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Abstract

The use of mobile robots for inspection tasks is an attractive idea. A robot can travel through environments that humans cannot,
and can be trained to identify sensor perceptions that signify potential or actual problems without requiring human intervention.
However, in many cases, the appearance of a problem can vary widely, and ensuring that the robot does not miss any possible
appearance of the problem (false negatives) is virtually impossible using conventional methods.

This paper presents an alternative methodology using novelty detection. A neural network is trained to ignore normal percep-
tions that do not suggest any problems, so that anything that the robot has not sensed before is highlighted as a possible fault.
This makes the incidence of false negatives less likely.

We propose a novelty filter that can operate on-line, so that each new input is evaluated for novelty with respect to the data seen
so far. The novelty filter learns to ignore inputs that have been sensed previously, or where similar inputs have been perceived.
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e demonstrate the use of the novelty filter on a series of simple inspection tasks using a mobile robot. The robot
hose parts of an environment that are novel in some way, that is they are not part of the model acquired during e
f a different environment. We show the effectiveness of the method using inputs from both sonar sensors and a mo
amera.
2005 Elsevier B.V. All rights reserved.
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. Introduction

The ability to detect novelty, that is, to recognise
nd respond to stimuli that do not fit into the class
f expected perceptions, is very useful for animals and
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robots alike. For animals, novelty detection is an im
tant survival trait — the unexpected perception co
signify a potential predator, while for robots a no
stimulus could be some important feature of an e
ronment, a potential problem, or something that ha
be learnt.

In this paper, we consider the problem of tra
ing a robot to act as an inspection agent. Robots
examine environments that are not safe for hum
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and will not get bored examining similar features over
and over again. Suitable applications include sewer
inspection, or remote sensing, although such applica-
tions are not considered in detail here. Unfortunately,
in such applications, the appearance of a fault can
vary widely, and it will not be possible to guaran-
tee that every different appearance has been seen, so
that false negatives are likely. We approach the prob-
lem as one of novelty detection, so that the robot is
trained to ignore perceptions that are similar to those
seen during training, but to highlight anything dif-
ferent. In this sense, novelty detection can be seen
as a form of negative learning — examples are pro-
vided of those features that should not be detected, and
the novelty filter aims to highlight anything that dif-
fers from the inputs used in training. Provided that a
good training environment can be found, which does
not contain any faults, the novelty detection approach
should then significantly reduce the incidence of false
negatives.

In essence, as a robot travels within an environment,
it generates a stream of data from its sensors. The robot
should learn about the environment as it travels through
it, in something close to real-time, which means that for
a novelty filter to be useful in robots tasks, it needs to be
able to operate on-line, so that the robot can deal with
changing environments. From a practical point of view,
it also needs to be able to deal with noisy data, as robot
sensors are notoriously noisy, and to be able to deal ro-
bustly with seeing some novel perceptions during train-
i ly.
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of the environment that the robot is travelling though,
but of the perceptions of the robot as it travels. Thus,
while the novelty filter described here might be use-
ful for a navigating robot (for example, by recognis-
ing new places because they provide different sensory
perceptions), it does not learn a representation of an
environment.

The novelty filter described in this paper uses the
biological phenomenon of habituation. Habituation, is
a decrease in an animal’s response to a stimulus when
the stimulus is presented several times without ill ef-
fect. Habituation enables an animal to ignore stim-
uli that it sees often, so that it can concentrate on
other, potentially more important, stimuli. This is the
behaviour that we desire of a novelty filter — high-
lighting novel stimuli, but otherwise not giving any
response.

