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Abstract
Groupwise non-rigid registration aims to find a dense correspondence across a set of images, so that
analogous structures in the images are aligned. For purely automatic inter-subject registration the
meaning of correspondence should be derived purely from the available data (i.e., the full set of images),
and can be considered as the problem of learning correspondences given the set of example images.
We argue that the Minimum Description Length (MDL) approach is a suitable method of statistical
inference for this problem, and we give a brief description of applying the MDL approach to transmitting
both single images and sets of images, and show that the concept of a reference image (which is central
to defining a consistent correspondence across a set of images) appears naturally as a valid model choice
in the MDL approach. This paper provides a proof-of-concept for the construction of objective functions
for image registration based on the MDL principle.
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registration, objective function

1 Introduction

The non-rigid registration of pairs of medical im-
ages is a popular area of research, with many dif-
ferent methods having been proposed. One mo-
tivation for bringing images into alignment is to
allow statistical analysis of the variation of struc-
tures within those images, for example, for dis-
ease diagnosis, through analysis of the deforma-
tion field. This is impractical based on a set of
pairwise registrations, because the choice of ref-
erence image is crucial, and the same one-to-one
correspondence will not be found across the whole
set of images. We propose a method of group-
wise image registration based on the Minimum De-
scription Length (MDL) principle, which aims to
find a dense one-to-one correspondence across a set
of images, so that analogous structures in all of
the images in the set are aligned. MDL [1] is an
approach to model-selection and statistical infer-
ence that does not depend on hypothetical data-
generating processes; the MDL principle has pre-
viously been shown to give excellent results when
applied to the correspondence problem in shape
modelling [2].

Algorithms for the automatic non-rigid registra-
tion of medical images typically involve two inde-
pendent choices: the objective function, the ex-
tremum of which defines what is meant by the
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‘best’ correspondence between the images, and the
representation of the deformation field that de-
fines the dense correspondence between the images.
The choice of representation of the deformation
field applies implicit constraints on the possible
deformations, and hence on the possible correspon-
dences. The objective function is typically a sum
of several terms – a voxel-based similarity measure,
and terms that assign a cost to each deformation.
The problem with this approach is that these terms
are incommensurate quantities, so that we have to
determine appropriate values for their coefficients.

The fact that the inferences we make about
the data do not depend on hypothetical data-
generating processes is particularly important
when the registration is of images of different
subjects (inter-subject). In this case, there is no
underlying physical process that generates the
data, and so, in the absence of expert anatomical
knowledge (i.e., for the case of purely automatic
registration), the meaning of correspondences
should be derived purely from the available
data (i.e., the set of images). In intra-subject
registration there is often some actual physical
process determining the observed deformation,
for example, tissue deformation due to patient
position, the insertion of an external object
such as a needle, or patient and organ motion.
Alternatively, the deformation may be caused by
atrophy, such as in dementia, or growth, as in a
tumour. In either case, the most suitable choice of



registration algorithm may well be one that closely
models the underlying physical process, leading
to physically-based registration algorithms (e.g.,
[3]), or physically-based models (e.g., [4]) that
can be used to evaluate the results of non-rigid
registration algorithms.

2 Introduction to the Minimum
Description Length (MDL)

The MDL principle states that the best model to
represent some given data is the one that gives the
smallest stochastic complexity to the data, where
the stochastic complexity is the length of the mes-
sage required to transmit the data to some ob-
server, when the data is encoded using the specified
model. In general, a complete message consists of
two parts – the parameter values of the model, and
the data encoded using the model. Code lengths
(the length of the encoded message required to
transmit one parameter or one piece of data) are
calculated using the fundamental result of Shan-
non [5] – if there are a set of possible, discrete
events {i} with associated model probabilities {pi},
then the optimum code length required to transmit
the occurrence of event i is given by:

Li = − ln pi nats. (1)

The total message length/description length is
then given by the sum of the parameter length
and the data length:

L = Lpara + Ldata, Ldata =
∑

i

Li, (2)

where the parameter length Lpara is the sum of the
code lengths for transmitting the set of parameter
values of the model. It is trivial to show that the
data length Ldata is minimised when the model
probabilities {pi} exactly match the empirical dis-
tribution of the data. The MDL criterion min-
imises the description length L, balancing model
complexity (as measured by Lpara) against the de-
gree of match between the empirical and model
distributions.

Consider a positive integer of the form n = 2k, k ∈
Z+, which contains k bits, with:

Lint(n) = k bits = 1 + int (log2 n) bits. (3)

Using natural logarithms rather than base 2, this
then gives an approximate message length for
transmission of an unsigned integer n of:

Lint(n) ≈ 1
e

+ lnn nats, (4)

where we have converted from bits to nats (1 nat
≡ e bits), as well as converting to a continuum
version of the function.

