
Künstl Intell (2013) 27:161–167
DOI 10.1007/s13218-013-0244-5

R E S E A R C H P RO J E C T

From Object Recognition to Activity Interpretation and Back,
Based on Point Cloud Data

Sven Albrecht · Thomas Wiemann ·
Joachim Hertzberg · Hans W. Guesgen ·
Stephen Marsland

Published online: 28 March 2013
© Springer-Verlag Berlin Heidelberg 2013

Abstract Semantic mapping of static environments has be-
come a hot topic in robotics. The aim of the MERMAID

project was to investigate the transfer of a sensor data in-
terpretation approach for mapping to the problem of activity
recognition in smart home applications such as elderly care.
The basic structure of the semantic mapping approach, i.e.,
to assemble hypotheses of object aggregates in a closed-loop
process of bottom-up raw data interpretation and top-down
expectation generation from a domain ontology, can be ex-
tended to the temporal domain to include activity interpreta-
tion. This paper reports initial results, based on a study using
point clouds from depth (RGB-D) sensor data.
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1 Background and Related Work

Semantic maps extend regular environmental maps (either
2D or 3D) in two respects: (1) mapped objects can be clas-
sified, and (2) data from some knowledge base about the
objects (or their generic classes) is available [15, Chap. 8.2].

Obviously, some variant of the Symbol Grounding prob-
lem [14] needs to be solved in the process, but luckily, not
in full generality. In fact, semantic mapping is not the only
sub-problem in robot control that requires some aspects of
the symbol grounding problem to be solved: any hybrid
robot control architecture (i.e., any architecture that amalga-
mates reactive and deliberative control components) needs
to do so [18]. Consequently, the robotics literature contains
quite a number of more or less special, restricted solutions
to the symbol grounding problem, from pragmatic hacks
such as canned object recognition in the 1960s SHAKEY

work [22] to principled specializations, e.g., object anchor-
ing [8].

Semantic mapping simplifies or specializes symbol
grounding in that only physical objects of known classes
need be recognized, as in object anchoring. However, indi-
viduals need not be identified and tracked; in most cases,
it is sufficient to recognize an anonymous instance of some
object class. For example, it might suffice to label an ob-
ject in a semantic indoor map as Table; the individual name
Table-22 may not be needed.

In own previous work on semantic mapping, starting
with [23], we have investigated the closed-loop nature of
the semantic mapping process. Using 3D point clouds (gen-
erated from 3D laser scans in the original work) as sensor
data we start from a seed of object detection or hypothe-
sis, such as the detection of a Table object (see, e.g., [13]
for a sketch how this is achieved). With these seed objects,
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we use the knowledge base to generate hypotheses about
classes of objects that may occur in the vicinity of the ob-
ject just recognized; practically, we have been using hand-
crafted DL ontologies for knowledge representation here.
These hypotheses help recognize further objects, and so on.
Without going into detail here, the point is that knowledge
about aggregations of objects and relations between objects
helps the sensor data interpretation process. This approach
was originally inspired by an approach to Cognitive Vi-
sion [21].

The hypothesis behind the work reported in this paper
is this: the closed-loop sensor data/knowledge base process
that we have been using for semantic mapping can be ex-
tended into the temporal domain so that in addition to ob-
jects, observed activities can be recognized. In terms of sym-
bol grounding, that means that our approach is extended to
grounding symbols denoting activity observed in the envi-
ronment.

In investigating this ‘activity grounding’, we are entering
another currently hot topic, namely, activity recognition; the
collection [5] gives a recent overview, and see also [20] for
a specification of use cases for a smart home and [6, 12] for
other approaches to activity recognition. Our project aimed
to develop a case study to investigate whether the methodol-
ogy used in semantic mapping could be extended to activity
recognition, ending in fact in some form of semantic percep-
tion of both static parts and dynamic processes and/or events
in the environment.

The domain chosen for this project is that of a smart
home providing monitoring for the elderly; the project part-
ner Massey University has been involved in this for some
years (see http://muse.massey.ac.nz). In that domain, ac-
tivity (or behavior) recognition is often based on machine
learning algorithms applied to sets of tokens that arise from
state-change sensors such as motion detectors, electrical us-
age sensors, and cupboard sensors. In this project we fo-
cus on change detection based on analysis of scenes. This
is not as simple as using state-change sensors, but the aim
is the same: to provide a set of tokens concerning the use
of objects that will enable behavior recognition algorithms
to identify and analyse the actions of the house inhabi-
tant(s).

As a running example for objects and activities from that
domain, consider breakfast time at a kitchen table: relevant
objects are plates, mugs, cereal bowls, cutlery, and diverse
place settings, which are aggregates of these; expected ac-
tivities are laying the table, eating breakfast, and so on.