This paper describes a novelty filter based on a clus-
tering neural network and habituation. The applica-
tion of the novelty filter to mobile robot inspection is
demonstrated through a series of robotic experiments
where an autonomous mobile robot travels through a
series of corridor environments using a wall-following
behaviour, and presenting its sensor readings to the
novelty filter, which highlights features in those en-
vironments that have not been perceived previously,
thus acting as an inspection agent. A novelty filter is
also useful for the related tasks of directing attention
and filtering out commonly seen stimuli. The trained
filter will not pass through information about inputs
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ng, as it is difficult to tailor an environment perfect
e therefore propose such an adaptive on-line no

lter.
Novelty detection is also useful for other mach

earning problems. Any learning system is only as g
s the data that it is trained on, and often the da
oisy and subject to outliers. Detecting outliers in m

ivariate data is a difficult, but very useful task. Ty
al applications of novelty detection are in diagnos
edical problems or detecting machine faults. T

ally for these problems there is a lot of data ab
he normal classes (healthy people or machines w
ut problems), but very little data displaying the f

ures that should be detected. For this reason, it is
on to learn a model of the normal dataset and
ttempt to detect deviations from this model for

her processing. Note that in this paper the model
s learnt is of the pattern of inputs. It is not a m
hat have frequently been seen before, meaning
ny inputs that do get through the filter are worthy
ttention by the learning system. This can spee

earning.
Section 2 of this paper provides a brief discu

ion of some relevant papers in the literature. T
s followed by a description of the novelty filter
ection3. Section4 describes a number of expe
ental results using the novelty filter as an insp

ion agent on an autonomous mobile robot. Sen
nputs from sonar sensors and a monochrome
ra are captured as a robot explores a set of c
ors and used as input to the novelty filter. The ro

earns a model of an environment and then de
eviations from that model, highlighting these no

eatures. The experiments demonstrate the filte
ng used in both small (∼10 m) and large (∼300 m)
nvironments.
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2. Related work

There have been a number of novelty detection tech-
niques proposed in the literature, we highlight here
those approaches that are directly relevant to this work;
for a comprehensive overview, see[1].

Some researchers have considered using Kohonen’s
Self-Organising Map (SOM)[2] as the basis for a nov-
elty detector. Ypma and Duin[3] describe a number
of measures by which the correctness of fit of a SOM
with respect to a particular dataset can be evaluated.
They measure the average quantization error over the
dataset, as well as the distance between map units that
respond to similar inputs. The SOM is trained off-line
on a dataset of normal inputs, and then the measures
are evaluated on a new dataset. This provides informa-
tion about whether or not the new dataset fits the same
distribution as the data that was used to train the SOM,
but cannot be used to categorise individual inputs, nor
can it be trained on-line.

An alternative method using the SOM was described
by Taylor and MacIntyre[4]. In their approach, the
training data was used to select a set of neighbourhoods
of the SOM that described normality. After training,
new inputs were introduced, and any input that caused
other nodes in the network to fire (or at least, nodes
that were not in some pre-defined neighbourhood of
the nodes that fired in training) were highlighted as
novel.

There have been a couple of examples of novelty
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inputs that do not settle into stable states, and therefore
have high energy, being thought to be novel. For the
robot experiments, a mobile robot took photographs
of a ‘picture gallery’ of orange rectangles on a white
wall and the FamE model evaluated the novelty of the
simple images produced. In[10], the FamE approach
is compared to the novelty filter that is described in this
paper.

In general, these approaches are not suited to on-
line learning, an important feature for a novelty fil-
ter suitable for use on an autonomous mobile robot.
On-line learning means that the robot can be partially
trained, its learning tested, and then further training
applied without having to start again. Nor, in gen-
eral, do these novelty filters show much robustness to
any features that should be found to be novel being
seen in the training set. For robotic applications it is
hard to control exactly what the robot will see in ev-
ery environment that it explores, and so this feature
is very important. A novelty filter that can learn on-
line, and that has some robustness to accidental training
(i.e., occasionally seeing features during training that
should be identified as novel), is the subject of the next
section.

