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Abstract—The traditional approach to image interpolation is by 
synthesis using basis functions because of its computational 
simplicity and experience-proven quality of the result. We offer 
an alternative approach to designing the basis (interpolation 
kernels), using least-squares optimisation and image models that 
encompass the prior knowledge. In this paper we consider and 
derive a finite-support interpolation kernel based on a step-edge 
model and show that this results in a piece-wise cubic polynomial 
similar to Keys' cubic convolution. We offer an experimental 
comparison of the proposed kernel to a number of common 
methods and show that it performs similar to, or better than, the 
existing methods with similar extent of spatial support. 
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I.  INTRODUCTION  

Image interpolation is a crucial procedure in the processing 
of digital images, due to their discrete (sampled in space) 
nature. Every time values that fall between the sampling points 
are required, the continuous function must be reconstructed and 
then resampled at these new locations. However, in general 
only the values of the continuous function at the new locations 
are computed for computational reasons. 

For a band-limited function, sampled higher than the 
Nyquist rate, the continuous function can be reconstructed 
using sinc-interpolation [1]. Unfortunately, the sinc kernel has 
infinite extent with a relatively slow decay. This led to a 
multitude of kernels with finite support that approximate the 
sinc, see [2] for example. Other traditional approaches include 
synthesis using basis functions, such as various piece-wise 
polynomials [3]. These methods are generally one-dimensional 
and have been applied to the problem of image interpolation in 
a separable fashion (i.e., treating each spatial dimension 
separately), e.g. [3, 4]. Recently, attempts have also been made 
to produce non-separable kernels for image interpolation [5-7]; 
but, these come at an obvious increase in computational cost. 

Images often have components above the Nyquist rate, 
leading to aliasing of the higher frequencies. Reconstruction of 
the continuous function becomes an ill-posed problem with 
infinite number of solutions. Some prior information is 
required to pick the most plausible one. In traditional methods, 
this prior information is “encoded” in the basis functions. Other 
methods, such as the Baysian framework [8], for example, can 
make more explicit use of these image priors. 

In previous work [9], we explored the idea of a least-
squares optimal interpolation kernel. We used simulated 
images, such that the output is freely available, and optimised a 

finite-support kernel by minimising the mean square error with 
respect to the kernel weights. The resulting optimal kernel 
would resample another image with near-optimal results and in 
later work we demonstrated that one-dimensional optimal 
kernels optimised on different images are quite similar [10]. It 
was also shown that a similar kernel can be obtained by using a 
model image. These results were used in [11], where we 
optimised a non-separable 2D kernel using an image model. 
However, this work was completed in light of image super-
resolution [12] and the methods were specifically designed to 
resample non-uniformly sampled data on a uniform grid. 

In this paper, we adapt this methodology to derivation of 
1D kernels for interpolation of uniform images in a separable 
fashion, much like a piece-wise polynomial kernel would. The 
novelty of this method lays in the way the kernel is produced 
from an image model that can encompass the prior knowledge, 
making it specific to interpolating image data. We use a step-
edge model as an example here, but other image models can be 
employed in a similar way. 

II. LEAST-SQUARES OPTIMAL INTERPOLATION 

A. Optimal Interpolation 

One of the main uses of image interpolation is resampling. 
If values of the image function are required at locations other 
than the ones where the image is defined, it is necessary to 
interpolate the image and resample it at the new locations. A 
simple case of this procedure is considered here: resampling an 
image [ ],f k l  on an offset grid, but with the same sampling 

rate, as shown in figure 1.  