Similarly, the message length to transmit a real
number x to an accuracy δ = 2k, k ∈ Z, and to
transmit the accuracy δ is given by:

L(x; δ) = Lint
(x

δ

)
≈ 1

e
+ ln

(x

δ

)
nats, (5)

L(δ) = 1 + int| log2(δ)| bits

≈ 1
e

(1 + | log2(δ)|) nats. (6)

It is important to note that in this final approx-
imation, L(·) is not a continuous function – it is
only strictly defined for arguments δ = 2k, k ∈ Z.

3 MDL Encoding of Single Images

Let us consider the simple case of transmitting
one-dimensional ordered quantized1 data {ŷi : i =
1, . . . N}, with quantization parameter ∆. We will
suppose that the data is such that the mean is
approximately zero, and that the receiver already
knows this and the quantization parameter, but
that the range of the data is not known a priori.

We consider two models in this paper. The first
is one of the simplest parameterised models: a
Gaussian model, of zero mean and width σ̂. The
width is quantized using a parameter δσ, where
δσ is restricted to the set of values {δσ = 2k :
k ∈ Z, δσ ≤ σ}. Both δσ and σ̂ have to be
transmitted. We will consider here just the case
where2 σ̂ � ∆. The full set of model probabilities
{p(ŷ) : ŷ = m∆, m ∈ Z} can be approximated by:

p(ŷ) =
1√

2πσ̂2

ŷ+∆
2∫

ŷ−∆
2

exp
(
− ŷ2

2σ̂2

)

≈ ∆√
2πσ̂2

exp
(
− ŷ2

2σ̂2

)
, (7)

providing a complete description length of:

LGauss ({ŷi}) = Lint

(
σ̂

δσ

)
+ L(δσ)

−
N∑

i=1

log2(p(ŷi)) bits (8)

≈ −N ln∆ +
N

2
ln(2π) +

1
e

+ N ln(σ̂)

+ ln
(

σ̂

δσ

)
+ L(δσ) +

N∑
i=1

ŷ2
i

2σ̂2
nats. (9)

If we treat the quantized variable σ̂ as a continuous
variable σ (i.e., we take the limit δσ → 0), then for
fixed data the optimum continuum value is given
by σ2

opt = 1
N+1

∑N
i=1 ŷ2

i .

1We will use b· to denote quantized variables.
2The case of Gaussian models where σ̂ ≈ ∆ is dealt with

in [2], although only for the case of data where the range is
known.



We would also like to be able to estimate the op-
timum value for δσ – that is, we wish to find a
continuous function of δσ that approximates the
discrete function given in (8). There are two types
of terms involving δσ: the approximation of the
log2 term, and terms arising from the quantization
of σopt. If δσ < 1 then L (δσ) ≈ 1

e − ln (δσ) nats.
We know that |σ̂opt−σopt| ≤ δσ

2 and that the data,
and hence σopt, is fixed, whilst δσ, and hence σ̂opt,
vary. We therefore take σ̂opt = σopt + dσ, where we
will assume that dσ has a flat distribution within
the range |dσ| ≤ δσ

2 . So, our estimate of functions
f(σ̂opt) is:

f(σ̂opt) ≈ f(σopt) +
δ2
σ

24
f

′′
(σopt) + O

(
δ4
σ

)
. (10)

Then, using the expansion of ln(σ̂opt) we get a
description length of:

LGauss({ŷi}) ≈
2
e
−N ln(∆) +

N

2
ln(2π)

+
N + 3

2
+ (N + 1) ln σopt − ln

12σ2
opt

(N + 1)
,(11)

where we have used the fact that, to lowest order,
the optimum value of the parameter accuracy δσ is
given by:

δ2
σ =

12σ2
opt

(N + 1)
. (12)

In Figure 1 we compare the exact expression for
the description length (8) with the approximate
continuous form (11) for 3 datasets of varying vari-
ance. Each dataset {ŷi} consists of 50 quantized
values randomly selected from a Gaussian distri-
bution so that the mean is precisely zero. In each
case, we use the calculated value of σ̂opt or σopt as
appropriate, since it was found that this gives an
extremely good estimate of the true optimum value
of σ, whatever the value of δσ. We can see from the
figure that (12) gives a good order-of-magnitude es-
timate for the optimum value of δσ, across a range
of values of σopt that covers 7 orders of magnitude,
despite the fact that the approximate continuum
expression was derived just for the case δσ < 1,
and the relatively small size of the dataset. The
minimum value for the description length given in
(11) is also seen to be a reasonable estimate.