3. A novelty filter based on habituation

We are considering how to make a robot learn to
detect novelty in an environment by exploration. This
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ection for intelligent robotics was identified by Broo
5], where ‘monitor changes’ was one of the eight
aviours that were required for a task achieving ro

¨ ǧmen and Prakash[6] used a field of gated dipol
7] as part of a system that ‘explored’ a workspace
oving the end effector of a robot arm to places
ad not been visited before. This was done by qua

ng the workspace and associating a dipole with e
rea. Their work also considered recognising tha

ects were novel, so that the robot arm would pick th
p. This was done by taking the output of an ART n
ork [8], which performs classification, and feedin

nto a network of gated dipoles.
The FamE (Familiarity based on Energy) nove

etector[9], has also been applied to robot tasks[10].
his novelty filter is based on the Hopfield network,
valuates the energy of the network for each input,
equires on-line learning, so that each new feature
s seen is learnt, and some form of filtering to des
itise the algorithm to features that are seen re
dly, i.e., novelty filtering. This section describes
ethod, which is based on a clustering network

lassifies and learns about the current input, and
f habituating synapses linking the nodes of the
ork to an output node. These habituating syna
ecrease in strength as the nodes they are conn

o fire.
Habituation provides a way of recording whet

r not a network node has often fired before. If
trength of the synapse is high, then the node ha
red, while if the strength is low, then the node has fi
ften, with other values inbetween. We can there
se habituation to describe how often a node has
uring the operation of the network. We use a sim
odel of habituation (h) as an exponential function (f
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Fig. 1. A schematic of a novelty filter based on clustering and habituation. The input layer connects to a clustering layer that represents the
feature space, the winning node (i.e., the one ‘closest’ to the input) passes its output along a habituable synapse to the output node, so that the
output received from a node reduces as it fires more often.

more detail, see[11]):

h = h0 − S

α
(1 − e

−αt
τ ), (1)

whereh0 is the original strength of the synapse (usually
1), andS records whether or not a stimulus is applied
(S = 1 or S = 0). The other parameters are discussed
in Section3.1.1.

By attaching an habituating synapse to each of the
nodes in a clustering network performing a winner-
takes-all learning strategy, a mechanism is produced
that classifies each input and describes how unusual
that input is with respect to previously seen inputs. A
schematic of this general approach is shown inFig. 1.
The next section considers a suitable choice of cluster-
ing network to apply habituation to.

3.1. The Grow When Required (GWR) network

Earlier research (see[12] for details) used the SOM
as the clustering basis of the novelty filter. However, for
robotics inspection tasks, which require on-line nov-
elty detection, the SOM is not suitable, because it is
not designed for on-line learning. For optimal results,
SOM training is performed in batch, and the weights
of the network are initialised so that the nodes lie along
the directions of the principal components of the data.
Without these conditions, there is no guarantee of the
convergence of the SOM, nor for the topography preser-
vation of the input space[13].

Furthermore, with on-line learning it is possible to
saturate a novelty filter based on the SOM so that any
perception, even one that is completely novel, is con-
sidered to be normal. This happens if the habituation
synapses of all the nodes in the map field habituate.
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In this case, no matter what input was presented, the
best matching node (which may still be a very poor
match) will fire and, as the synapse has habituated, the
output of the network will be that the perception is nor-
mal. This would be the case even if a completely novel
stimulus was seen.

To overcome this saturation problem we developed
a growing neural network that can dynamically grow
to meet the demands of the particular data space that is
being learnt. This has benefits in that there is no need to
decide in advance how large the network should be, as
nodes will be added until the network is large enough.
This means that for small datasets the complexity of
the network is significantly reduced. In addition, if the
dataset changes at some time in the future, further nodes
can be added to represent the new data without disturb-
ing the network that has already been created.

The clustering network that was developed for this
research, the ‘Grow When Required’ (GWR) network
has these properties. The network is described below,
and more details, together with experiments and anal-
ysis demonstrating the topology-preserving properties
of the network, and comparisons to other algorithms,
are given in[12,11]. Our algorithm has similarities to
the Growing Neural Gas[14] and FOSART[15].

Fritzke’s Growing Neural Gas (GNG) is not suit-
able for the task of novelty detection because it only
adds new nodes everyλ iterations, whereλ is some pre-
defined integer. This is because new nodes are added
to support the node with the highest accumulated er-
r .
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do not have the neighbourhood relations that are use-
ful in novelty detection tasks, so that similar categories
can be linked together and, in the framework of this
paper, habituate each other. Neighbourhood relations
have other benefits to the operations of a self-organising
network, too, particularly with the positioning of new
nodes within the input space.

