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We consider the problem of constructing a discrete differential geometry defined on non-planar
quadrilateral meshes. Physical models on discrete non-flat spaces are of inherent interest, as well as
being used in applications such as computation for electromagnetism, fluid mechanics, and image
analysis. However, the majority of analysis has focused on triangulated meshes. We consider two
approaches: discretizing the tensor calculus, and a discrete, mesh version of differential forms.
Whilst these two approaches are equivalent in the continuum, we show that this is not true in
the discrete case. Nevertheless, we show that it is possible to construct mesh versions of the Levi-
Civita connection (and hence the tensorial covariant derivative and the associated covariant exterior
derivative), the torsion, and the curvature. We show how discrete analogs of the usual vector integral
theorems are constructed, in such a way that the appropriate conservation laws hold exactly on the
mesh, rather than only as approximations to the continuum limit. We demonstrate the success
of our method by constructing a mesh version of classical electromagnetism, and discuss how our
formalism could be used to deal with other physical models, such as fluids.

PACS numbers: 02.70.-c, 02.40.Sf, 46.05.+b

I. INTRODUCTION

Physical theories on discrete spaces have a long history,
and can be viewed in various ways: as simplified models,
as computational devices, or as fundamental theories in
their own right. For example, in solid state physics, the
discrete and periodic nature of the crystal lattice is an ob-
vious candidate for a discrete model, where the model can
help elucidate the structure of the actual continuum the-
ory, and help us focus on those aspects of the physics that
depend on the underlying periodic structure (e.g., the
Ising model as a model of ferromagnetism). In quantum
field theory, many continuum theories are computation-
ally intractable, leading to discretized versions of such
theories on spacetime lattices (e.g., lattice gauge theo-
ries), which allow computer simulations to be performed,
and physical quantities, such as particle masses[11], to
be computed. Finally, we also have the possibility that
spacetime itself may not be continuous, and that our
fundamental physical theories need to be formulated in
terms of some sort of discrete structure for spacetime at
the Planck scale (e.g., causal set theory[3]).

If we consider the simplest case of classical physical
theories on a discrete space or spacetime, then such the-
ories are employed in various contexts: applications that
consider the numerical simulation of physical theories per
se (e.g., fluids[18], or electromagnetism[30]), and applica-
tions that utilize simplified, discrete models of physical
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theories as approaches to other problems. An example of
the latter is the use of elasticity to allow for physically-
realistic simulations of deformable objects when repre-
sented as meshes for computer graphics purposes, or the
analysis of movies of deforming objects (e.g., see Grin-
spun et al.[12]).

However, there are also less obvious applications of
discrete physical theories, where a discrete version of a
physical model is used to accomplish some other com-
putational task. A prime example of this is the task of
image-matching via non-rigid registration. In this ap-
plication, images are deformed diffeomorphically so that
their appearance more closely matches a reference image,
with the aim of assisting in tasks such as disease diag-
nosis from medical images. As part of the approach, an
elastic[34] or a fluid[6] model is used to regularise the
deformations. Similar, physically-based models can be
used to solve the matching problem for object surfaces
which, unlike images, are not flat spaces[7]. Other ap-
plications which use and manipulate discrete models of
surfaces use methods from differential geometry directly.
For example, in the field of medical image analysis, one
important surface studied is the cortical surface of the
human brain. Recent papers have applied various meth-
ods to such surfaces, for example, the Laplace-Beltrami
operator[1], spherical conformal mapping[5], harmonic
energy minimisation[13], Ricci flow[17], and harmonic
and holomorphic one-forms[31].

When applying methods from differential geometry to
such discrete surfaces, or when attempting to construct
physical models on such surfaces, we have two main op-
tions. The first option is that we take the continuum
mathematical tools that have the properties we desire for
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our algorithm, and try to construct a discrete approxi-
mation to the continuum formulation (e.g., see Meyer
et al.[21] on averaged curvature operators for triangu-
lated surfaces). This has the problem that the very prop-
erties we desire to retain, or the quantities we desire to
compute, may be only approximated by our discretiza-
tion procedure. The second option is to seek a discrete
theory that admits parallels to that in the continuum,
but that is inherently self-consistent, and where the de-
sired properties are retained exactly. It is this second
option – which has already been championed by Hirani
et al. [8, 9, 14], and by Stern[28] – that we prefer, and
that we follow in this paper.

Let us now briefly consider various ways to produce a
discretized version of a 2D surface. If we take a set of
sample points on the surface, and then perform bilinear
interpolation of position between these points, this gives
a triangulated mesh, with the associated piecewise-flat
continuous approximation to the original surface. How-
ever, as noted by Desbrun et al.[8] (see their Section 15),
the intrinsic notion of what constitutes the tangent space
at a vertex of such a non-flat mesh was then an open
question, since the tangent spaces at the sample points
have been excluded from the construction. We could in-
stead proceed by taking the tangent planes to the sample
points. The intersections of these tangent planes then de-
fine the links and vertices of a planar polyhedral mesh,
which can then be triangulated without introducing any
additional vertices. However, the original sample tangent
planes now become associated with the cells of this mesh,
hence the question as to the intrinsic tangent plane at a
vertex still remains. For example, Desbrun et al.[8], using
simplicial complexes, only defined discrete tangent vec-
tor fields for flat meshes (see their Remark 7.1), whereas
Schwalm et al.[27] defined a vector-difference calculus
on a general triangulated mesh, but were restricted to
a topological approach, so that, as they noted (see end
of their Section V), tangent spaces at adjacent points
overlapped, but not completely.

However, consider the following alternative construc-
tion. Imagine a set of points, where at each point we
have a pair of vectors (defined in terms of their lengths
and the angle between them), which are a basis for the
2D tangent space at that point. If we now stitch together
the set of points, using just the basis vectors, it can be
seen that this naturally leads to the idea of a non-planar
quadrilateral mesh, where the links of the mesh are now
associated with the elements of the tangent spaces at the
various vertices. It should be noted that for arbitrary
length basis vectors, these cells will not in general close,
and the condition that all cells do close, and the conse-
quences of this, will be discussed in the sections where
we construct the Levi-Civita connection.

Such quadrilateral meshes are of growing interest in
several fields because they admit a coordinate space that
is just the square grid, and interpolation on the square
grid is much quicker than the barycentric interpolation
required when working with triangulated meshes. Such

ease of interpolation is important when we are consid-
ering applications such as surface matching, where we
need to repeatedly compare quantities at corresponding
points for two different surfaces, and this exact point
was recently noted by Yeo et al.[36] for the case of corti-
cal surface matching and coordinate charts on a sphere.
As such, there exist various methods in the computer
graphics literature for generating quadrangulations from
a triangulated mesh (e.g., see Tong et al.[29] and the ref-
erences therein).

Within the framework of seeking a discrete theory di-
rectly we consider two different approaches to the prob-
lem: by producing a discrete version of tensor calculus,
and by producing a version of the discrete exterior cal-
culus for quadrilateral meshes. While these would be
equivalent in the continuum, we show that this is not the
case here, and we show that, for example, the divergence
of a vector field is different depending whether it is cal-
culated using the covariant derivative of tensor calculus
or the exterior derivative and Hodge star of differential
forms. A description of the basic operators of discrete
differential geometry are provided in an appendix.

In Section II, we introduce a discrete tensor calculus
and work towards definitions of torsion and curvature.
We show that on the quadrilateral mesh this leads to
difficulties, since the construction of a torsion-free, Levi-
Civita connection is hampered by the fact that the usual
methods for constructing the torsion tensor led to an ob-
ject is not a well-formed tensor on the mesh. We instead
use a simple geometric argument to construct a suitable
connection, and hence a tensorial covariant derivative.

In Section III, we then switch to using difference forms
(the discrete equivalent of the differential form) and pro-
duce a version of the discrete exterior calculus, including
the Hodge star and codifferential operators. This leads
to a well-defined version of Stokes’ theorem, and the re-
covery of Cartan’s structure equations for torsion and
curvature, as well as making clear the link between the
connection we defined using a geometric argument, and
the mesh equivalent of a torsion-free Levi-Civita connec-
tion.

In Section IV we use the discrete exterior calculus ver-
sion of our theory and apply it to electrodynamics in 2+1
dimensions. We show that by requiring that we retain
the identity of electromagnetism as a field theory with a
U(1) local gauge invariance, we obtain a mesh version of
Maxwell’s equations, whilst also retaining the usual links
between electric currents and charges, and between these
sources and electric and magnetic fluxes. We conclude
with a brief discussion of how to apply the tools we have
developed to the construction of mesh versions of other
physical theories, such as fluids.

