provide subsequent interactions like grasping
with slightly wrong information. The alternative representation
that we intend to employ makes use of polyhedra to constrain
the frusta caused by the occlusions.



Fig. 8: Six different viewpoints for dataset featuring a French
press

(a) (b)

(c) (d)

Fig. 9: Results for French press reconstruction from the data
shown in Figure 8: (a) shows a side view and (a) a top view
of the scene with the occlusion frusta; (c) and (c) display the
corresponding intersection from the same view points. Note
that the plastic handle nicely fits onto the reconstructed shape.

Since we use only the 3D information and not any colour
information available by RGB-D cameras, it should be pos-
sible to further improve our reconstruction method – often
some measurements of the tabletop are obtained at the base
of the transparent object. An example can be seen in Figure 1b,
where partial measurements of the tabletop were obtained
at the base of the French press (in the lower half of the
black circle). However, in such cases we believe it is possible
to use an edge detection algorithm in a restricted region of
the image, corresponding to the frame, to determine if these
measurements should be part of the occlusion frustum or if
they are part of the directly observed tabletop. An approach
of Fritz et al. [3] would also be suitable to solve this problem.

Additionally, we plan to acquire the frames with one of our
robotic platforms and use the estimated surface to actually
manipulate transparent objects with a robotic arm. Also, in

order to obtain a better evaluation for the reconstruction we
are planning to compare the reconstructions with models of the
objects in question – either created by hand or by obtaining
measurements from non-transparent equivalents as in [9, 10].
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