In the rest of this paper, we first sketch the process of
scene segmentation that allows regions in the scene to be
clustered and objects segmented. Then we turn to describ-
ing how activities are represented and recognized, based on
prior recognition of objects and possibly other context infor-
mation.

2 Segmenting Scenes and Hypothesizing Objects

In the project we use an RGB-D camera (e.g., MS Kinect) to
capture 3D point clouds of the observed environment. A 3D
point cloud is a collection of points in space that samples
object surfaces at a certain resolution and frame rate. The
Kinect produces point clouds consisting of up to 640 × 480
3D points at a maximum frame rate of 30 Hz. The point
cloud data is relatively sparse and noisy, but still delivers
enough data to create a realistic polygonal mesh of its en-
vironment. A polygonal mesh represents objects more com-
pactly than a point cloud and yields actual surface defini-
tions rather than just point samples. Our approach to de-
tecting changes in the monitored environments is to create
a labeled reference mesh of the scene and compare it to the
reconstructions from the incoming camera frames.

Surface reconstruction and labeling is done using the Las
Vegas Reconstruction Toolkit [26]. It contains a set of tools
for triangle mesh generation and optimization from unorga-
nized point clouds. Since it was mainly developed for mo-
bile robotic applications, it has a strong focus on noise com-
pensations, data compression and execution speed. Surfaces
are reconstructed by an optimized Marching Cubes imple-
mentation [19] using Hoppe’s distance function [16] that
was tuned to cope with sparse data and the presence of noise.

A scene is coarsely segmented by clustering connected
patches in the computed triangle meshes using a region
growing approach. The generated meshes are stored in a
linked data structure that allows adjacent triangles to be
found in constant time, which provides a significant speed
up compared to point based clustering. Each created clus-
ter can be associated with a semantic label. For basic ge-
ometries like floors, walls and ceiling, labeling is done au-
tomatically by analyzing the size, position and orientation
of every extracted cluster. Other relevant clusters, such as
chairs and table tops, can either be labeled manually or auto-
matically by employing more constraints in form of domain
knowledge about the spatial relationship between individual
planar clusters. For example, a Chair is described by a hori-
zontal planar cluster of a certain size and height (the seating
surface) and another planar cluster perpendicular to it (the
backrest), cf. [13].

This allows ‘change detection’ to be done, where varia-
tions in a scene over time can be identified and analyzed.
When dealing with static sensors in an environment, such as
motion sensors, electrical use sensors, and door open/closed
sensors, the percept is typically turned in a token repre-
senting the fact that the feature perceived by the sensor has
changed. With a more complex sensor, this is harder to ar-
range. However, we can detect change here by identifying
that objects have appeared and disappeared from a scene,
and so labeling these changes with tokens.

The basic idea for change detection in the environment
is to generate a reference mesh of the observed scene and
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Fig. 1 Example for scene segmentation: (a) Mesh corresponding to
the reference scene of an empty tabletop. (b) Photo of the tabletop with
breakfast tableware (and more) present. (c) The mesh corresponding
to (b). Detected holes are shown in yellow, new object clusters are
depicted in gray. (d) Point cloud corresponding to (b). Individual object
clusters are signaled by color (Color figure online)

label the relevant clusters. In the case of the breakfast ex-
ample, this is done by reconstructing the empty breakfast
table and labeling the table top plane. This reference mesh
gets compared frequently with the polygonal reconstruc-
tions generated from the current sensor output. To detect
changes in the scene, the size and shape of the table top clus-
ter of the reference mesh is compared to the reconstruction
from the current camera frame by calculating the distance
of each triangle of the table top cluster to the nearest tri-
angle in the current observation. If such a triangle is found
within a predefined tolerance distance, we treat this trian-
gle as confirmed, i.e., nothing has changed within this re-
gion.

If new objects are moved into the scene, the number
of confirmed mesh triangles is reduced due to occlusions.
Therefore, if the number of confirmed triangles decreases,
we assume a new object was added to the scene. An in-
creasing number in turn suggests that some object was
removed. For added objects, clusters in the mesh appear
above the tabletop plane that have no correspondence to
the reference mesh and can thus be identified using a sim-
ilar distance threshold to the one used to detect the shad-
ows. Figure 1 presents an example of our segmentation re-
sults.

New clusters are used to generate object hypotheses from
an ontology. In a first step the spatial dimensions of each
cluster are considered to restrict the number of object can-
didates. For example, if a cluster is higher than a certain
threshold, it is sensible to exclude plates from the potential
object candidates. Similarly if the height is below than a cer-
tain threshold, this cluster can be no pitcher. After this first
coarse filtering, the shape of the measurement points is ex-
amined.