II. DISCRETE TENSOR CALCULUS (DTC)

We start by investigating how far an approach based
on producing a tensor calculus on the mesh can take us.
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Our approach is to seek mesh versions of the common ob-
jects of tensor calculus and investigate their equivalence
in the näıve continuum limit to the continuous case. We
work on a non-planar quadrilateral mesh M ⊂ R3 with
the same connectivity as a regular square grid in R2. Ver-
tices on this mesh are labelled by i and edges by µ, ν so
that from a site i we can travel along a (directed) edge in
a direction µ to arrive at site i+ µ, and along a different
edge in direction ν to arrive at site i+ν. We will also de-
fine a coordinate chart on our mesh, which we take to be
a regular square mesh of edge length 1 unit. We define a
scalar function on the mesh at each vertex {f(i) : i ∈M}
and define difference operators in the usual way. The ba-
sic definitions of discrete differential geometry are given
in the appendix

A. The Gradient Theorem

We begin by seeking a mesh version of the gradient
theorem, which is the generalization of the fundamental
theorem of calculus to curves, and says that if we inte-
grate grad f along a path γ(t), we find that:

γ(1)∫
γ(0)

grad f · dl ≡ f(γ(1))− f(γ(0)), (1)

where dl represents an infinitesimal element of the path
and the gradient operator is a first-order derivative opera-
tor, that when applied to a scalar field produces a vector.
For a mesh, the continuum path is replaced by the set of
individual directed links that form a path. However, we
first have to define grad on the mesh, which we do as:

grad f(i) , gµν(i)dνf(i)e µ(i). (2)

The gradient of a function hence lies in the tangent space
Vi, and the scalar product of the gradient with an arbi-
trary vector field X is given by:

〈grad f,X〉 ≡ X(f). (3)

Now, by considering a path on the mesh as a set of indi-
vidual connected links, we see that the path integral is a
sum over contributions that each have the form (in this
case, for the single link i→ i+ e α(i)):

grad f(i) · e α(i) = gµν(i)dνf(i)e µ(i) · e α(i)
= gµν(i)dνf(i)gµα(i) = δναdνf(i) = f(i+ α)− f(i),

which gives the gradient theorem on the mesh.
The gradient theorem is a special case of Stokes’ The-

orem when applied to 0-forms (functions), and we will
consider the full theorem in Section III D when we move
onto forms. The importance of such theorems in the con-
tinuum is that they allows us to move between an integral
form of the dynamics of a field to a differential equation
form. To do this on the mesh we will need to consider a

FIG. 1. A diagram showing how the quadrilateral formed
by the four points shown can be flattened to a quadrilateral
in the plane, without altering the metric (lengths and angles
shown) at the 3 black points.

general version of a mesh derivative that is defined on vec-
tors and general tensors (the covariant derivative). This
is non-trivial, as tangent vectors at neighbouring vertices
lie in different vector spaces (Vi+µ and Vi) and so we
need a connection to transform between vectors defined
in these two spaces.

B. The Covariant Derivative

One approach to finding the covariant derivative on the
mesh would be to proceed algebraically, and to derive a
mesh version of the Levi-Civita connection by first defin-
ing torsion and requiring that it vanishes (since the fun-
damental theorem of Riemannian geometry states that
there is a unique torsion-free connection that preserves
the metric). However, the definition of torsion on the
mesh seems to preclude this (see Section II C).

Instead, we adopt the approach of Leok et al.[19] (see
very end of their Section 7), where they considered con-
structing the curvature for the simplicial complexes used
by Desbrun et al.[8]. This is to use local embeddings of
the mesh into Euclidean space, and is a simple geometric
construction (see Fig. 1), which involves a local flatten-
ing of the mesh. Unlike the case of triangulated meshes,
there are two ways to flatten a non-planar quadrilateral
cell, and we chose the one that corresponds to a convex
quadrilateral when flattened, since otherwise we would
have coincident vertices if we flattened a square cell. This
flattening is metric preserving at the three vertices i, i+µ
and i+ ν, since the lengths and angles between the basis
vectors at each point are preserved. Once we have per-
formed this flattening, the tangent spaces are now equiv-
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alent, and we can move vectors between tangent spaces
by just translating in the plane. This now also elucidates
the construction of the quadrilateral mesh that was dis-
cussed in the Introduction, since it is only for particular
sets of basis vectors (i.e., those which can be formed into
closed cells) that this construction defines a unique con-
nection. Since identical sets of basis vectors always form
closed cells, this closure constraint can be seen as a dis-
crete version of the usual continuum notions of continuity
and differentiability of the metric.

Consider a tangent vector X at i + µ, parallel-
transported to i. We define the νth component of the
transported vector, in the basis defined at i, to be:

B(µ)
να (i)Xα(i+ µ) (4)

(no sum on µ, indicated by bracketed index),

where B(µ)(i) is a matrix corresponding to the change of
basis vectors in the plane (The elements of this matrix
can be computed from the lengths and angles given in
the diagram using simple geometry). In terms of the
flattened basis vectors and the metric, we have:

B(µ)
να (i) , e ν(i) · e α(i+ µ)

⇒ g(i+ µ) = (B(µ)(i))Tg(i)B(µ)(i). (5)

Since the matrix B(µ)(i) is based on parallel transport,
it makes sense to rewrite it in terms of the Christoffel
symbols {Γνµα(i)}:

B(µ)(i) , I + Γ(µ)(i), (6)

where (Γ(µ)(i))αβ , Γαµβ(i).
The covariant derivative Dµ is defined in terms of the

difference between the vectors based at vertex i:

(DµX)ν(i) , B(µ)
να (i)Xα(i+ µ)−Xν(i). (7)

≡ dµXν(i) + Γνµα(i)Xα(i+ µ). (8)

In this final form, this mesh covariant derivative corre-
sponds to the continuum covariant derivative.

Using the same geometric construction, it is possible to
extend this covariant derivative to act on tensors of type
(m, 0) by defining the parallel transport of a product of
terms as the product of the parallel transport of the in-
dividual terms. To extend to general tensors, we have to
define the action of parallel-transport on cotangent vec-
tors. This can be done by requiring that scalar products
between (tangent and cotangent) vectors are preserved
under the transport. This is equivalent to metric com-
patibility of the connection, Dµg(i) ≡ 0, since the com-
ponents of the metric are defined using scalar products
of basis vectors, gµν(i) , 〈e µ(i), e ν(i)〉. Whereas the
transport of tangent vectors is given by the action of the
matrix B(µ)(i), the corresponding transport of cotangent
vectors will involve the inverse of this matrix (B(µ)(i))−1.
The covariant derivative of a cotangent vector ω is then

given by:

I− Γ̃(µ)(i) , (B(µ)(i))−1,

Γ̃αµβ(i) , (Γ̃(µ)(i))αβ ,

(Dµω)ν(i) ≡ dµων(i)− Γ̃αµν(i)ωα(i+ µ). (9)

Thus, on the mesh, we have two different sets of Christof-
fel symbols, Γνµα(i) and Γ̃αµβ(i), corresponding to the con-
nection on the tangent bundle, and the related (dual)
connection on the cotangent bundle.

Both of these connections are derived from the ma-
trix B(µ)(i). By considering the covariant deriva-
tives of the tangent and cotangent vector fields de-
fined by X(i) = e α(i), Xµ(i) = δµα and ω(i) = e α(i),
ωµ(i) = δµα, where α is fixed, then we find that:

dµe α(i) , e α(i+ µ)− e α(i),
Γνµα(i) = 〈e ν(i), dµe α(i)〉 , (10a)

Γ̃αµν(i) = −〈e ν(i), dµe α(i)〉 , (10b)

In this definition we have extended the usage of dµ, pre-
viously defined as just the finite-difference operator on
scalars, to a finite difference operator on basis vectors.
For this to make sense, the difference has to be taken us-
ing the appropriate locally-flattened versions of the basis
vectors, and it is the definition of local flattening in terms
of preserving the metric that defines the connection. This
point marks the point of divergence between our analysis,
and that of other authors[15, 20, 35], in that they consider
just the flat case, where Sµe α(i) = e α(i+ µ) = e α(i).

For the purposes of implementation it would be more
convenient if we could define the connection in terms of
the metric directly, rather than working with the basis
vectors, since storing the metric for a mesh of N ver-
tices/cells requires only 3N numbers, whereas storing the
basis vectors and the dual basis vectors as vectors in R3

requires 12N numbers. Further, in order to compute
the Christoffel symbols we also have to compute the lo-
cal flattening operation for basis vectors at every vertex.
Unfortunately, on the mesh:

dλgαβ ≡ gαηΓηλβ + gβηΓηλα + gνηΓνλαΓηλβ

which is quadratic in the Christoffels, unlike the con-
tinuum result for ∂λgαβ , which contains only the cor-
responding linear terms. Therefore, we cannot perform
the usual trick of combining three such expressions to
extract a simple useful formula for the Christoffels ex-
pressed purely in terms of the metric and its derivatives.
Indeed, the quadratic nature of the above relation can
be seen as the algebraic expression of the two possible
choices for flattening of the cell shown in Fig. 1.

As regards the continuum limit, we note that because
of our particular coordinate system, with unit edge length
in the space of coordinates, the continuum limit has to
be considered as the limit where the physical size of the
mesh cells approaches 0, not the coordinate size. Hence
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in the näıve limit, all differences vanish in the limit, and
in complicated expressions, the limiting form can be con-
structed by retaining only the leading-order terms, where
order is defined in terms of the number of products of dif-
ferences that occur. Hence in this case, we find that in
the näıve continuum limit Γ(µ)(i) ≈ Γ̃(µ)(i), and so we
retain only a single set of Christoffel symbols, and a sin-
gle connection, since:

(B(µ)(i))−1 = I− Γ̃(µ)(i) =
(
I + Γ(µ)(i)

)−1

≈ I− Γ(µ)(i)⇒ Γ(µ)(i) ≈ Γ̃(µ)(i), (11)

We can now define the covariant derivative of a general
tensor. The covariant derivative of a general product
(which may involve contractions) of two tensors F and
G is given by:

Dµ(FG)(i) ≡ (12)
(DµF(i))(DµG(i)) + (DµF(i))G(i) + F(i)(DµG(i)),

and we see that, as with dµ, the covariant derivative
doesn’t obey the Leibniz law.

We can also define a general directional covariant
derivative (where F is a general tensor):

(DXF)(i) , Xµ(i)(DµF)(i), (13)

Given the covariant derivative, we might be tempted to
define the covariant version of the divergence of a vector
field as:

(DµX)µ(i),

as is the case in the continuum. However, as we shall see
later in Section III D 2, this is not an appropriate choice
if we wish to retain the divergence theorem on the mesh.

C. The Torsion Tensor

We mentioned earlier that one way to compute the co-
variant derivative is to follow the case of Riemannian ge-
ometry and define a torsion-free connection. The action
of the torsion in the continuum is defined as:

T (X,Y ) , DXY −DYX − [X,Y ] , (14)

The Lie bracket [·, ·] has an intrinsic definition in terms
of the action of two tangent vectors on a function:

[X,Y ](f) , X(Y (f))− Y (X(f)), (15)

where the algebra closes, so that [X,Y ] is also a tangent
vector.