The second model we consider consists of simply
transmitting the histogram of the data as
our model, with the bin widths given by the
quantization scale of the data ∆. In terms
of parameterised models, this is the most
complex, since the model is exactly the empirical
distribution of the data. The set of occupied bin
positions is given by {bα : bα = mα∆,mα ∈ Z},
with occupancies {nα ≥ 1}, so the message
length for transmitting all the parameters of the
histogram is:

Lhist:param ≈
∑
α

{
3
e

+ ln(1 + |mα|) + ln(nα)
}

nats.

(13)
The full description length is:

Lhist = Lhist:param +
∑
α

nα ln
(nα

N

)
, (14)

where the second term is Lhist:data. To transmit
data according to its empirical distribution,
this is the size of the dataset multiplied
by the Shannon entropy of the histogram:
H ({nα}) = −

∑
α

nα

N ln
(

nα

N

)
.

We compared encoding single images using the de-
scription lengths from both of these models for a
wide variety of images, from images of ordinary ob-
jects to medical images and images generated from
a set of independent Gaussian random variables.
In all cases, the increased parameter length for the
model caused by using the empirical distribution
is more than compensated for by the exact fit to
the data. As well as giving a smaller description
length, the encoding according to the empirical dis-
tribution potentially offers greater discrimination,
since we obtain a wider range of description lengths
using this model.

4 MDL Encoding of Sets of Aligned
Images

We will now consider transmitting a set of aligned
8-bit greyscale images. The sets of images are cre-
ated by taking an original 190x190 pixel image and
adding Gaussian white noise of varying variance.
We will consider two models; sending each image
separately, and sending a reference image (here,
the mean of the set) plus the set of discrepancy
images showing how each image differs from the
reference. Images will be sent using the histogram
encoding, except that we will now use the fact that
the range of the image values is fixed, being 0 : 255
for an ordinary greyscale image, and −255 : 255 for
a discrepancy image. This means that the expres-
sion for Lhist:param from equation (13) becomes:

Lhist:param = M ln (R) +
M∑

α=1

(
1
e

+ ln(nα)
)

, (15)

where M =
∑
α

nα and the range R is 256 for

greyscale images, and 512 for discrepancy images.
As before, the {nα} are the occupancies of the
M occupied bins. This is equivalent to taking a
flat distribution over the R possible positions for
occupied bins.

We first investigate whether sending a reference
image and discrepancy images gives an advantage
over sending the original images separately. To



Figure 1: Graphs showing description length as a function of δσ for 3 datasets with different variances,
with N = 50. Crosses: the exact description length (equation (8)), with the minimum circled, Solid
line: the continuum approximation (equation (11)), with the position of the minimum shown by the
dashed line.

test this, we took sets of ns noisy images, with
the noise variance fixed. The reference image was
taken as the mean of each set, with the same data
resolution as the original images (i.e., 8-bit). We
then computed the ratio of description lengths for
transmission with and without a reference image,
as a function of size of the set ns, and as a func-
tion of the noise variance. For all the values of
noise variance considered, encoding using an 8-bit
reference becomes advantageous (i.e., the ratio of
description lengths is less than 1) provided the
number of images in the set ns is large enough.
And, as we might have expected, the lower the
noise variance, the lower the critical value of ns.

In this approach, the reference image has to be
considered as part of the model we are using to
send the set of images. As such, the reference
image can be considered to consist of the informa-
tion/structures that are common across the set. It
is therefore interesting to ask whether we should
use the full 8-bits to describe the reference. The
variance of the noise was fixed at 0.2, and the
number ng of quantized grey levels in the refer-
ence was varied, whilst the range of the data was
maintained. For all set sizes ns ≥ 3, there is
an advantage to using a reference, provided ng is
chosen with care. Furthermore, as the number of
images in the set ns increases, the optimum value
of ng also increases.

5 An MDL Objective Function for
Learning Correspondences

The preceding sections have shown that sending a
set of (aligned) images encoded using a reference
image produces shorter description lengths that

sending each image independently. This allows
us to make the critical link between methods of
image transmission and correspondence; the ref-
erence image, which in some sense contains the
structures that are common to the set of aligned
images, also allows us to define a consistent spatial
correspondence across the image set, the genera-
tion of which is the aim of automatic non-rigid
registration algorithms. The only additional factor
that we need to add is the spatial transformation
between the original image planes and the reference
image plane.

We have a set of images I1, . . . Ins
and a reference

image Iref. There is also a set of transformations
{ti} between the image plane of the reference image
and the image plane of each image in the set. It is
this set of transformations that defines the dense
correspondence across the set of images. Defin-
ing a transformation ti also defines the pullback
transformation tinv

i . It is not strictly required that
tinv
i is the exact inverse of ti, providing that the

transmitter and receiver both use the same algo-
rithm to compute the set {tinv

i } from the set {ti}.
The set {ti} is enough to define a consistent cor-
respondence across the set, allowing us to find, for
each point in the reference, the set of corresponding
points across all the images. However, without an
exact inverse, we cannot find all the points corre-
sponding to a point in image Ii.