We now detail the precise steps of the algorithm. In
order to facilitate comparisons, the new algorithm is
described using the same notation as used in[14].

Let A be the set of map nodes, andC ⊂ A × A be
the set of connections between nodes in the map field.
Let the input distribution bep(ξ), for inputsξ. Define
wc as the weight vector of nodec.

Initialisation:
Create two nodes for the setA,

A = {c1, c2} (2)

with c1, c2 initialised randomly fromp(ξ). DefineC,
the connection set, to be the empty set,

C = ∅ (3)

Then, each iteration of the algorithm looks like this:

(1) Generate a data sample for input to the network,
ξ.

(2) For each node in the network, calculate the dis-
tance from the input.

cond

it,
or from the data presented during thoseλ iterations
novelty filter should highlight novel inputs imm

iately, which the GNG will not do, and furthermo
novel input that occurred just once during the e

ccumulation stage may not be enough to cause a
ode to be added to recognise it — there may also
een errors accumulated in other parts of the netw

The work of Baraldi et al., known as FOSAR
16,15]and the Incremental Topology Preserving M
f Millan et al. [17] are conceptually similar to th
ovelty filter described in this paper. They consider
roblem of growing neural networks through a me
f the class of simplified-ART (SART) networks a

he GNG. SART networks preserve the concept of
lance to detect mismatches between inputs and s
ategories, but remove the resonance condition use
ategorisation by ART. This makes them very sim
o the unsupervised RCE network[18]. These network
(3) Select the best matching node, and the se
best, that is the nodess, t ∈ A such that

s = arg min
c∈A

‖ξ − wc‖, (4)

and

t = arg min
c∈A/{s}

‖ξ − wc‖, (5)

wherewc is the weight vector of nodec.
(4) If there is not a connection betweensandt, create

it:

C = C ∪ {(s, t)}, (6)

otherwise, set the age of the connection to 0.
(5) Calculate the activity of the best matching un

a = exp(−‖ξ − ws‖). (7)
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(6) If we should add a node, i.e., if activitya< activ-
ity thresholdaT = 0.7 and habituation< habitu-
ation thresholdhT = 0.15:
• Add the new node,r, between the two best

matching nodes (sandt)

A = A ∪ {r}. (8)

• Create the new weight vector, setting the
weights to be the average of the weights for
the best matching node and the input vector:

wr = ws + ξ

2
. (9)

• Insert edges betweenr andsand betweenr and
t:

C = C ∪ {(r, s), (r, t)}. (10)

• Remove the link betweensandt:

C = C

{(s, t)} . (11)

(7) Adapt the positions of the winning node and its
neighbours,i, that is the nodes that it is connected
to.

�ws = εb × hs × (ξ − ws), (12)

�wi = εn × hi × (ξ − wi), (13)

where 0< εn < εb < 1 andhi is the value of the

pses
:
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any neighbours, or edges that are older than the
greatest allowed age.

3.1.1. Parameters
There are several parameters that are critical to

the algorithm. Of particular importance is the activity
threshold 0< aT < 1, which controls when new nodes
should be added according to the mismatch between the
input and the best-matching node. The effects of vary-
ing this parameter are shown when the GWR algorithm
learns about some simple two-dimensional datasets in
[11], but in practice, coarse learning about a robot’s
environment occurs for values of 0.6 < aT < 0.8, and
more detailed learning (resulting in significantly larger
networks being created) for higher values ofaT. The
value ofaT = 0.7 was used for all of the experiments
described in this paper.