However, on the mesh the fact that the difference is
not a derivation means that the same property does not
hold. One possible definition of a Lie bracket on the mesh
is, however:

[X,Y ]ν(i) , Xα(i)dαY ν(i)− Y α(i)dαXν(i), (16)

which would give us the torsion tensor on the mesh:

(T (X,Y ))α(i) = (17)∑
µ,ν

Γαµν(i) (Xµ(i)Y ν(i+ µ)− Y µ(i)Xν(i+ µ)) .

However, this is not a well-formed tensor on the mesh,
since the expression does not contain the vector fields X
and Y in the form Xµ(i)Y ν(i). In the näıve continuum
limit it will vanish to first order (Xµ(i + ν) ≈ Xµ(i),
since Γαµν(i) is of the same order as dµ) provided that
the Christoffel symbols are symmetric (Γαµν(i) ≡ Γανµ(i)).
From this mesh definition, we find that:

Γαµν(i)−Γανµ(i) = e ν(i+µ)+e µ(i)−(e µ(i+ν)+e ν(i)),
(18)

which vanishes identically on the mesh, since if µ 6= ν,
this is just the condition that the cell of the mesh is
closed, and that i+ e µ(i) + e ν(i+ µ) is the same point
as i+ e ν(i) + e µ(i+ ν). Hence, the torsion defined here
becomes a well-formed tensor and vanishes in the contin-
uum limit, but not on the mesh. If we had tried to pro-
ceed as in the continuum, constructing the Levi-Civita
connection by requiring it to be torsion-free according to
the above definition of torsion, we would have failed.

However, the above link between symmetry of the
Christoffel symbols and the closure of the cells of the
mesh is an interesting result. It should be noted that
there is no similar, simple result for the other Christoffel
symbols, hence we cannot assume that Γ̃αµν(i) = Γ̃ανµ(i)
holds, except in the näıve continuum limit.

D. Curvature

In the continuum, the curvature tensor is often de-
fined by considering the parallel transport of a vector
around an infinitesimal closed loop, where the fact that
the connection is not flat is indicated by the fact that
the transported vector is not the same as the original
vector, but has been rotated by some angle. We could
consider a similar construction on the mesh, and parallel-
transport a vector around a closed loop[21] (in our case,
a cell of the mesh). However, if we did this, we would ob-
tain expressions that would be of fourth-order in terms of
the Christoffel symbols, whereas the curvature tensor in
the continuum is of second-order. Because a closed path
would have to contain links traversed in both positive
and negative direction, we would also expect that such
an expression would contain a mixture of the Christof-
fel symbols Γ and Γ̃ for the connections on the tangent
and cotangent bundles, which would introduce a further
complication.

We instead return to our geometric construction of lo-
cal flattening as shown in Fig. 1, but we now extend this
diagram, and attempt to flatten the basis vectors at the
i and the diagonally opposite point, i+µ+ν as well (see
Fig. 2). As can be seen from the diagram, the basis
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FIG. 2. A diagram showing how, when we start flattening at a
point i, we obtain two different versions of the basis vectors at
the diagonally opposite point i+µ+ν, depending on whether
we respect the cell based at i + µ, or the cell based at i + ν.
The difference between these two versions is the deficit angle,
as shown in the diagram.

vectors (and any other vector) at i + µ + ν cannot be
uniquely defined in flattened form. The answer we get
depends on whether we respect the flattening of the cell
based at i + µ, or whether we respect the flattening at
the other cell based at i+ν. The notation we will use for
the different versions of the flattened vectors at i+µ+ ν
is given in the diagram.

The two versions of the flattened vectors at i+µ+ν dif-
fer by a rotation, since flattening preserves lengths. This
rotation angle then represents the angle deficit (or angle
excess) we find when we try to flatten the mesh about the
vertex i+µ+ν, whilst still trying to preserve the metric.
This construction is then in accord with the usual defi-
nition of curvature for the higher-dimensional equivalent
of triangulated meshes in the Regge calculus[25].

In terms of the operations of DTC we have defined, we
see that the curvature can be computed by considering a
test vector at i+µ+ ν, which we then transport to i via
the two available paths. We will hence obtain an expres-
sion that is quadratic in the Christoffel symbols, and in
particular, that contains only the Christoffel symbols of
the connection on the tangent bundle. However, we will
not do this here, but leave it to Section III F, where we
will consider the mesh equivalent of the curvature tensor
along with the mesh equivalent of the curvature 2-forms.

III. DISCRETE EXTERIOR CALCULUS (DEC)

The discrete exterior calculus[8, 14] aimed to introduce
a discrete theory of differential calculus for simplicial
complexes, thus enabling numerical integration schemes.
It is based on differential forms, which have the benefits
of being covariant and relatively simple to discretize. In

this section we show how to construct a mesh version of
this approach.

In the continuum, a k-form is a section of the kth ex-
terior power of the cotangent bundle. On the mesh, we
will define a k-form α ∈ ΩkM as:

α(i) , (19)∑
µ1<µ2···<µk

αµ1µ2...µk(i)e µ1(i) ∧ e µ2(i) · · · ∧ e µk(i),

where · ∧ · is the antisymmetric, bilinear wedge product,
which we need to define for the mesh.

Informally, for the discrete mesh a 0-form can be
thought of as giving values to vertices, 1-forms giving
values to edges, and so on. Since we are working on a
two-dimensional mesh, we only need to consider 0-forms
(that is, functions, with one degree of freedom at each
point), 1-forms (two degrees of freedom at each point) ,
and 2-forms (one degree of freedom at each point). There
is hence only one non-trivial case for which we need to
define the wedge product. If ω and η are two 1-forms
then the 2-form formed by the wedge product has com-
ponents(s):

(ω ∧ η)µν (i) , ωµ(i)ην(i)− ων(i)ηµ(i). (20)

A. The Exterior Derivative

As is reviewed in Section A 3 we can construct an el-
ement of the cotangent space by applying a difference
operator to a function:

df(i) , dµf(i)e µ(i). (21)

In the language of forms, df is a 1-form constructed by
applying the exterior derivative d to a 0-form. We can
now generalize this in the usual way, so that d takes us
from a k-form to a k+1-form, by including the definition:

α ∈ Ω1M, (dα)µν(i) , dµαν(i)− dναµ(i). (22)

From these definitions, it then follows that we retain the
continuum property that d2 ≡ 0, but, as we might have
expected, we do not retain the property that d is a deriva-
tion. The exterior derivative d as applied to exterior
products of forms must be explicitly expanded in terms of
components if required (Since we are in two dimensions,
there is only one such expression which is non-trivial,
which is d(f ∧ α) ≡ d(fα), where f is a 0-form, and α is
a 1-form).

The forms on our mesh involve the difference oper-
ator, hence we will use the terminology of Hydon and
Mansfield[15, 20], and call such objects difference forms.
So far, we have considered only the positive difference
operator, hence could think of our forms as positive-
difference forms. When we come to consider the cod-
ifferential operator (the formal adjoint to d, see Sec-
tion III C), we will see that we also have to consider
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a negative difference operator, hence negative-difference
forms. In what follows, forms should be taken to mean
positive-difference forms unless further specified.

B. The Inner Product of Forms and the Hodge
Star

We can also construct a (pointwise) inner product be-
tween two k-forms. This is trivial for 0-forms, and for
1-forms, we just use the previously-defined result for the
inner product of cotangent basis vectors, to give:

gµν(i) , 〈e µ(i), e ν(i)〉 ⇒ 〈ω, η〉 (i) , gµν(i)ωµ(i)ην(i),
(23)

which is just the usual tensorial convention for contrac-
tion of indices. The inner product of 2-forms is defined
as:

〈α, β〉 (i) ,
∑
µ<ν

αµν(i)βησ(i)gµη(i)gνσ(i) (24)

≡ α12(i)β12(i) (det g(i))−1
. (25)

This form may seem a little odd on first encounter, since
it does not accord with the usual tensorial convention of
contraction over all indices. However, consider the phys-
ical vectors: α , α12 e

1 × e 2, β , β12 e
1 × e 2, where

· × · is the usual vector cross-product in R3. If we then
consider α · β , we see that we recover the inner product
of 2-forms as given above.

Before we can define the Hodge star, we first need to
define the area 2-form on our mesh da (the Levi-Civita
tensor), with component:

da(i)12 , |e 1(i)× e 2(i)|, (26)

where · × · refers to the usual Euclidean-space vector
cross-product of the physical basis vectors. This can be

related to the metric, since at every vertex i:

|e 1 × e 2|2 ≡ |e 1|2|e 2|2 − (e 1 · e 2)2

= g11g22 − (g12)2 = det g, (27)

and so:

daµν(i) ≡ εµν
√

det g(i), (28)

where εµν is the Levi-Civita symbol:

ε12 = −ε21 = 1, εµµ = 0, εµν , εµν . (29)

This is just the usual continuum definition of the volume
form. However, for our mesh, it should be noted that
da12(i) is not the area of the physical cell based at i
(which is not even defined, since in general the cell
is non-planar), nor even the area of the flattened cell
based at i, but the area of the parallelogram formed
by the basis vectors at i. It is of course possible to
compute the actual area of the flattened cell at i (which
is: 1

2 |(e 2(i+ 1)− e 1(i+ 2))× (e 1(i) + e 2(i+ 1))|),
but we can see that this expression is non-local in that
it will involve the metric at points other than i. We
hence retain the continuum definition, even if it is not
the physical area of the cell.

Now that we have defined the inner product and wedge
product for forms, we can also define the usual Hodge star
? acting on forms thus:

α ∧ ?β , 〈α, β〉da. (30)

So we see that in n-dimensions, the Hodge star is a linear
map from k-forms to (n − k)-forms. We then retain the
usual continuum expressions:

On functions: (?h)µν(i) = εµνh(i)
√

det g(i), (31)

On 1-forms: (?ω)µ(i) = −εµνgνλ(i)ωλ(i)
√

det g(i), (32)

On 2-forms: (?α)(i) =
1
2
εµνg

µλ(i)gνη(i)αλη(i)
√

det g(i) ≡ α12(i)√
det g(i)

,

(33)

along with the result that on a k-form, ?? ≡ (−1)k
2
.