Fig. 2 (a) and (b): Result of automatically fitting a geometric prim-
itive (cylinder) against the cluster of a pitcher. (c) Illustrates that one
object (the red pitcher in Fig. 1b) is split into 3 distinct clusters. For
these clusters, no plausible hypothesis exists in our knowledge base.
The data depicted here is the same as in Fig. 1b, but only the data
points for the object in question and the tabletop are shown (Color fig-
ure online)

Most tableware objects can be approximated by geomet-
ric primitives, for instance most mugs are cylindrical, with a
handle added, and many bowls resemble a hemisphere. Ge-
ometric primitives are fitted in a RANSAC fashion, similar
to Schnabel et al. [24]. Currently we do not look for multi-
ple primitives in one cluster, but determine which primitive
fits the given points best. Schnabel et al. [24] have gone be-
yond that, combining several primitives. Note that while the
thresholds used in the RANSAC approach could be learned
in principle, we chose to set them manually using domain
knowledge and experimental results.

This association between real objects and geometric
primitives is not guaranteed to yield sensible results in gen-
eral, but it works well for restricted scenarios like the break-
fast setting, where the focus is to detect subsets of given
objects. An example for this approach is given in Figs. 2a
and 2b. On the downside of this approach, we are unable to
generate sensible object hypotheses if the point cloud data
is too noisy, possibly due to reflections. For example, if one
object is split into several point clusters, or multiple objects
are too close to each other, forming just one cluster, our
approach will fail. Figure 2c shows an example.

Our approach here [1, 13] is to close the loop from
knowledge representation to object type recognition. We are
using a Description Logic (DL) ontology, including SWRL
rules, formalizing scenes (such as breakfast) and aggregates
in these scenes (e.g., a breakfast setting). A small excerpt
from the ontology is depicted in Fig. 3 and a exemplary
SWRL rule is shown below:

Mug(?p) ← CylindricalPointCluster(?p)
∧ isOnTableTop(?p, True)
∧ hasHeight(?p, ?h) ∧ swrlb:greaterThan(?h, 0.06)
∧ swrlb:lessThan(?h, 0.15) ∧ hasWidth(?p, ?w)
∧ swrlb:greaterThan(?w, 0.05)
∧ swrlb:lessThan(?w, 0.1%2)

So once an object of some type has been hypothesized from
the sensor data using the approach just described, other hy-
potheses are generated from the DL domain model, which
may introduce additional object types; this is then used for
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Fig. 3 Excerpt from the DL ontology connecting the scene segmentation with abstract aggregate BreakfastCover. Physical entities, which are
directly associated with measured data, are drawn on boxes. Blue edges indicate relations going beyond inheritance

forming expectations what is likely to be found in the sen-
sor data. For example, having detected a plate and mug on
one side of the table, it is likely that a knife is present,
too. Context information from other sources, for instance
the time and day, may get used in the reasoning [12].
This approach is inspired by Neumann and Möller [21].
It has been applied to activity recognition, too [4], for a
highly standardized family of activities, namely, aircraft ser-
vice activities on the gate; the sensor data used here was
video.

Comparing the current sensor data with the reference
scene over a period of time thus yields a temporal sequence
of appearing and vanishing objects. Given such a sequence,
the question arises of how to interpret the changes occur-
ring in the sequence. To answer this, we have to perform
two interdependent tasks: firstly, divide the data stream into
segments that can be associated with activities (such as set-
ting the breakfast table); and secondly, attribute the cor-
rect activity type to each segment. Neither of these tasks
is trivial, and we next sketch our approach to perform
them.

3 Segmenting and Hypothesizing Activities

In activity interpretation, just like in object interpretation,
there are the two mutually dependent sub-problems of seg-

menting and recognizing activities, where the segmentation
has to happen in space-time, rather than just space. The un-
derlying assumption here is that an activity is an entity in
4D space-time, which can be formalized in some variant of
Allen’s calculus of relations [2], such as 4D Region Con-
nection Calculus [9]. Segmenting two activities is easy if
they are set apart in time (such as toasting and buttering
a slice of bread, with some cooling time interval in be-
tween), but it is harder if they meet in time (like taking a
clean plate from the dishwasher and placing it on the ta-
ble), or if they are even overlapping (eating breakfast while
reading the newspaper). An approach to simultaneous seg-
mentation and recognition using Hidden Markov Models,
with time as an additional variable, was considered by Chua
et al. [7].