 

Figure 1 Input and output sample grids. 
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This resampling can be implemented in a separable fashion, 
where each row of the image is treated as an independent 1D 
signal and resampled using a 1D resampling filter [ ]h m . Then 

the same procedure is carried out over the columns. 
Considering this 1D operation on a single row of an image: 

 [ ] [ ] [ ]ˆ
m

f k f k m h m
α

∈

= +�
�

, (1) 

where [ ]f k  is the 1D signal that is being resampled and 

[ ]f̂ k
α

 is the output. The global, space-invariant least-squares 

optimal kernel can be computed using: 

 [ ] [ ] [ ]

2

arg min
h k m

h f k f k m h m
α

∈

� �
= − +� �

� �
� �

�
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where [ ]f k
α

 is the image f  sampled on the grid shifted by 

α  (i.e. the ground-truth that the ideal resampled image should 
match). This minimization must be performed subject to the 
“partition of unity” constraint: 

 [ ] 1
m

h m
∈

=�
�

 (3) 

to make sure that there is no overall gain in flat regions of the 
image [1, 13]. 

B. Model-based Near-optimal Interpolation 

In previous work [9] we have shown that optimizing a 
kernel on one image and then using it to resample a different 
image yields reasonable results. Later, we described how to 
optimize the resampling kernel on an analytic image model 
[10]. Such a kernel should be near-optimal for a class of 
images that the model represents. One such proposed model 
was based on the fact that, to a first approximation, most 
images are piece-wise constant, with relatively flat areas 
separated by step-edges. This model resulted in resampling 
kernels visibly similar to optimal kernels. Experimental tests 
showed that the performance of these model-based kernels was 
very close to the performance of the optimal kernels. Here, we 
reuse this model and demonstrate how a 1D kernel for image 
interpolation in a separable fashion can be derived using least-
squares optimization. The derivations are demonstrated using a 
fourth order resampling filter, but filters of other orders can be 
derived in a similar manner. 

We employ a 1D step-edge model: 

 
1

( ; )
0

x p
P x p
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≤	
= 


>�
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where p  is the location of the step-edge, and derive the 
resampling kernel in the following way. 

The fourth order filter has a region of support of five pixels 
(this region always includes four input pixels; hence fourth 
order). Consider interpolating an image consisting of many 
step-edges. The filter window will be positioned over every 
output sample and a step-edge may (or may not) fall 
somewhere within the filter window, assuming that the step-
edges are separated by at least five pixels so that only one step-
edge may fall within the filter window. If the step-edges do not 
exhibit a periodic pattern with a period that is a rational 
multiple of the sampling period, the step-edges will fall at 
random positions within the filter window, positioned around 
different output pixels. 

To simplify the derivation, rather than considering many 
such filter windows, consider a single window with input 
pixels located at -1, 0, 1 and 2. Instead of centring the filter 
window on the output pixel, let the output pixel position be 
between 0 and 1. This keeps the filter window static and 
considerably simplifies the derivation of the contribution of 
each input pixel within the filter window as a function of the 
location of the output pixel. 

The input pixels are from an area-sampled (area-sampling 
is used to be consistent with the imaging process) step-edge 
that is located somewhere within the region of support, but at 
an unknown position. To make things easier, area-sampling a 
step-edge can be replaced by point-sampling the step-edge 
convolved with a rectangular pulse with height one and width 
of one pixel:  
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Figure 2 demonstrates an example of this process, where the 
output pixel is located at 0.63α =  and the edge is located at 

1.2p = . 

  

Figure 2 Input and output pixels within the filter window sampling a blurred 
step-edge located at p=1.2. 

Analogous to (1), the interpolated value at x α=  is 
computed using a weighted sum of the input pixels. The square 
error between the actual output and the interpolated value can 
be expressed as 

 ( ) ( ) [ ]

22
2

1

;;
m

M M m p h mpαε
=−

� �
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�  (6) 
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If a step-edge can fall anywhere within the filter window 
with equal probability, then it is desirable to optimize the 
resampling filter for any such case, which can be accomplished 
by minimizing the square error over all possible locations of 
the step-edge within the filter window with respect to the filter 
coefficients: 

 ( ) [ ]

22.5 2

11.5

(arg m )in ; ;
h m

M ph M m p h m dpα
=−−

� �
= −� �

� �
�
  (7) 