Using the flat operator we defined previously, we can also
construct the Hodge dual of a vector X, where:

?X , ?(X[)

⇒ (?X)µ(i) , −εµνXν(i)
√

det g(i), (34)

⇒ ? ? X ≡ −X[.

C. The Codifferential Operator

So far, we have managed to construct versions of many
of the operators used in exterior calculus, in a form iden-
tical to that in the continuum. However, as we try to
construct the codifferential operator, the discrete version
starts to diverge, as we will now show.

In the continuum, the codifferential operator is defined
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as the formal adjoint of the exterior derivative:∫
〈dα, β〉da ,

∫
〈α, δβ〉da. (35)

The importance of the codifferential is that it allows us
to “pass derivatives across” within integrals, and hence
obtain Euler-Lagrange equations by considering the func-
tional variation of action integrals. It is also used, along
with d, to construct the Laplace-de Rham operator.

It is clear that we cannot construct the adjoint of d
on the mesh by applying this relation at a vertex, since
dα(i) involves the difference of components of the k-form
α evaluated at neighbouring points. We hence have to
consider the mesh version of this relation:∫

M

〈dα, β〉da ,
∫
M

〈α, δβ〉da, (36)

where by
∫
M we mean the sum over vertices

∑
i

. Starting

from this definition for the two cases where α is either a
0-form or a 1-form, it is straightforward to expand this
expression in terms of components, which shows that it
is possible to construct a codifferential operator dual to
d on the mesh, but only at the cost of also using the
negative-difference operator d see (A3):

δ ≡ − ? d?, (37)

dµGA(i+ e µ(i)) , GA(i+ e µ(i))−GA(i) ≡ dµGA(i),

where GA(i) are the components of some object on the
mesh.

We hence see that, as we might have predicted, the
codifferential δ involves d, which is just a difference op-
erator acting in the reverse direction to d. By requiring
that the positive difference operator has an adjoint, we
are forced to consider the negative difference operator as
well. We hence now briefly consider the new mesh struc-
tures generated by this operator.

1. Negative-Difference Forms

We define the components of a negative-difference 1-
form as:

dµf(i) , f(i)−f(i−µ) ⇒ df , dµf(i)e µ(i−µ), (38)

The general negative-difference 1-form is then the object:

ω̄(i) , ω̄µ(i)e µ(i− µ). (39)

In terms of the meaning of the flattened basis vec-
tors we established in Fig. 1, this combination of vec-
tors is well-defined and unique, since flattening from
the site j = i− µ− ν places the vectors {e µ(i− µ− ν),
e ν(i− µ− ν), e µ(i− µ), e ν(i− ν)} in a common space.

We now need to clarify our earlier definition of d (37),
since this earlier usage seemed to show it acting on a pos-
itive 0- or 1-form to produce a positive 1-form or 2-form.

If we consider the basic negative difference operator act-
ing on a function (A3):

(dµf)(i) , f(i)− f(i− µ),

we can construct either a positive or negative 1-form us-
ing these values:

(dµf)(i)e µ(i) or (dµf)(i)e µ(i− µ), (40)

and it is the former that we used in the definition of δ.
Similarly, for d acting on a positive or negative 1-form,
we produce either a positive or negative 2-form (where
(1 ↔ 2) is the usual notational shorthand for the first
expression with 1 and 2 switched over):

(dω)12(i) , d1ω2(i)− (1↔ 2), (41a)

(dω̄)12(i) , d1ω̄2(i)− (1↔ 2), (41b)

(dω)(i) , (dω)12(i)e 1(i) ∧ e 2(i), (41c)

(dω̄)(i) , (dω̄)12(i)e 1(i− 1) ∧ e 2(i− 2). (41d)

We hence see that we have actually used is a mapping be-
tween positive and negative forms in a coordinate basis,
by just passing across the component values. Similarly,
we can construct the operator dual to d acting on positive
forms, which is then found to be:

δ̄ ≡ − ? d ? . (42)

We could construct a pointwise inner product of negative-
difference forms in a similar way to the procedure for
positive-difference forms. We just need the corresponding
metric:

< ω̄, η̄ > (i) , ω̄µ(i)η̄ν(i)e µ(i− µ) · e ν(i− ν)(43a)

⇒ ḡµν(i) , e µ(i− µ) · e ν(i− ν), (43b)

which is uniquely defined by the geometric construction
of flattening and so can be derived from the metric given
previously. It should be noted, however, that in general
this is not the same as the value we would obtain if we
mapped the negative 1-forms to positive 1-forms.

In what follows, we will be using mainly positive forms,
and will hence only require the operators d, d, δ and δ̄,
and the Hodge star ? defined as acting on such forms.

D. Stokes’ Theorem

Stokes’ theorem says that for a manifold M with
boundary ∂M : ∫

M

dω =
∫
∂M

ω. (44)

This generalizes the gradient, curl, and divergence the-
orems. In this section we demonstrate that Stokes’ the-
orem holds on the mesh (where the manifold M will be
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replaced by some part of the mesh), and give the mesh
formulations of the curl and divergence theorems.

We begin with the definition of the codifferential given
in (37), first for the case where β is a specific 1-form:

βν(j) = ± 1√
det g(j)

gνµ(j)δj−i, (45)

where here δj−i is the Dirac delta function, and the ver-
tex i and direction µ are fixed, defining a single link of
the mesh. The sign defines whether the link will be tra-
versed in the positive or negative direction. We can then
construct δβ (37) as:

(?β)ν(j) = ±εµνδi−j
⇒ (d ? β)12(j) = ± (δi−j − δi+µ−j) ,

⇒ δβ(j) = − ? d ? β(j)

=
±1√

det g(j)
(δi+µ−j − δi−j) .

Inserting this into the right-hand side of (36), we obtain
the result:∫

M

〈α, δβ〉da = ± (α(i+ µ)− α(i)) , (46)

which is just the difference of the values of the 0-form α
at the beginning and end of the link defined by the form
of β given above. For this value of β the left-hand side
of (36) becomes:∫

M

〈dα, β〉da ≡
∫
M

dα ∧ ?β = ± dµα(i), (47)

and by comparing these two equations we see that our
definition of the codifferential operator (37) is consistent
in this very simple case.

Consider now the link i→ i+µ (although note that it
could also be traversed as i+µ→ i) as forming part of a
path γ on the mesh, with start point γ(0) and end point
γ(1). By considering the set of links forming a continuous
path we see that the above result can be generalized, and
written in the form:∫

γ

dα ≡
∮
∂γ

α , α(γ(1))− α(γ(0)), (48)

where ∂γ is the boundary operator ∂ applied to the path.
This is just Stokes’ theorem for 0-forms. If we consider
the grad operator as defined in (2), we then see that this
result is just the gradient theorem written for differential
forms.

To obtain Stokes’ theorem for 1-forms we consider the
specific 2-form:

β12(j) =
√

det g(j)δi−j . (49)

By substituting into the left-hand side of (36) we obtain:∑
j

(dα)12(j)β12(j)
det g(j)

da(j) = (dα)12(i). (50)

This can be considered as the integral of dα over a region
N ,

∫
N dα, where the form of β given above defines this

region N as just the cell based at i, which we will denote
by ♦i.

We now consider the right-hand side of (36):∫
M

〈α, δβ〉da ≡
∫
M

α∧?δβ = −
∫
M

α∧??d?β =
∫
M

α∧d?β,

(51)
where we have used the result that ?? = −1 when acting
on 1-forms. We hence only need to compute d ? β:

β12(j) =
√

det g(j)δi−j
⇒ (?β)(j) = δi−j

⇒ dµ(?β)(j) = δi−j − δi+µ−j .

This gives us that:∫
M

α∧ d ? β = α1(i) +α2(i+ 1)−α1(i+ 2)−α2(i), (52)

which is the result we obtained previously, confirming
again that our construction of the codifferential operator
is consistent.

We now consider the cell ♦i, and define the boundary
∂♦i (traced in the positive, anticlockwise direction) as
the sequence of moves:

e 1(i), e 2(i+ 1), −e 1(i+ 2), −e 2(i). (53)

We can then consider the α terms in (52) as representing
the integral of α around this boundary. By considering
an arbitrary collection of cells, forming some region N ,
we then find: ∫

N
dα ≡

∮
∂N

α, (54)

which is Stokes’ theorem for 1-forms, and completes our
derivation of Stokes’ theorem on the mesh.

To derive the mesh equivalent of the curl and diver-
gence theorems we will consider cases where the 1-form
α is generated from a vector field. We have two ways of
constructing a linear mapping from the space of tangent
vectors to the space of 1-forms: the flat operator (A15)
X[, and the Hodge dual (34) ?X. We start with the
former.

1. The Curl Theorem

We take Stokes’ Theorem for 1-forms (54), and define
α = X[. In components:

αν(i) = gνµ(i)Xµ(i)
≡ (e ν(i) · e µ(i))Xµ(i) ≡ e ν(i) ·X (i).
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The 2-form dα is then given by:

(dα)12(i) = d1(e 2(i) ·X (i))− (1↔ 2).

The curl operator acting on the vector X (i) can then be
defined as:

curlX (i) ,
1√

det g(i)
(d1(e 2(i) ·X (i))− (1↔ 2)) .

(55)
Note that in terms of the 1-form α and the exterior
derivative, this can also be written as:

curlα] , ? dα, curlX , ?(dX[), (56)

which agrees with the usual continuum expression in two
dimensions.
Expanding out, we find that:√

det g(i) curlX (i) = (57)
e 1(i) ·X (i) + e 2(i+ 1) ·X (i+ 1)
−e 1(i+ 2) ·X (i+ 2)− e 2(i) ·X (i),

which can be written as the path integral of X around
the cell boundary ∂♦i. By considering a collection of
such cells, we hence obtain the mesh version of the curl
theorem: ∫

N
curlX da ≡

∮
∂N

X · dl ,

where dl is an element of the path, and here da is just
the scalar area measure da(i) ,

√
det g(i) rather than

the related 2-form.
Note that if we take the special case X = grad f (2),

we can also then show that curl(grad f) ≡ 0 by using (56)
with α = df , as a consequence of the fact that d2 ≡ 0 on
all forms.