As well as the activity threshold, the habituation
thresholdhT is also used to decide whether or not to add
a new node. The idea here is that new nodes have not yet
been trained, and therefore it is more effective to train
the node than to add another new one. With the choice
of parameters controlling the habituation curve (which
were chosen so that it took about six presentations of a
particular stimulus to fully habituate) given in step (9)
of the algorithm,hT = 0.15 means that a node should
be the best match four or five times before a new node
is added nearby. It was observed experimentally that
changing this parameter between 0.05 < hT < 0.4 did
not significantly affect the behaviour of the algorithm.
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habituation counter for nodei.
(8) Age edges with an end ats:

age(s,i) = age(s,i) + 1. (14)

(9) Reduce the strength of the habituating syna
for the winning node and its neighbours using

h = h0 − S

α
(1 − e

−αt
τ ), (15)

whereh(t) is the strength of the synapse,h0 = 1
is the initial strength, andS(t) = 1 is the stimulu
strength.α = 1.05 andτ are constants contro
ling the behaviour of the curve,τb = 3.33 for the
winning node andτn = 14.33 for the neighbou
ing nodes. This means that the winner habitu
faster than its neighbours.

10) Check if there are any nodes or edges to de
i.e., if there are any nodes that no longer h
Finally, in common with other self-organising n
orks, there are the learning rates for the winning n
nd its neighbours. In the experiments reported in
aperεb = 0.3 andεn = 0.15, values that were dete
ined experimentally on test data. It should be n

hat these learning rates are multiplied by the hab
ion counter of the node, which means that nodes
ove less after they have received previous train
his makes the network more stable.

.1.2. Dishabituation and forgetting
In the system described above, only the habitua

ynapses of the winner and its topological neighb
ere affected. In this case, the other synapses d
hange value. However, if instead the synapses th
ot in the topological neighbourhood are instead g
n input ofS(t) = 0, then those synapses recover s
f their strength, in effect forgetting previous habit
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tion — an effect known as dishabituation. This means
that things that are seen only infrequently are consid-
ered novel, which can be useful for certain tasks. In
addition, perceptions that are seen only once will be
forgotten, so that transients in the training set are ig-
nored.

Another effect can be created using forgetting. If two
habituating synapses are attached to each node, with
one forgetting and the other not, then the effect will be
that the concept of ‘recency’ is encoded. If the synapse
that does not forget is habituated, but the forgetting
one is not, then the perception that is matched by the
relevant node has been seen, but not recently, whereas
if both synapses are habituated the perception has been
seen in the recent past. This acts as a kind of memory,
and would enable some temporal novelty to also be
detected, although this is not investigated in this paper.

4. Experimental results

This section describes robotic experiments con-
cerned with on-line environment inspection using the
novelty filter. For examples of applications of the nov-
elty filter to non-robotic tasks, and comparisons with
other novelty filters, see[12,11]. The experiments pre-
sented here focus on a simplified inspection task, where
the robot learns an internal representation of sensor per-
ceptions of an environment through exploration, and
then signals deviations from that model when exploring
f ron-
m the
p nce
t r en-
v to
b ron-
m 200
r ot
e e in-
f

aps
o ions
( nts,
a n the
fi e 16
s filter,
w en-
v for

Fig. 2. The Nomad 200 robot.

a real inspection agent, but we offer a proof-of-concept
for an inspection agent based on a novelty filter. A more
substantial experiment, where inputs are based on cam-
era images rather than sonar readings, is described in
Section4.4.

4.1. Experimental procedure

We allowed the Nomad 200 robot (shown inFig. 2)
to explore a number of typical corridor environments
such as are found in any office building, in this case the
top floor of the Computer Science Department at the
University of Manchester. The robot’s infrared sensors
were used to perform a wall-following behaviour. In
the first experiments the sonar sensors were used to
sample the environment. It is the readings of the sonar
sensors that were used as input to the novelty filter. The
use of a wall-following behaviour meant that the robot
took similar – although not identical – paths through
the environment each time that it travelled through it,
staying between 15 and 35 cm from the right-hand wall.
If a different control program was used to control the
path of the robot through the environments, then the
perceptions of the robot would be different. However,
provided that the same control program is used on each
run, similar perceptions will be seen, and the novelty
filter will operate effectively.