This minimization must be performed subject to the 
“partition of unity” constraint, stated by (3), which can be built 
directly into the optimization by substituting 

 [ ] [ ] [ ] [ ]0 1 1 1 2h h h h= − − − −  (8) 

into (7). After some rearranging, this gives 

 ( ) ( ) [ ]

22.5
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� �
= −� �
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where ( ) ( ) ( ); ; 0;M x p M x p M p= − . This is a standard linear 

least-squares problem – to solve it, the objective function in (9) 
is differentiated with respect to each filter coefficient, and the 
partial derivatives are equated to zero. This results in a set of 
three linear equations, best represented in matrix form: 

 =Ah b , (10) 

where A  is the following 3×3 matrix 
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A , (11) 

where all integrals have the same limits of -1.5 and 2.5, and h  
and b  are 3×1 vectors defined as 
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h b  (12) 

where mh  denotes [ ]h m  and mM  denotes ( );M m p . The 

solution to (10) can be simply expressed as 

 
1−

=h A b  (13) 

All elements of A  and b  have the same structure and we 
examine the first element of A  as an example: 

 ( ) ( ) ( )( )
2.5 2.5

22

1.5 1.5

1; 1; 0;M p dp M p M p dp
− −

− = − −
 
  (14) 

Computing this integral is relatively trivial and is depicted 
in figure 3 in graphical form. The other elements can be 
computed in exactly the same way and then the filter weights 
can be computed by evaluating (13). Recall that these weights 
are functions of the location of the output pixel α , which is 
defined to be between 0 and 1. To compare it to other 
interpolation functions, we can express this in the form of an 
interpolation kernel (by substituting ( )1α− +  for α  into 

[ ]1h − ,  ( )1α− −  into [ ]1h ,  α−  into [ ]0h  and ( )2α− −  into 

[ ]2h  and using the appropriate piece of each function): 
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The resulting interpolation kernel is a piece-wise cubic 
polynomial, similar to what is commonly known as Keys’ 
cubic convolution [14]: 

 ( )
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Keys’ cubic convolution is of special interest as it tends to 
give more accurate results than other piece-wise cubic kernels 
[15]. Both of these kernels are plotted in figure 4. It can be 
observed that the kernels have only a subtle difference in 
shape, even though they were derived using two very different 
methods. However, unlike Keys’ polynomial, our kernel is not 
continuously differentiable (compare figure 5 and figure 6). 
This would have a consequence if used to resample smooth 
functions; however, images generally contain many 
discontinuities. The discontinuity in the first (and following) 
derivatives starts to slowly disappear as the filter order is 
increased, apart from near the outside of the support region. An 
interesting observation is that as the order of the optimal kernel 
is increased, it begins to approximate the cubic spline. A large 
portion of the kernel around the centre of support is identical to 
the cubic spline; however, near the edges of the support region 
the two functions deviate and our kernel is not continuously 
differentiable. 
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Figure 3 Graphical demonstration of the solution of (14). First ( )0;M p  is 

subtracted from ( )1;M p− , then this difference function is squared and 

finally integrated to give the area under the curve. Notice that the integrated 
function has limited spatial support. This is also true for all other elements of 

A  and b , so integration limits can be set to infinity. 
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Figure 4 The proposed kernel and Keys’cubic convolution kernel. 
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Figure 5 First derivative of the proposed kernel. 
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Figure 6 First derivative of Keys’ cubic convolution. 

III. QUANTITATIVE EVALUATION 

We compare the proposed resampling kernels of order four 
and six (obtained in the same way as order four) to a number of 
existing kernels with similar extent of spatial support: Keys’ 
cubic convolution, Lanczos kernel [16] and cubic spline [17]. 
We also compare with the results of a model-based 2D non-
separable kernel [11]. 

