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1 Introduction

Non-rigid registration of biomedical images has been used as a way of establishing a mean-
ingful dense correspondence between images of the same physical object. For example, it can
be used to establish a dense correspondence between images of the same object taken using
different imaging modalities (e.g., MRI and X-ray), or between a new example and a previously
constructed annotated anatomical atlas.

In general, a dense set of points on a sample image are ‘warped’ by a (non-linear) function,
so that the reconstructed object in one image has the ‘same’ appearance as the object in the
target image. Given a set of images that have been brought into mutual registration (by whatever
method), the set of warps implicitly encodes information about the variability of the structures
present in the images. If the warping functions are constrained to be smooth whilst also not
tearing or folding the image, then the functions are bijective, invertible and differentiable to
some order. Furthermore, if the objects considered are discrete and bounded, it seems that the
appropriate set of warp functions to consider will belong to the group of diffeomorphisms with
some non-trivial boundary conditions.

Finally, in order to be able to statistically analyse the variability and similarity of the imaged
objects using the information encoded in the warp fields, some method of measuring a well-
defined ‘distance’ on the space of warps is required. Given some parameterized representation
of the warps, it should be possible to work directly in this space of parameters. However,
it is clear that imposing an ad hoc Euclidean distance on this parameterised space cannot be
considered meaningful in any geometric or group-theoretic sense.

This paper aims to develop general tools for building statistical models on the space of
warps of pixellated/voxellated images. In previous work (e.g., Camion and Younes (2001)) the
idea of a metric distance between warps was used in the context ofinexact landmark matching,
where the closeness of fit of the set of landmarks was balanced against the metric distance of
the warp from the identity. For our application, we consider that a previously generated warp of
a pixellated image is completely defined by the transformed coordinates of all the image pixels;
these then become our ‘landmarks’. We are hence only interested in the exact matching case,
since this corresponds to the exact description of the warp.



Figure 1: From left to right: The original image, the paths of five (randomly chosen) control
points and the unit circle (grey), the thin-plate spline interpolant of the deformation field, the
clamped-plate spline interpolant and the geodesic interpolating spline.

2 Metrics, Splines and Diffeomorphisms

2.1 A Suitable Metric

To be suitable for our purposes the metric distance between two warps should be independent
of the choice of reference warp. That is, the metric on the space of diffeomorphisms must be
invariant under the action of the group Diff(M), i.e.,

d(θ, φ) = d(ψ ◦ θ, ψ ◦ φ) ∀ θ, φ, ψ ∈ Diff (M),

whereψ ◦ θ is the group multiplication. Camion and Younes (2001) show how to construct
metrics that have this property. They describe an energy minimization algorithm that enables
them to compute a geodesic flow of diffeomorphisms on deformable data. Their implementation
is based on interpolating splines such as ‘thin-plate splines’ (Bookstein, 1989) and Gaussian
splines that do not have any specific boundary conditions imposed.

We extend their method by introducing a spline with both Dirichlet and von Neumann
boundary conditions, which we will call the ‘clamped-plate spline’. This seems an appropriate
choice for the set of warps in the case of discrete objects; the mapping of the boundary between
different examples corresponds to performing an initialrigid registration of the images.

2.2 The Clamped-Plate Spline

Consider a functionf(r), r ∈ Rn, with nc constraints{f(ri) = fi, i = 1, . . . , nc}. The
clamped-plate spline interpolant for this function has the formf(r) =

∑
i

αiG(n)(r, ri), where

G(n)(r,R) is the Greens function of the biharmonic equation inn-dimensions with Dirichlet
and von Neumann boundary conditions (Boggio, 1905):

G(n)(r,R) = |r−R|4−n

A(r,R)∫

1

(v2 − 1)

vn−1
dv, A(r,R) = (|r−R|)−1

√
|r|2|R|2 − 2r ·R + 1.

This interpolant minimizes the same approximate form of the Willmore (1992) energy (the
bending-energy) as the thin-plate spline (Bookstein, 1989), but has the important property that
the function and its first derivative are zero on the boundary of the unit ballDn.



2.3 Geodesic Interpolating Splines (GIS)

Consider a set of control points inDn with initial and final positions{qi(0),qi(1)}. Under a
flow of diffeomorphisms these points trace out paths{qi(t)} that are linked to the associated
velocity field by

dqi(t)

dt
≡ v(t,qi(t)).

The energy associated with this diffeomorphic flow is given by the integrated bending energy for
the velocity fields, which are expanded in terms of the clamped-spline interpolant. Calculating a
geodesicflow of diffeomorphisms with constraints hence corresponds to analytically optimising
this bending energy term with appropriate constraints:

E =

1∫

0

dt

∫

Rn

dq |Lv(t,q(t))|2 + λ

nc∑
i=1

1∫

0

dt

∣∣∣∣v(t,qi(t))− dqi(t)

dt

∣∣∣∣
2

, L = ∇2

where the sum is over the number of control pointsnc andλ is a Lagrange multiplier. Camion
and Younes (2001) give such an algorithm for the case of inexact landmark matching, while for
our case of exact matching we explicitly impose the constraint

v(t,qj(t)) =
dqj(t)

dt
=

∑nc

i=1
αi(t)G(qi(t),qj(t)),

and so the metric distance in the space of diffeomorphic flows is

d [{qi(t)}] =
∑nc

i=1

1∫

0

dt αi(t) · v(t,qi(t)).