Each experiment consisted of the same steps, re-
peated a number of times. The robot was positioned at
a ent.
F dor
u v-
e the
s pre-
s elty
urther environments. The robot explores an envi
ent, and uses the novelty filter to build a model of
erceptions that it receives in that environment. O

he model is complete, the robot explores anothe
ironment, highlighting perceptions that are found
e novel, i.e., that were not seen in the first envi
ent. This task was performed using the Nomad

obot shown inFig. 2. This is a fully autonomous rob
quipped with 16 sonar sensors and 16 short-rang

rared sensors.
The aim of an inspection robot is not to learn m

f a set of environments, but to learn what percept
i.e., sensory inputs) are found in those environme
nd then to detect different sensory perceptions. I
rst set of experiments that are described here, th
onar sensors are used as the inputs to the novelty
hich results in a very coarse representation of the
ironment. Obviously, this would not be sufficient
starting point chosen arbitrarily in the environm
rom this point the robot travelled along the corri
sing a wall-following behaviour. Approximately e
ry 10 cm along the way the smoothed values of
onar perceptions over that 10 cm of travel were
ented to the novelty filter, which produced a nov
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value for the perception. At the end of the run the robot
was returned to the starting location under manual con-
trol and the procedure was repeated, but starting with
the weights learned during the previous run. Inbetween
each pair of learning runs a test run, where the novelty
filter evaluated the novelty of each input but did not
learn about it, was performed, to monitor the learning
process.

This procedure was repeated until the robot found
nothing in the environment to be novel anymore, which
typically took three learning passes. At that point the

environment was changed, either by moving the robot
manually to a new environment, or by making a change
to an environment such as opening a door.

Three sets of experiments are described here. In
the first, three different 10 m sections of corridor were
used. Two of them were similar corridors in the same
part of the building, while the third was very differ-
ent, although still a corridor environment. In addition,
the first of the environments was changeable, in that a
door could be open or shut. These environments are
shown in Fig. 3. In the second set of experiments,

F
t
m
T
e

ig. 3. Diagrams of the three environments used in the inspection tas
hat it followed. Environments A and B are two similar sections of co
aterials, glass and brick instead of breezeblock. The photographs sh
he notice boards that are visible in environment B are above the hei
nvironment A was opened for some of the experiments. When the d
k. The robot is shown facing in the direction of travel adjacent to the wall
rridor, while environment C is wider and has walls made of different
ow the environments as they appear from the starting position of the robot.

ght of the robot’s sonar sensors, and are therefore not detected. Door D in
oor is open the environment is referred to in the text as environment A*.
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described in Section4.3, a 300 m long loop of cor-
ridor was used to show that the system scales effec-
tively. Finally, in Section4.4 some experiments us-
ing an input vector taken from camera images rather
than the sonar sensors, are presented, to show how
the filter deals with much richer information about the
environment.

4.2. Short corridor experiments

4.2.1. Learning without forgetting
Fig. 4shows how the novelty filter learns about the

short environments. As the robot travels through the
environment, the novelty of each perceptions was com-
puted; this value is shown in the graphs in the figure
– a peak in the graph means that the current percep-
tion is very novel, and no spike means that the current
perception has often been seen before.

The top left ofFig. 4shows the initial training when
an empty novelty filter is used and the robot explores
environment A (shown inFig. 3). It can be seen the
robot rapidly learns to recognise the wall that is seen
most of the time, but that the doorway is found to be
novel for several steps. However, after three learning
runs in the environment, the network finds nothing to be
novel. The top right section ofFig. 4shows the effects
when this trained network is used after a change has
been made to the environment. A door to the right of
the robot was then opened (door D inFig. 3) so that
the perceptions at this point changed, but otherwise
t n be
s pen
d ions
n nge
i ing
i

the
m En-
v the
o the
d s is
c ine
o om-
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n
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The amount of novelty is calculated by summing the
output of the output node for each input. In each envi-
ronment it took three passes through the environment
before the robot stopped finding anything novel. For
each figure, the robot explored environment A for three
runs, until it stopped finding it novel, and was then
moved into a new environment. The graphs show that
environment A* is not much different to environment
A (it is the same except that a door is opened), because
the amount of novelty does not increase much. Again,
when the robot first perceives environment B, which is
a similar piece of corridor, there is not a large increase
in novelty. However, when the robot explores environ-
ment C it finds a great deal of it novel. In fact, the
amount of novelty is nearly as much as when the robot
explores environment A without any previous training.
This is to be expected as it is a very different envi-
ronment. The growing novelty filter learns a compact
representation of the robot’s perceptions, during train-
ing in each of the environments an average of 4.5 new
nodes were added.