2. The Divergence Theorem

As before, we start from Stokes’ Theorem for 1-forms
(54), but we now take α = ?X. From (34):

αν(i) = −ενµXµ(i)
√

det g(i),

and so:

(dα)12(i) = dµ

(√
det g(i)Xµ(i)

)
.

Therefore, for this case the left-hand side of (54) can be
written as: ∫

N

1√
det g

dµ

(√
det gXµ

)
da,

where as before, da is the scalar area measure
√

det g,
rather than the area 2-form. We hence define the diver-
gence of a vector field as:

divX ,
1√

det g
dµ

(√
det gXµ

)
≡ ? d ? X, (58)

which then gives ? d? as the divergence operator on ei-
ther vectors or 1-forms. (If we define the divergence of a
1-form as divω], then it is straightforward to show that
divω] ≡ ?d ?ω.) In the continuum this is the usual defi-
nition of the divergence using the exterior derivative, and
there is an identity relating it to a version using the co-
variant derivative. However, as we might have expected
given the issues with the Lorentz law (and as we noted
earlier when we constructed the covariant derivative) the
same identity does not hold on the mesh. That is:

(DµX)µ 6= 1√
det g

dµ

(√
det gXµ

)
. (59)

To see this, consider calculating dµ
(√

det gXµ
)
. From

(5), we can see that this will involve a term containing
(in matrix notation):

det B(µ)(i) ≡ 1 + Tr Γ(µ)(i) + det Γ(µ)(i),

which is quadratic in the Christoffel symbols, unlike the
covariant derivative, hence we see the inequality (59)
must hold in general on the mesh, with equality only
recovered in the näıve continuum limit.

Now consider the righthand side of (54) for the case
of the integral around a single cell ∂♦i. As in (52), we
have:∮

∂♦i

α = α1(i) + α2(i+ 1)− α1(i+ 2)− α2(i).

Taking the first term and using the result in (A14):

α1(i) = −X2(i)
√

det g(i) = X (i) ·
(
− e 2(i)
|e 2(i)|

)
|e 1(i)|,

This expression has a simple interpretation. The vec-
tor (−e 2(i)/|e 2(i)|) is a unit vector perpendicular to
e 1(i), which is the unit normal to the link, and the sign
means that it is the outwardly directed normal to the
cell ♦i at this link. It is scaled by the related path length
|e 1(i)|. The same conclusions apply if we consider the
other terms. By considering an arbitrary collection of
such cells, we can hence derive the divergence theorem
on the mesh: ∫

N
divX da ≡

∮
∂N

n̂ ·X dl, (60)

where n̂ is the unit outward normal for any portion of
the path, which has path length dl.

To summarize our progress so far, we have defined
forms on the mesh, and we have defined the exterior
derivative d, constructed using the difference operator
dµ on components of forms. This exterior derivative then
maps k-forms to k+1-forms. We have shown that we can
retain the curl and divergence theorems on the mesh, but
at the cost of breaking the usual continuum link between
the divergence of a vector field defined using the covari-
ant derivative of tensor calculus, and the divergence de-
fined using the exterior derivative and the Hodge star.
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In the continuum the tensor calculus and exterior calcu-
lus are equivalent, but this is not true on the mesh. We
next proceed to look for an object in the discrete exterior
calculus that corresponds to the covariant derivative of
discrete tensor calculus.

E. The Covariant Exterior Derivative

Consider a 1-form ω(i) , ωµ(i)e µ(i). This can also
be viewed as a cotangent-bundle valued 0-form (func-
tion). Considering it in this light, if we apply the differ-
ence operator to it, then we have to take the difference

of cotangent-values at two different points on the mesh.
This will involve the connection Γ̃αµν(i) on the cotangent
bundle (10):

dµ(ω(i)) , ω(i+ µ)− ω(i)
≡ ων(i+ µ)e ν(i+ µ)− ων(i)e ν(i),

=
[
dµωη(i)− ων(i+ µ)Γ̃νµη(i)

]
e η(i).

Collecting components, we then obtain the usual tenso-
rial covariant derivative of a cotangent vector (9):

Dω(i) =
∑
µ,η

[
dµωη(i)− ων(i+ µ)Γ̃νµη(i)

]
e µ(i)⊗ e η(i).

We then antisymmetrize, to obtain the mesh formulation of covariant exterior derivative:

d
eΓω(i) ,

∑
µ<η

[
(dµωη(i)− ων(i+ µ)Γ̃νµη(i))− (µ↔ η)

]
e µ(i) ∧ e η(i). (61)

This acts on forms in a manner analogous to the exterior derivative d, in that it maps k-forms to k + 1 forms.

In the näıve continuum limit:

(deΓω)µη(i) ≈ (dω)µη(i)− ων(i)
(

Γ̃νµη(i)− Γ̃νηµ(i)
)
.

Hence, in the continuum, deΓ acting on 1-forms is equiv-
alent to d provided that:

T̃ νµη(i) , Γ̃νµη(i)− Γ̃νηµ(i) = 0,

where T̃ νµη is the continuum torsion tensor. This is true
in the continuum for a Levi-Civita connection, by defi-
nition. However, we have already seen (in Section II C)
that, on the mesh, the Christoffel symbols for the Levi-
Civita connection on the cotangent bundle do not have
this property. In the next section, we will look at the
torsion in the context of the discrete exterior calculus,
and in particular, the torsion 2-forms.

Note that we can also define a covariant exterior
derivative dΓ using the connection on the tangent bundle,
by considering a tangent vector X(i) as a tangent-bundle
valued 0-form, and hence obtain the tangent-bundle val-
ued 1-form:

dΓX(i) , dµ (Xν(i)e ν(i)) e µ(i)
≡ (DµX)ν(i)e ν(i)⊗ e µ(i), (62)

which is just the usual tensorial covariant derivative of a
tangent vector (8). We can also write this in the useful
form:

(dΓX )µ(i) = X (i+ µ)−X (i), (63)

where we now use X (i+µ) to denote the flattened phys-
ical vector at i + µ, where we have started flattening at
i.

F. Torsion, Curvature, and the Cartan Structure
Equations

Given the mesh version of the covariant exterior deriva-
tive, we can now use this derivative to construct the mesh
formulation of the torsion and curvature forms.

From the definition of the Christoffel symbols (10):

dµe α(i) = Γνµα(i)e ν(i),

dµe
α(i) = −Γ̃αµν(i)e ν(i).

If we consider e α(i) as a tangent-bundle valued 0-form,
then dµe α(i) are the components of a tangent-bundle
valued 1-form. We hence define the matrix of connection
1-forms:

$ν
α(i) , Γνµα(i)e µ(i). (64)

Similarly, we define the connection 1-forms for the con-
nection on the cotangent bundle:

$̃α
µ(i) , Γ̃αµν(i)e ν(i) (65)

For a fixed α, e α(i) lies in the cotangent space, and so
can be considered as a 1-form ω(i) with constant com-
ponents ωµ(i) = δαµ . From (61), the covariant exterior
derivative of this is:

(deΓe α(i))µη = Γ̃αηµ(i)− Γ̃αµη(i).

We hence define the torsion 2-form of the connection on
the cotangent bundle as:

(T̃α(i))µη , (deΓe α(i))µη = Γ̃αηµ(i)− Γ̃αµη(i). (66)
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This then gives us the first Cartan structure equation on
the mesh, for the torsion on the cotangent bundle:

T̃α , d
eΓe α = de α + $̃α

λ ∧ e λ. (67)

Since we are using a coordinate frame, the first term van-
ishes identically, but we include it here for the sake of
completeness, since this is the form of the equation in an
arbitrary frame.

We will now compute the torsion for the connection on
the tangent bundle. Consider the quantity:

E(i) , e α(i)⊗ e α(i), Eα(i) = e α(i). (68)

This can be described as a tangent-bundle valued 1-form,
which is the identity on any tangent vector. We now dif-

ferentiate this as a 1-form, but using the connection on
the tangent bundle. This is hence equivalent to comput-
ing the covariant exterior derivative dΓ. In components:

(dΓE)µν(i) = dµEν(i)− (µ↔ ν) (69a)
= (Γηµν(i)− Γηνµ(i))e η(i), (69b)

and we see that dΓE is a tangent-bundle valued 2-form.
The torsion of the connection on the tangent bundle is
then defined by:

Tα(i)e α(i) , dΓE(i) (70a)

⇒ Tαµν(i) , Γαµν(i)− Γανµ(i). (70b)

In terms of the connection 1-forms (64), we can then write:

Tαµν(i) = $α
νµ(i)−$α

µν(i) ⇒ Tα = de α +$α
λ ∧ e λ, (71)

which is the first Cartan structure equation for the connection on the tangent bundle.
From the closure condition on the mesh, the torsion of the connection on the tangent bundle vanishes identically.

We hence see that we have indeed managed to construct the equivalent of the torsion-free, Levi-Civita connection on
the mesh, although we have had to use the DEC version of the torsion, rather than the DTC version we attempted
to define in Section II C.

In the continuum, the curvature 2-forms are defined by considering the action of two covariant exterior derivatives
on a tangent vector field. As before, we consider a tangent vector field X(i) as a tangent-bundle valued 0-form.
Applying dΓ once generates a tangent-bundle valued 1-form, and applying it again generates a tangent-bundle valued
2-form. Using (63), we can write:

(dΓ(dΓX ))µν(i) =
(
(dΓX )ν(i+ µ)− (dΓX )ν(i)

)
− (µ↔ ν)

= X (i+ e µ(i) + e ν(i+ e µ(i)) )−X (i+ e ν(i) + e µ(i+ e ν(i)) ) ,

where, as before, we have the used the long form of i + µ + ν to make clear the two different flattened versions of
any vector at i+ µ+ ν (for the case where µ 6= ν), when we have started flattening at i. As we saw in Section II D,
these two vectors are not equivalent, but are related by a rotation in the plane, the angle of rotation being the angle
deficit at the vertex i+ µ+ ν. However, note that to maintain the consistency of our notation, this difference is used
to define the curvature 2-forms at i, rather than at i+ µ+ ν.