Hence, for an optimal set of control point paths{qi(t)}, which minimise the above metric
distance, the optimal velocity field is fully determined and the path of any arbitrary point can be
computed by integration. This then defines the action of a GIS warp parameterised by the initial
and final positions of the control points. We have implemented an algorithm that computes
these optimal control point paths for 1, 2 and 3 dimensions. The outputs of the algorithm have
been compared with exact theoretical results for each case, and the algorithm has been shown
to quickly converge to the exact result and to have the correct time symmetry properties.

3 Generating Arbitrary Diffeomorphic Warps and
Interpolating Between Them

Let ω ≡ ω({qi(0)}, {qi(1)}) ∈ Diff (Dn) denote a geodesic interpolating spline (GIS) diffeo-
morphism. Given any arbitrary bounded diffeomorphismg that acts on some dense pixel setSe,
a GIS approximantω(Se) ≈ g(Se) can be iteratively constructed in the following manner (with
ω = e, the group identity element andnc = 0 being the initial approximant):

• Find the pixel positiony ∈ Se where the difference|ω(y)− g(y)| is maximal

• Add this point to the existing set of control points ofω, with endpointsy andg(y)

• Update the warpω

• Iterate until convergence



Figure 2: Left: The maximum (•) and mean (·) pixel discrepancies between a warp and its
approximant as a function of nc. Right: The distribution of maximum discrepancies in pixels for
the interpolated warp.

The left of figure 2 shows the maximum and mean pixel discrepancies between a diffeo-
morphic warp ofD2 and its approximant as the number of control points increases. The ex-
act diffeomorphic warps used for testing were created using the cumulative distribution of a
wrapped Cauchy function (Mardia, 1972), with several such warps with random parameters
being concatenated. The graph shows that the approximant converges rapidly.

As any arbitrary bounded diffeomorphism can be approximated to any required degree of
accuracy by a GIS warp (for a sufficiently large number of control pointsnc), for any set of
warps{ga : a = 1, . . . , n} we can construct the equivalent set of GIS warps{µa} ≈ {ga},
µa = ω({qi(0)}, {qa

i (1)}). The information about the distribution of the set of warps in the
space of diffeomorphisms is encoded by the set of geodesic distances between all pairs of warps:

d(µa, µb) ≡ d(e, µa ◦ µ−1
b ) ≡ d(e, µb ◦ µ−1

a ),

whereµ−1
a = ω({qa

i (1)}, {qi(0)}) is the inverse warp. We therefore need to be able to construct
warps that interpolate betweenµa andµb, that is, warps of the formµb ◦ µ−1

a . These warps
can be approximated by the warpνab = ω({qa

i (1)}, {qb
i(1)}), which is exactly equivalent to

µb ◦ µ−1
a at the control points. The accuracy of the approximant between the control points

was computed by comparingνab(µa(Se)) andµb(Se), since(µb ◦ µ−1
a ) (µa(Se)) ≡ µb(Se). The

maximum discrepancies in pixels between each interpolated warp pair from a set of 50 test
warps is shown on the right of figure 2. In 80% of cases the maximum discrepancy is less than
one pixel.

4 Applications of the Geodesic Distance

We have applied the above techniques to the analysis of diffeomorphic warps derived from two-
dimensional images of real biological objects. The behaviour of the geodesic distances across
the set of warps was compared to the Mahalanobis distances calculated from a linear model
based on the space of warp parameters. It was seen that the geodesic distance makes it easier to
distinguish between biologically plausible and implausible object deformations (see figure 3).

Furthermore, we have considered the case of classification of variation in biological objects;
here the geodesic distances were used as the input to a Support Vector Machine classifier.



Figure 3:Mahalanobis distance versus geodesic distance for warps based on the variation of
a set of hand outlines. Note that the geodesic distance penalizes those warps for which the
fingers cross, a variation that was not present in the training set.

5 Conclusions and Future Work

This paper has described a well-defined metric on the space of diffeomorphic warps. We have
introduced a new spline, the clamped-plate spline, which enables us to construct arbitrary
bounded diffeomorphisms on the unit ballDn. Using the clamped-plate spline, an algorithm
has been developed that computes the geodesic flow of diffeomorphisms; the algorithm has
been verified by comparison with exact theoretical results in 1, 2 and 3 dimensions.

We have shown that we can approximate an arbitrary bounded diffeomorphic warp to any
required degree of accuracy and interpolate between any two arbitrary warps, which enables
us to calculate the geodesic distances between all members of a set of bounded diffeomorphic
warps. Preliminary results have been presented that show the application of the method to the
analysis of sets of warps derived from real data.

Future work will consider applying the method to larger datasets, including those in three-
dimensions, and explicit model building on the space of diffeomorphic warps rather than warp
parameters.
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