4.2.2. Learning with forgetting
The effects of forgetting (dishabituation) were de-

scribed in Section3.1.2. Fig. 6shows what happens to
the evaluation of novelty in the network when forget-
ting is turned on, so that synapses can dishabituate as
well as habituating. The two graphs show the effects
of training the robot in environment A, and then letting
the robot explore a second environment with forgetting
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Fig. 4. The results of the first experiment. Top left: The output of the output node of the novelty filter as the robot moved within environment A
when learning and not learning. Once it had stopped detecting novelty features (so that the activity of the output node is small), the environment
was changed by opening a door (environment A* — top right). The only perceptions found to be novel were those around the doorway. Finally,
bottom the trained filter is transferred to a novel, but similar, environment, where only things not seen in environment A were found to be novel.
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Fig. 5. Graphs showing how the amount of novelty in an environment decreases as the novelty filter learns over three runs in an environment.
The graph on the top left shows the robot learning first in environment A, and then in environment A*. It can be seen that once the robot has
learnt about environment A, very little in A* is novel.Fig. 4shows that what is novel is the area around the (now open) door. The top right graph
shows how the amount of novelty increases when the robot explores environment B after learning about environment A, and finally the graph
on the bottom shows how the novelty increases when the robot begins to explore environment C. These results are discussed in Section4.2.1.

environment A increased as the robot finds less novel in
environment B. However, the amount of novelty found
in environment A does not increase as much as it did
for training in environment A*. This is because most
of the features of environment A are also seen in envi-
ronment B. In particular, the closed doorways are also
seen in this environment.

4.3. A large environment

This experiment was designed to demonstrate that
the growing novelty filter can deal with any size of

environment. In this case, the environment that was
explored was a loop of corridor on the top floor of
the Computer Science Department at the University
of Manchester. Overall, the loop is about 300 m long.
The robot explored this environment using the wall-
following behaviour described previously and, as be-
fore, used the novelty filter to compute the amount of
novelty at each stage of exploration.

The output of the growing novelty filter is shown
in Fig. 7. The graphs show the output of the novelty
filter as the robot travels through the environment. At
the end of the final (fifth) run a large number of card-
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Fig. 6. The effects of forgetting on the amount of novelty found in an environment. In the left figure the robot explores environment A for three
runs, as previously. Then the robot explores environment A*, with forgetting turned on. After each exploration of environment A*, the robot
explores environment A. It can be seen that as the novelty filter finds environment A* less novel, so the amount of novelty found in environment
A increases, as the robot forgets about these perceptions. The same is shown on the right for the robot learning about environment B. These
experiments are discussed in Section4.2.2.

board boxes were placed around the robot so that it
reached a dead end in the corridor. This was done to
give the robot a number of very novel perceptions. Oth-
erwise, the robot was left to explore the environment
without human intervention, although the experiments
were performed at a time when the building was mostly
empty, so that the environment was static.

As in the first experiment in Section4.2.1, a non-
learning trial followed each learning trial, in order to
see how much of the environment had been learned. In
the first trial a lot of novelty was found, especially at
corners, where the motion of the robot was more unpre-
dictable. The second run, a non-learning trial, shows a
great deal less novelty, which is the same in the sec-
ond learning trial (trial three). There is no real novelty
found in the second non-learning trial (trial four). It
was in the final trial that the environment was changed
at the end. In this trial nothing was found to be novel,
with the exception of the perceptions at the end where
the environment was altered, nothing was found to be
novel. It is interesting to note that in the second trial
most of the places that are found to be novel are the
corners. This may well be because the robot can take
a large number of different paths around a corner, and
so the perceptions vary considerably.