Researchers in related areas, such as activity recognition
using wearable sensors [27, 28], often assume that the data
stream is already segmented in time, i.e., different activi-
ties are separated by some phase of inertia, which can be
identified from the sensor data. A scene that differs from the
sequence of unchanged scenes marks the start of the next
activity. To segment activities that meet or overlap, sliding-
window approaches (e.g., [10, 25]) are commonly used. The
size of the window(s) is determined by activity(-ies) length,
assuming that each activity that we can label in the data
stream has a range of typical lengths. For example, Set-
breakfast-table would normally take only a couple of min-
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utes. If knowledge is available about contexts that influence
the duration, it has to be part of the knowledge base. Chua
et al. [6] describe an alternative based on the likelihood com-
putation in Hidden Markov Models.

Our approach to activity recognition is to extend the
closed-loop approach that we have been using for generating
object hypotheses, treating the segmentation and recognition
problems simultaneously. Moreover, we rely on recognizing
the appearance of objects, as described previously, to signal
the start and end of activities in the current context. For ex-
ample, if a mug appears in the scene around the time of a
weekday breakfast time, it is likely to signal the start of a ta-
ble setting activity. This approach is reminiscent of the one
used by Kim et al. [17] for gesture recognition, where the
starting point of a gesture is detected. In their work a win-
dow is then slid across the observation sequence until an end
point is reached.

Using context knowledge is crucial for generating tar-
geted activity hypotheses. Context information in our ap-
plication context can be temporal, spatial, environmental,
or health information. Guesgen and Marsland [11] suggest
context maps as a possible means to that end. A context map
is a graphical representation that combines context informa-
tion of a particular type. For example, a temporal map con-
tains all entries related to time, such as time of the day, day
of the week, month, season, etc. The nodes in the graphical
representation can be ordinal values, indicating how often
an activity happened in the context represented by the node,
or probabilities, indicating the likelihood of the activity in
this context. Bhatt and Loke [3] propose the integration of
formal methods in spatial representation and reasoning with
logic-based methods in reasoning about events, actions, and
change.

In order to get from the segmented object hypotheses to
assumed activities, we propose to encode the current sen-
sor input into a state containing the object hypotheses along
with the relevant contextual information. Table 1 shows an
example sequence of such states. From the sequences of
these states we aim at extracting the activities associated
with several objects that co-occur over multiple consecu-
tive states. Of course we have to take into consideration
that some objects could occasionally disappear for short pe-
riods from our state representation, due to sensor noise or
occlusion (the latter being detectable from the sensor data),
or even a change in routine. For example, if Eat-breakfast
is associated with Mug, Plate and Bowl all being present,
if we encounter a state where one of the necessary objects
is not present, we cannot simply assume that Eat-breakfast
has been completed and the next activity of Clear-breakfast-
table is in progress. Instead, we have to take the subse-
quent states into consideration, to see if we failed to detect
the object just for a short time or if it actually disappeared
(in which case it may well be appropriate to assume that

Table 1 Example sequence of states, symbolizing Set-breakfast-table.
Note that while the table does not contain individual objects, an addi-
tional line labeled Mug would appear if a second instance of Mug was
detected in the point cloud data

State si si+1 si+2 si+3 si+4 si+5 si+6

Mug T T T F T T T

Plate F F F T T T T

Bowl F F F F T T T

Clear-breakfast-table has started, which hypothesis can then
be tested at subsequent time steps). An example of such a
missed detection is given in Table 1: state si+3, where Mug
vanishes, to reappear in the following state.

In the current state of our research we are able to extract
temporal sequences of states from the Kinect point cloud
data. As a next step we intend to use machine learning tech-
niques to start identifying activities from the state sequences
of recorded data.

4 Conclusion

Our approach in the MERMAID project to recognizing (or
rather, hypothesizing) both objects and activities is to view
it as a closed-loop process among interpretation of the raw
data coming from the sensor and reasoning based on a
DL ontology plus SWRL rules about the context and ob-
ject information that is currently available. The sensor data
are point clouds taken from the depth component of RGB-
D data of a narrow scene, namely, a kitchen table. The
“bottom-up” part of detecting objects in the sensor data
stream and the “top-down” part of generating object and ac-
tivity hypotheses are closely intertwined—in fact, there is
no order among them, but they both work conceptually con-
currently.

In relation to the Symbol Grounding problem, our ap-
proach has two lessons to impart. First, grounding object and
activity symbols are two closely related, in fact, intertwined
issues. Some lines of work (including our own) exist today
that have started to tackle this. Their respective settings are
restricted, and it has not been shown how they scale to un-
restricted ones. An open question here is, how unrestricted
“unrestricted” actually is—in our approach, context plays
an important role for restricting the reasoning, and it seems
to be generally applicable in principle. Second, the naïve
approach of first grounding the symbols in sensor data and
then starting the reasoning based on the symbols, is not the
only one. It makes sense and is feasible to close the loop
between sensor data interpretation and reasoning. It appears
that the more comprehensive problem of doing both, rather
than tackling “just” the symbol grounding part, becomes in
fact easier to solve.
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