We now restrict ourselves to the case X(i) = e σ(i), with σ fixed (that is, the tangent vector field has constant
components Xλ(i) = δλσ). Our curvature is now the matrix of 2-forms Rησ defined by:

(dΓ(dΓe σ))(i) , Rησ(i)e η(i), (72)

which can then be written as:

(dΓ(dΓe σ))µν(i) = e σ(i+ e µ(i) + e ν(i+ e µ(i)))− e σ(i+ e ν(i) + e µ(i+ e ν(i))).

Using the definitions of the Christoffel symbols in terms of the basis vectors (10), we find (after some algebra) that:

(Rησ)µν(i) ≡ dµΓηνσ(i)− dνΓηµσ(i) + Γλνσ(i+ µ)Γηµλ(i)− Γλµσ(i+ ν)Γηνλ(i). (73)

This cannot be written in a totally straightforward man-
ner in terms of the connection 1-forms $α

β (64), since it
includes the Christoffel symbols at the three vertices i,
i+ µ, and i+ ν. However:

Rησ = d$η
σ +$η

λ ∧$
λ
σ + third-order terms,

so that we recover Cartan’s second structure equation in
the näıve continuum limit.

We can also construct the tensor form of the curvature,
the Riemann curvature tensor, defined by:

Rησµν , (Rησ)µν . (74)
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In terms of covariant derivatives of a tangent vector field
X, we then find that:

(Dµ(DνX)−Dν(DµX))η (i) = Rηλµν(i)Xλ(i+ µ+ ν).

This formalizes the link between the curvature form,
and the non-equivalence of parallel transport two ways
across a cell that we described in Section II D. It also
gives us the usual link between curvature and the non-
commutation of second-order covariant derivatives (in a
coordinate basis).

Thus, by using a discrete exterior calculus approach
we are able to construct a representation of the geometry
that is sufficient to include Cartan’s structure equations.
We now demonstrate the use of our discrete differential
geometry on a sample dynamical system to show how it
works in practice.

IV. AN EXAMPLE DYNAMICAL SYSTEM ON
THE MESH: ELECTROMAGNETISM AND U(1)

LOCAL GAUGE INVARIANCE

In this section we will construct a mesh equivalent of
classical electromagnetism as a demonstration of our dis-
crete differential geometry on quadrilateral meshes. We
will take spacetime to be the simple (2 + 1) dimensional
productM⊗R, where the spacelike sections (the mesh)
are fixed and discrete, and time is continuous and flat.

Even in the classical case[24] electromagnetism in (2 +
1) dimensions is far from straightforward, and has been
of interest for several decades[10, 26]. Aside from the
field-theoretic studies, such theories are also of interest
in condensed-matter physics, because of their relevance
to phenomena such as the quantum Hall effect[22], and
high-T c superconductivity[2]. It provides a non-trivial
test case for demonstrating the applicability of our cur-
rent formalism. Previous formulations of discrete elec-
tromagnetism include those of Bossavit[4] and Stern[28].
The latter also used a discrete exterior calculus approach,
but based upon triangular meshes.

The näıve approach to electromagnetism on the mesh
would be to take the continuum version of the Maxwell
equations, in either tensor calculus form or exterior cal-
culus form, and try to construct a mesh version of these.
We will dismiss the DTC approach, since we have already
seen that the DTC form of the divergence theorem does
not hold on the mesh (59), and the divergence theorem
for electric and magnetic flux is a far from trivial part of
the theory. We hence choose to apply the tools of DEC.

As regards the field content of our theory, we note
that in (2 + 1) dimensions, the Maxwell-Faraday equa-
tion curlE = −∂B /∂t, and the absence of magnetic
monopoles, mean that the magnetic field only has a sin-
gle orthogonal component. The electric field possesses
two degrees of freedom, and is therefore purely planar.
The physical field content is therefore composed of one
2-form field (the orthogonal magnetic field), and the 1-
form electric field. We could now take these fields, and

try to re-create the exterior calculus form of the contin-
uum Maxwell equations on the mesh. However, there is
a more theoretically satisfying way to proceed.

Electromagnetism (either classical or quantum) can be
considered as a field theory that possesses a U(1) lo-
cal gauge symmetry[32] (see Jackson and Okun[16] for
a historical review of the development of this idea for
electromagnetism). In classical continuum electromag-
netism, the physical electric and magnetic fields can be
described in terms of a scalar potential and a vector po-
tential. These potential fields are sufficient to define the
physical fields, but are not themselves totally determined
by the values of the physical fields. So, for example, in
electrostatics, the electric field is given by the spatial gra-
dient of the scalar potential, but the zero of the potential
is arbitrary. It is these symmetries of the physical fields
under suitable arbitrary transformations of the unphysi-
cal potential fields that is the local gauge symmetry, as
will be explained further below. Our approach to con-
structing the mesh theory is to construct it so that it
possesses the same fundamental symmetries as the con-
tinuum theory, and is locally gauge invariant.

We take the standard approach to classical U(1) gauge
theory, and consider a complex scalar field ϕ defined on
the mesh – for the moment, we will consider just the
spatial dependance of this field ϕ(j) ∈ C. Since this
field is a scalar, there is no geometric contribution to the
notion of a derivative of the field along a link. However,
we can introduce an extra structure, and specify a gauge
connection: when the field value ϕ(j + µ) is transported
from j + µ to j, and we define the corresponding value
at j to be given by:

ϕ(j + µ) −→ Uµ(j)ϕ(j + µ).

(Note that we have here used j to denote the vertex in-
dex, in order to avoid confusion with the complex number
i =
√
−1.) In particular, we take the connection Uµ(j)

to be of the form:

Uµ(j) , exp(iAµ(j)) ∈ U(1),

⇒ DA
µϕ(j) , exp(iAµ(j))ϕ(j + µ)− ϕ(j), (75)

where Aµ(j) ∈ R is a real 1-form field (a gauge field).
We hence see that the action of transport on a com-
plex number is defined to consist of a phase rotation
that leaves real-valued magnitudes such as ϕ†(j)ϕ(j) un-
changed (an obvious analogue of our earlier geometrical
construction (see Section II B) that parallel transport of
vectors changed their direction, but did not change their
lengths).

Real quantities of the form ϕ†(j)ϕ(j) are invariant un-
der either a global phase rotation ϕ(j) → eiθϕ(j) of the
field, or a local phase rotation ϕ(j) → eiθ(j)ϕ(j). We
can extend this local symmetry to the derivatives defined
above, provided that the fields Aµ(j) transform as well.
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It can be seen that as ϕ(j)→ eiθ(j)ϕ(j), so:

Aµ(j)→ Aµ(j)− θ(j + µ) + θ(j) = Aµ(j)− dµθ(j)
(76a)

⇒ DA
µϕ(j)→ eiθ(j)DA

µϕ(j), (76b)

which is the local gauge transformation for our mesh
fields. The defining characteristic of such classical or
quantum gauge field theories is that the requirement of
local gauge invariance places a restriction on the inter-
action between the various fields in the theory. For ex-
ample, from (75) we see that a possible gauge-invariant
interaction term between the gauge field and the complex
scalar field is:

ϕ†(j) exp(iAµ(j))ϕ(j + µ). (77)

If we consider gauge-invariant fields constructed solely
from the connection 1-form Aµ(j):

U♦(j) , eiAµ(j)eiAν(j+µ)e−iAµ(j+ν)e−iAν(j), µ 6= ν
(78)

(dA)µν(j) , dµAν(j)− (µ↔ ν). (79)

The variable U♦(j) is associated with a cell of the mesh,
(referred to as a plaquette in the lattice gauge theory lit-
erature), and is the Wilson loop variable[33]. The associ-
ated variable dA can be seen as the gauge-invariant spa-
tial curvature 2-form of the spatial part of the gauge con-
nection, Aµ(i). In order to preserve the gauge-invariance,
we consider transport around a closed loop, rather than
comparing two paths across a cell as in the geometri-
cal case (72). We can now interpret the gauge-invariant
quantity dA as a physical field. The single degree of
freedom it represents corresponds to the single degree of
freedom of the purely orthogonal magnetic field in (2+1)
dimensions, hence we take:

B , dA ⇒ dB ≡ 0. (80)

We then have the usual relation between the magnetic
field and the magnetic vector potential, with the curl of
the magnetic field vanishing identically in (2 + 1) dimen-
sions.

To obtain the electric field, we need to consider non-
static forms of local gauge transformations, and the ad-
dition of a gauge connection term to the temporal partial
derivative:

∂

∂t
→ ∂

∂t
+ iψ(j, t), ϕ(j, t) → eiθ(j,t)ϕ(j, t).

It is then straightforward to show that the connec-
tion/scalar potential ψ(i, t) must transform under a local,
non-static gauge transformation thus:

ψ(j, t) → ψ(j, t)− ∂θ(j, t)
∂t

, ψ(j, t)−
�
θ(j, t). (81)

The corresponding spatio-temporal curvature is found by
considering a closed path formed by traversing a single

link forwards and backwards at times t and t + δt. The
gauge-invariant physical variable is then given by:

Eµ(j, t) , −∂Aµ(j, t)
∂t

+ dµψ(j, t), (82a)

E , dψ −
�
A ⇒ dE ≡ −

�
B, (82b)

which is the electric field as a 1-form, represented in terms
of the magnetic potential 1-form A and the electric scalar
potential ψ in the usual way. We hence, as in the contin-
uum, obtain the first two of Maxwell’s equations, based
on the gauge fields alone.