At the end of the final trial, where the environment
was modified to produce some very novel perceptions,

the novelty filter has responded as expected, and shown
that these perceptions do not fit into the model that has
been generated.

4.4. Using visual input

The sonar sensors used in the previous experiments
provide only a coarse, noisy picture of the environment.
To improve on this we also investigated using the out-
put of a 480× 200 pixel monochrome camera that was
mounted on the robot. We experimented with several
different methods of capturing and pre-processing im-
ages, and of generating an input vector for the novelty
filter from the image. We present the most effective
method only, for details of the other methods tried, see
[12].

The first problem was to ensure that the robot saw the
same image each time that it was in approximately the
same place. The principal difficulty was that the angle
between the robot and the wall could change over time,
so that the camera could face in different directions.
To correct for this, an initial image was taken, vertical
edges in the image detected, and the robot then rotated
its turret (on which the camera was mounted) in order
to point at the position where the histogram of edges
was centred.
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Fig. 7. Plots of the novelty found when the growing novelty filter is trained while the robot explores the entire 300 m loop of corridor around
the Computer Science Building.

A new image was then captured, and the contrast of
the image improved using histogram equalisation[19].
An input vector for the novelty filter was generated by
taking only a subset of the pixels from the image and
concatenating them into a vector. One hundred pixels
were chosen along a spiral centred at the middle of the
image (where the strongest edges are) and running out
to the edges of the image.

The experiments then parallelled those described in
Section4.2. The robot travelled through the environ-
ment using wall following, stopping every 30 cm to
take a picture and producing an input vector, which

was fed into the novelty filter. Starting from an ini-
tially blank network the robot explored environment A
for four learning runs until nothing was found to be
novel — an extra learning run was needed, probably
because there is significantly more information in the
image vector than in the sonar vector. The door on the
right of the robot was then opened (environment A*)
and the robot again explored. As in the sonar experi-
ments, the only perceptions that were highlighted were
those around the doorway. The filter trained in envi-
ronment A was also tested in environments B and C,
and the amount of novelty found in each environment
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Fig. 8. Graphs showing the novelty filter learning about environments when using inputs from a camera mounted on the robot.

over the testing runs is shown inFig. 8. It is particularly
interesting to note that the novelty filter finds environ-
ment C, which is visually very different to the others,
very novel, more so than the filter with sonar inputs.
This shows that using the camera enables the filter to
distinguish details at a much higher resolution.

5. Summary and conclusions

Novelty detection is concerned with recognising in-
puts that do not fit into the underlying model of a
dataset. A novelty detecting robot can act as an inspec-
tion agent, examining the environment that it travels

through and highlighting those features that it has not
seen before, or seen only rarely — potential faults.

This paper presents a method for performing unsu-
pervised on-line novelty detection, so that it is suitable
for mobile robots. The method is based on learning to
ignore perceptions that have been seen before, so that
novel inputs are highlighted. This is achieved by using
a neural network clustering algorithm with the addi-
tion of synapses connecting each node in the network
to an output node. These synapses habituate so that the
strength of firing decreases with repeated use.

The algorithm has been demonstrated on the task
of mobile robot inspection of corridor environments.
The robot performs several learning trips through an
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environment, and can then highlight deviations from
the acquired model, either changes to that environment
or differences between a test environment and those it
was trained in. The algorithm has been demonstrated
in a variety of environments, using inputs from sonar
sensors and preprocessed images from a camera
mounted on the robot. In all cases it has been shown
to work reliably.

Future work will consider the question of how to
fuse the information from the different sensors, and
investigate how to deal with features that are spread
out over time. For example, a robot travelling down
a corridor may experience a number of doorways. In
general, these will consist of a door jamb followed by
the door and then another door jamb. If one of this
group of perceptions is not found then this could be a
novel feature.

This paper has shown that the concept of novelty de-
tection is a useful methodology for robotic inspection.
The experiments have been based in simple human en-
vironments. The extension of the work to environments
of real application, for example, sewers, is an open one.
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