A. Experimental set-up 

We evaluate the methods by resampling a simulated test 
image on a sampling grid shifted by half a pixel in each 
direction and computing root-mean-square-error (RMSE) 
between the resampled image and simulated ground-truth 
output. 

The input and output images are created from a higher 
resolution (2592×3888 pixels) image using an area-sampling 
imaging model. The high-resolution image is blurred using a 
four by four rectangular filter with flat response to simulate 
area-sampling and sub-sampled by a factor of four to create the 
input and the desired output images (the high-resolution image 
is shifted by two pixels in each direction before sub-sampling 
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to create the output image) followed by quantisation to 256 
grayscale levels. 

The experiment is conducted with images of four different 
scenes pictures in figure 7. These scenes provide a variety of 
compositions of high-frequency detail such as step-edges and 
texture and relatively low-frequency flat areas and should 
indicate how well the proposed kernel can resample different 
types of scenes. 

 
 

 
 

 
 

 

Figure 7 Test images ‘bird’, ‘cat’, ‘face’ and ‘text’. 

The Lanczos kernel is defined as 

 ( )
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0
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x
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wx
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We employ fourth ( 2w = ) and sixth ( 3w = ) order filters for 
comparison to our proposed model-based kernels. The cubic 
spline interpolation is employed as implemented by the interp2 
command in Matlab 2008a [18]. For a detailed derivation of 
the 2D non-separable kernel, please refer to [7]. 

B. Results 

The results of this experiment are displayed in figure 8 in 
the form of a bar graph with separate axes for each test scene. 
The percentage number on each bar indicates improvement in 
RMSE in comparison to Keys’ cubic convolution. 
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Figure 8 RMSE in grayscale levels resulting from resampling images ‘bird’, 
‘cat’, ‘face’ and ‘text’ using the following methods: cubic convolution (CC), 

Lanczos2, proposed model-based order 4 (M4), 2D non-separable model 
based 4x4 (M4-2D), Lanczos3, cubic spline (CS) and proposed model-based 

order 6 (M6). Percentage number indicates improvement from cubic 
convolution. 

Keys’ cubic convolution results in very similar 
performance as the Lanczos kernel with the same spatial 
support. The fourth order model-based kernel performs better 
than both of these for all four test images; however, the actual 
improvement varies from image to image. As all of these have 
the same order, they are also of the same computational 
complexity and our proposed kernel gives smaller error for the 
same complexity. 
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The non-separable model-based kernel performs slightly 
better than the separable kernel. This improvement comes at a 
significant computational cost. It would actually make more 
sense to use a higher order separable kernel as these get better 
performance than the 4×4 non-separable kernel at a smaller 
increase in computational complexity. 

The cubic spline, with its much large spatial support 
consistently results in the smallest error; however, the 
Lanczos3 filter and the proposed filter, both of order six result 
in almost the same improvement. 

IV. CONCLUSIONS 

Image interpolation is required whenever digital images 
need to be resampled on a different sampling grid, due to their 
inherent discreteness. To reduce computational costs this is 
generally performed in a separable manner using 1D 
resampling kernels. In this work we have proposed a novel 
resampling kernel based on least squares optimization of a 
piece-wise constant image model. The derivation was 
demonstrated using a fourth order resampling filter, but is 
easily extendable to any order. The resulting fourth order 
kernel is a piece-wise cubic polynomial similar to Keys’ cubic 
convolution. However, the kernels derived with much wider 
support region begin to approximate the cubic spline. 

We experimentally compared the performance of the 
proposed resampling kernels of orders four and six to other 
resampling filters of order four (cubic convolution, Lanczos2) 
and order six (Lanczos3) and also the cubic spline. The results 
indicate that lower RMSE can be achieved using our step-edge 
based resampling filter of order four than other filters of the 
same order. The proposed kernel of order six performed 
similarly to the Lanczos3 kernel and the cubic spline. 

These initial results show that improved resampling can be 
achieved without any additional computational costs; however 
more testing and analysis of the proposed kernel is required. 
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