We now consider the Lagrangian density L for the
gauge fields A and ψ without the scalar field. We cou-
ple the field to external, non-dynamic sources (charges
and currents), rather than to the mobile charges that
the scalar field represents. The source term in the La-
grangian we take as the simplest coupling to the gauge
fields:

Lsource =
∫
dt
∑
i

(Jµ(i, t)Aµ(i, t) +Q(i, t)ψ(i, t)) (83)

⇒ Lsource(i, t) = 〈J(i, t), A(i, t)〉+ 〈ρ(i, t), ψ(i, t)〉 ,
(84)

J(i, t) ,
1√

det g(i)
J [(i, t), ρ(i, t) ,

Q(i, t)√
det g(i)

, (85)

where J(i, t) , Jµ(i, t)e µ(i, t) is the current vector,
Q(i, t) is the charge at vertex i at time t, and J(i, t) and
ρ(i, t) are the corresponding 1-form and 0-form densities.
This corresponds to an intuitive physical model of the
sources, where the charges live at the sites of the mesh,
and the currents flow along the links.

The complete Maxwell Lagrangian density can then be
written as:

L , 1
2
〈E,E〉 − 1

2
〈B,B〉+ 〈J, A〉+ 〈ρ, ψ〉 . (86)

Note that we could also consider the addition of vari-
ous Chern-Simons (CS)[10, 26] terms to the Lagrangian
density. For example, following Guo and Fang (see their
equation (2.4)), for the case where time is continuous, we
would then have the analogue of the continuum Maxwell-
Chern-Simons theory[24], by the addition of the lattice
point-split CS term:

LCS=∫
dt
∑
i

[ψ(i, t)B12(i, t) + εµνAµ(i− µ, t)Eν(i, t)] .

This is invariant under a general gauge transformation
(76) & (81), provided that:∑

i

θ(i, t)f(i+ y, t) =
∑
i

θ(i− y, t)f(i, t),

where y is some lattice displacement. That is, we either
do not have a spatial boundary, or we have periodic spa-
tial boundary conditions.
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Returning to the Maxwell case, as in the case of the
scalar field (77), the requirement that the Lagrangian is
gauge-invariant places a condition on the source terms.
By considering such a transformation θ(i, t), and comput-
ing the functional derivative of the Maxwell Lagrangian,
we see that:

δL

δθ(i, t)
= 0 ⇒ δJ− ∂ρ

∂t
= 0

⇒ dµJ
µ(i, t) +

∂Q(i, t)
∂t

= 0, (87)

where:

dµJ
µ(i, t) ,

∑
µ

(Jµ(i, t)− Jµ(i− µ, t)) (88)

≡ J1(i, t)− J1(i− 1, t) + J2(i, t)− J2(i− 2, t).

We can therefore think of dµJµ(i, t) as a measure of the
divergence of the current vector field at a point; Jµ(i, t)
represents currents flowing away from the point i along
the links i→ i+ µ, whereas −Jµ(i− µ, t) represents the
currents flowing away from i to the points i− µ. Hence,
the constraint on the sources required by local gauge in-
variance is just the condition that charge is conserved
(an example of Noether’s first theorem on our mesh),
and that a net current flow out of the point i is reflected
by an decrease in the charge Q(i, t) at i.

The divergence operator div (defined in Sec-
tion III D 2) acts on vectors to produce a scalar density,
defined on a cell of the mesh, which is then integrated
over a cell or cells to find the related total flux out of the
area. In contrast, the divergence measure defined here
defines the total flow out of a point, is a scalar rather
than a scalar density, and requires only summation to
compute the total outward flux. From (58), we have:

divX ,
1√

det g
dµ

(√
det gXµ

)
≡ ? d ? X,

whereas from (88) & (85):

dµJ
µ(i, t) = dµ

(
gµν(i)Jν(i, t)

√
det g(i)

)
=
(
d( ?J)

)
12

(i, t)

=
√

det g(i) ? d ? J(i, t),

⇒ 1√
det g

dµJ
µ(i, t) = ? d ? J(i, t).

We hence see that the operators for the cell-wise and
point-wise divergences are related, by interchanging the
positive and negative difference operators d and d.

The Euler-Lagrange equations of the fields can now be
obtained by calculating the functional derivative of the
Lagrangian with respect to the gauge fields. We find

that:

δL

δA
= 0 ⇒ δB = J +

∂E

∂t
Ampère’s circuital Law

(89)
δL

δψ
= 0 ⇒ δE + ρ = 0, Gauss’ Law

(90)

Together with the relations:

dE = −∂B
∂t

Faraday’s Law of induction (91)

dB = 0 Gauss’ Law for magnetism (92)

these form the mesh version of Maxwell’s equations. The
form of Maxwell’s equations on our non-planar quadri-
lateral mesh in (2 + 1) dimensions is very similar in form
to the discrete model constructed by Schwalm et al.[27],
who used simplex methods on triangulated meshes[23].
However, note that their treatment was primarily topo-
logical, in that it only used adjacency rather than a met-
ric and/or a connection. As we will now see, utilizing the
extra structure provided by the metric allows a deeper
understanding of the mesh model.

We now show how these equations for forms correspond
with the usual continuum concepts of magnetic and elec-
tric flux and flux densities. Starting with Ampère’s Law,
we apply the Hodge star to get:

d ? B = ? J +
∂

∂t
(? E). (93)

The field B is the magnetic 2-form, corresponding to
purely orthogonal magnetic fields. A general 2-form can
be considered as containing the area of the cell within
it, hence we will consider B(i, t) as representing the total
magnetic flux piercing the cell ♦i at time t. We hence
introduce the scalar flux density for the cell at i thus:

B(i, t) , ? B(i, t) =
B12(i, t)√

det g(i)
. (94)

As regards the electric flux, we take the 1-form E as a
flux density, in the sense of being a 1-form density. We
hence define the total flux vector:

Φ(i, t) , E](i, t)
√

det g(i) ⇒ (?E)µ(i, t) ≡ −εµνΦν(i, t),
(95)

where Φµ(i, t) now represents the total electric flux pass-
ing along the link i→ i+µ. We hence see that the electric
flux lies wholly in the surface defined by the mesh, and
is confined to flux tubes lying along the links. Ampère’s
Law (89) can now be written in flux form as:

dµB = −εµν
[
Jν +

∂

∂t
Φν
]
. (96)

The difference in magnetic flux density B between the
two cells lying on either side of a link depends on the
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current flowing along that link, and the rate of change
of electric flux along the link. This accords with the
usual continuum picture in (3 + 1) dimensions, where
the loop integral of the magnetic field varies according
to the current passing through the loop, and the rate of
change of electric flux through the loop. Similarly, Gauss’
Law (90) can now be written in the flux form:

dµΦµ(i, t) = Q(i, t). (97)

As in the interpretation of the law for charge conserva-
tion, this says that the total electric flux flowing away
from a site, along all the links connected to the site, is
equal to the charge at that site.

We can also obtain the mesh form of the wave equa-
tions for the field variables E and B, which are:

∂2B

∂t2
+ (dδ + δd)B = dJ, (98)

∂2E

∂t2
+ (dδ + δd)E = −dρ− ∂J

∂t
. (99)

Terms such as δd acting on B (which is of course iden-
tically zero since B is a 2-form), have been included to
make it clear that both wave equations contain the mesh
version of the Laplace-de Rham operator:

∆ , dδ + δd. (100)

Now let us consider the field energy, which is given by
the Hamiltonian H. At time t, the total energy is:

HM(t) ,
∑
i∈M

[
1
2
〈E,E〉+

1
2
〈B,B〉

]
da.

It is then straightforward to show that, if there are no

currents, the field energy is conserved and
�
HM = 0. If

we now restrict ourselves to a single point i, then the rate
of change of field energy at that point is given by:

�
Hi = −(E ∧ ?J)12 + (δB ∧ ?E)12 + B

�
B12.

The first term is the usual exchange of energy from the
currents to the fields. If we define the point-split vector:

S1(i, t) , −B(i, t)E2(i+ 1, t), (101a)

S2(i, t) , B(i, t)E1(i+ 2, t), (101b)

then the rate of change of energy can be written in the
compact form:

�
Hi = −Eµ(i, t)Jµ(i, t) + dµS

µ(i, t). (102)

The vector Sµ(i, t) (101) is the mesh point-split version
of the Poynting vector, which represents electromagnetic
energy flux. As in the case of electric currents and elec-
tromagnetic flux (88), dµSµ(i, t) can be considered as the
total energy flux along all the links connected to the site
i, hence (102) is the mesh version of Poynting’s Theorem.

V. DISCUSSION: OTHER PHYSICAL MODELS

We have seen that it is possible to construct a mesh
version of electromagnetism, by requiring that the funda-
mental symmetries of the continuum theory are retained
exactly. We hence now try to apply the same principle to
a different physical theory, that of a viscous, compress-
ible fluid in (2 + 1) dimensions. We use the spaceM⊗R
as before.

The first obvious physical variables are the density
of the fluid ρ(i, t), and the flow velocity of the fluid
v (i, t) = vµ(i, t)e µ(i). Now let us assume we have an
intensive physical quantity G(i, t) (which may be scalar,
vector etc.). Given the derivation of the divergence in
(58), we then see that the continuity equation for this
physical quantity G(i, t) can be written as:

∂G(i, t)
∂t

= −div (G(i, t)v (i, t)) + q(i, t).

Note that the subscript that appears in the dµ term in
the expansion of the divergence links to the superscript
in the components of v (i, t), not to any components that
the quantity G(i, t) may possess.

The physical meaning of this equation is that the rate
of change of the relevant physical quantity for cell ♦i
equals the rate at which this flows out of the cell, plus
the extra term q (i, t), which is the source or sink of the
corresponding quantity.

To be specific, for fluids we consider first the scalar
intensive quantity which is density, and the statement
that mass is conserved for the flow, with no sources or
sinks. Hence we have G(i, t) = ρ(i, t) in this case, and
the mass-conservation condition can be written as:

∂ρ(i, t)
∂t

+ div (ρ(i, t)v (i, t)) = 0.

We cannot simplify this by expanding it out, since dif-
ferences are not derivations. However, for the case of an
incompressible fluid, we do obtain the usual divergence-
free condition on the flow: div v = 0.

Momentum conservation is then defined by taking
G(i, t) = ρ(i, t)v (i, t), with forces being a source or sink
of momentum. In order to make clear the action of the
divergence on this dyadic product, we now expand out
the divergence, to obtain the final form:

da(i)
∂

∂t
[ρ(i, t)v (i, t)] =

−dµ [da(i)ρ(i, t)v (i, t)vµ(i, t)] + da(i)b (i, t),

where b (i, t) are the relevant body forces (e.g., pressure
and viscous forces, as well as external applied forces), and
da is the scalar area measure da(i) ,

√
det g(i). In the

näıve continuum limit, dµ would become the usual partial
derivative, and this would then give the usual velocity-
dependent terms that appear in the continuum Navier-
Stokes equations in a curved space (note that the partial
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derivatives of the basis vectors would give the Christoffel
symbols (10), hence covariant derivatives in this limit).

We hence see that for fluids, we have been able to se-
lect the important physical laws that we wish to maintain
exactly on the mesh (conservation of mass and conserva-
tion of momentum), and shown how these conservation
laws can be written in the usual form suitable for nu-
merical simulation. A complete treatment would entail
specifying the nature of the viscous and pressure forces
on the mesh, but for reasons of space, we do not pursue
this further here.

VI. CONCLUSIONS

In this paper we have introduced a discrete differen-
tial geometry for quadrilateral meshes. This has appli-
cations wherever interpolation is an important part of
the proposed system, such as in image analysis and some
field theories, since triangular meshes require consider-
ably more computational effort for this. Our approach
has been to construct a discrete theory that admits par-
allels to that in the continuum, but that is inherently
self-consistent. We have considered two ways to do this:
by developing a tensor calculus, and by developing differ-
ence forms on the mesh and producing a discrete exterior
calculus, which has some similarities to that of Hirani
and co-workers[8, 9, 14, 28], but based on quadrilaterals,
rather than simplicial complexes.

One striking difference between the continuum case
and our meshes is that these two approaches do not
match, since the ‘divergence’ of a vector field is differ-
ent depending whether it is calculated using the covari-
ant derivative of tensor calculus or the exterior derivative
and Hodge star of differential forms. This has led to us
favoring the discrete exterior calculus version of our for-
mulation, which admits Stokes’ theorem.

We have therefore used this version for the construc-
tion of the mesh version of electromagnetism, which illus-
trates several points. Most importantly, it shows that it is
possible to construct mesh versions of continuum theories
that respect exactly the relevant symmetries and conser-
vation laws of the continuum theory. We have shown how
this can be extended to other physical theories, such as
fluids, where the relevant conservation laws are for mass
and momentum.

Finally, we note that this paper considered just the
case of a curved 2D surface, and in our future work we
will consider the extension of these methods to curved
3D spaces and to spacetimes.

Appendix A: Basic Definitions

In this appendix we introduce the basic definitions of
discrete differential geometry for the reader who is not
familiar with them. The fundamental space that we con-
sider is a non-planar, quadrilateral mesh M ⊂ R3 with

the same connectivity as a regular square grid in R2. We
label the vertices of this mesh by i and assign direction
labels to links in the mesh in a consistent manner so that
from a site i we can travel along a (directed) edge in a
direction µ to arrive at site i + µ, and along a different
edge in direction ν to arrive at site i + ν. We will also
define a coordinate chart on our mesh, which we take to
be a regular square mesh of edge length 1 unit.

1. Difference Operators

A scalar function on the mesh is defined by specifying
the value of the function f at each vertex: {f(i) : i ∈M}.
We can then take the difference of values along a link in
the obvious way[15, 20, 35], by defining a shift opera-
tor, and hence the basic forward (or positive) difference
operator:

Sµf(i) , f(i+ µ) (A1)

⇒ dµf(i) , (Sµ − 1)f(i) ≡ f(i+ µ)− f(i) (A2)

We can define a backward (or negative) difference opera-
tor similarly:

dµf(i) , f(i)− f(i− µ) (A3)

Based on our coordinate choice, in the näıve continuum
limit the difference operator dµ (and also the difference
operator dµ) become the coordinate partial derivative ∂µ.
However, since they are difference operators, they are not
derivations, and do not obey the Leibniz (or product)
law. That is, we have the deformed Leibniz rule[35]:

dµ(fh)(i) ≡ f(i+ µ)h(i+ µ)− f(i)h(i) (A4)
≡ h(i+ µ)dµf(i) + f(i)dµh(i) (A5)
6= f(i)dµh(i) + h(i)dµf(i). (A6)

2. Directional Derivatives

We have defined a scalar-valued function in terms of
values defined at the vertices of our mesh. The complete
mesh consists of vertices and links, hence it is natural to
consider also a mesh field defined in terms of values as-
signed to links. Let Xµ(i) denote the value of the field X
on the directed link i→ i+ µ. The directional derivative
of a function can then be defined as:

X(f)(i) , Xµ(i)dµf(i) ≡
∑
µ

Xµ(i) [f(i+ µ)− f(i)] .

(A7)
Note that unless otherwise stated, we will employ the
Einstein summation convention, so that paired subscripts
and superscripts A···µ······ B······µ··· are summed over. We
hence see that X can be considered as a tangent vec-
tor to the mesh since it defines a linear mapping from
the space of functions to the reals. The value of X at
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a vertex i is thus an element of TiM(which, for conve-
nience, we denote as Vi) and is given by the components
{Xµ(i) : µ = 1, 2}. This is in accord with the definition
of tangent spaces that we used in the Introduction.

3. Basis Frame

Now let us suppose we have some physical realization
of our mesh in R3. The edge from i to i + µ then cor-
responds to a physical vector e µ(i). The set of vec-
tors {e µ(i) : µ = 1, 2} then form a basis for the tan-
gent space Vi at i and an abstract tangent vector field
X = {Xµ(i)} can be represented by a physical vector
X (i) , Xµ(i)e µ(i) at each vertex of the mesh. We can
also define the dual basis at i, {e α(i)}, where:

〈e α(i), e β(i)〉 , δαβ , (A8)

where 〈·, ·〉 is the Euclidean scalar product, and δαβ is the
Kronecker delta. In what follows, for reasons of brevity,
we will sometimes write the Euclidean scalar product as
e α(i) · e β(i). This dual basis spans the cotangent space
denoted by T ∗iM or V ∗i , dual to Vi. So the cotangent vec-
tor (one form) defined by df with components {dµf(i)}
at i can then also be written as a physical vector:

df , dµf(i)e µ(i), (A9)

and the action of the vector X on the function f can be
written in the form:

X(f)(i) , Xµ(i)dµf(i) ≡
〈
df (i), X (i)

〉
= (df,X) (i),

(A10)
where (·, ·) is the contraction of a cotangent vector with
a tangent vector.

Rather than using the notation df and X , it is com-
mon to refer to the scalar product 〈·, ·〉 between abstract
objects, where this scalar product is to be understood as
that generated by the Euclidean scalar product when we
move from the abstract basis vectors {e α(i)}, {e α(i)} to
some appropriate physical realization of these basis vec-
tors. What exactly we mean by “appropriate” should be
clear in the paper, based on the relation between basis
vectors at neighbouring vertices.

4. The Metric

With the definition of the frames {e α(i)}, {e α(i)}
given in Section A 3, we can now define a general well-
formed tensor field of type (m,n), A ∈ Tmn M, which we
will take to be of the form:

A(i) ,Aµ1µ2...µm
ν1ν2...νn (i) (e µ1(i)⊗ e µ2(i) · · · ⊗ e µm(i))
⊗ (e ν1(i)⊗ e ν2(i) · · · ⊗ e νn(i)) .

Note that A(i) lies in Tmn Mi, formed by taking prod-
ucts of Vi and V ∗i . We could also define quantities on the

mesh with components, and products of m tangent basis
vectors and n cotangent basis vectors, but these quan-
tities are only well-formed if the tangent and cotangent
spaces all lie at the same base point i.

A metric can now be defined as the positive-definite,
symmetric bilinear mapping from Vi ⊗ Vi to the reals
defined by:

g(X,Y )(i) , 〈X,Y 〉 (i) = 〈e α(i), e β(i)〉Xα(i)Y β(i),
(A11)

which is a symmetric tensor of type (0, 2) with compo-
nents:

gαβ(i) , 〈e α(i), e β(i)〉 . (A12)

From this definition of the metric it is clear that for a
physical mesh the 3 independent degrees of freedom of
the metric at a point i are the lengths of the two links
i→ i+ µ and i→ i+ ν, and the angle between them.

Considering g(i) as a matrix, we also have the inverse
matrix g−1(i), which is a tensor of type (2, 0), with com-
ponents:

gαβ(i) ,
〈
e α(i), e β(i)

〉
. (A13)

We note here a relation that is useful in the paper: by the
definition of gµν(i) as the elements of the inverse of g(i),
we see that g11(i) det g(i) = g22(i) and g22(i) det g(i) =
g11(i). Since g11(i) ≡ |e 1(i)|2 and g22(i) ≡ |e 2(i)|2, we
find that:

|e 1(i)|
|e 2(i)|

=
√

det g(i) =
|e 2(i)|
|e 1(i)|

. (A14)

The metric g and its inverse g−1 can be used to raise and
lower indices in the usual way, defining the sharp ] and
flat [ operators:

(ω])µ(i) , gµν(i)ων(i), (X[)µ(i) , gµν(i)Xν(i). (A15)

Note that this definition means that for a given physi-
cal mesh, there are two different possible choices, corre-
sponding to which angle of the quadrilateral we chose to
be the one in the metric. The other angle is not included
in the metric, corresponding to a freedom in bending
a single quadrilateral about the corresponding diagonal.
However, in general this folding will not be possible for
a physical mesh, since each cell is constrained by others.
In effect, the choice is equivalent to choosing a partic-
ular triangulation of the quadrilateral mesh, where the
triangulated mesh metric is defined by giving the lengths
for all links. And note that we cannot include both an-
gles in the quadrilateral in the metric, since then we have
too many degrees of freedom to make the link with the
continuum case. Also, fixing both angles does not al-
low us to locally flatten the mesh (see Fig. 1), which is
the mesh version of the locally-Euclidean property of a
Riemannian manifold.
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