Encoding the set of images then proceeds as fol-
lows. The transmitter decides on a set of transfor-
mations {ti}, constructs the set {tinv

i }, and maps
each image Ii into the plane of the reference. The
image values from Ii are resampled onto the reg-
ular grid Xref of the reference to give the image
Ĩi(Xref) (we assume that transmitter and receiver



have previously agreed on a resampling scheme).
The set of resampled images in the frame of the
reference {Ĩi(Xref)} is then averaged to create the
reference image Iref(Xref), which is transformed to
the image plane of each image Ii in turn, and re-
sampled onto the regular image grid Xi to give
the image Ĩref(Xi) The discrepancy image between
the warped, resampled reference and image Ii is
computed, Idisc

i (Xi) = Ii(Xi) − Ĩref(Xi), and the
transmission then comprises the reference image
Iref(Xref) and the sets of parameterised transfor-
mations {ti} and discrepancy images.

To decode the ith image, the receiver decodes the
reference image, the transformation, and the dis-
crepancy image. She applies the transformation
to the reference image, and resamples it on the
regular image grid of image Ii to create the image
Ĩref(Xi). Adding the discrepancy image allows her
to reconstruct the original image Ii(Xi) exactly.
The description length for this encoding is:

L = Lparams ({ti})+L (Iref(Xref))+
ns∑
i=1

L (Idisc
i (Xi)) ,

(16)
where Lparams ({ti}) is the message length for
transmitting the set of quantized parameters of
the transformations and the set of quantization
scales. The only free parameters of the encoding
are the set of transformations {ti}, which
automatically define the correspondence across
the set of images. The optimum correspondence is
then that given by the set of transformations that
minimises this description length.

This enables us to define an objective function for
non-rigid registration using this description length.
We choose as our parameterised set of transfor-
mations the polyharmonic Clamped-Plate splines
(CPS) [6] that have been used successfully in non-
rigid registration [7]. The CPS interpolates the
motion of a set of knotpoints, hence the param-
eters of a transformation are the initial and final
positions of those knotpoints. The boundary con-
ditions on these splines are that the transformation
vanishes smoothly on the surface of a ball, which
in our case (2D), we take to be the circumcircle of
the images.

We establish a spatial reference frame by defining
the knotpoint positions {xref

α , yref
α }, α = 1, . . . nk on

the reference image. The set of transformations
is then defined by specifying the knotpoint posi-
tions {xi

α, yi
α}, i = 1, . . . ns on each image. The

description length for the parameters of the set of
transformations is then:

Lparams ({ti}) =
[
2
e

+ | ln(δ)|+ ln
(

l

δ

)]
+ 2(ns + 1)nk

[
1
e

+ ln
(

2l + 1
δ

)]
nats, (17)

where l denotes the range of allowed values of the
coordinates and δ the accuracy, with the centre
of the image circumcircle being the origin of co-
ordinates. The transformations are given by ti =
ω

(
{xref

α , yref
α } → {xi

α, yi
α}

)
, where ω(· → ·) denotes

the CPS interpolant. The inverse can be approx-
imated as tinv

i = ω({xi
α, yi

α} → {xref
α , yref

α }). As an
example, we take a set of ns = 3 2D axial T1 MR
slices of human brains, which have already been
affinely aligned. Following [7], we first generate
a set of nk = 8 equi-angularly spaced knotpoints
around the skull for each image. We then take
the average positions of these points across the
set as our knotpoints positions {xref

α , yref
α }. For the

purposes of illustration, the image knotpoint po-
sitions were initialised to the reference knotpoint
positions (as is shown in Figure 2), so that the
transformation starts at the identity. The opti-
misation proceeds by taking each image in turn,
and optimising the final position of each knotpoint
on that image. We use a fixed position accuracy of
δ = 0.05 pixels. As can be seen from the figure, the
reference image sharpens – after 6 iterations (that
is, 2 passes through each image), we see that the
skulls are aligned, apart from at the front of the
head. This is because the first image in the set,
unlike the other two, does not have a large CSF-
filled space at the front, hence the algorithm has
aligned the brain surfaces rather than the skulls,
which is what caused the ghosting in the reference
image in this position.

6 Conclusions & Discussion

This paper has presented a novel approach
to constructing objective functions for the
registration of groups of images. The objective
function is based on computing the minimum
description length (MDL) of the set of images,
encoded in three parts – (i) a reference image
(here, the mean of the images in the set), (ii) a set
of transformations between reference and image
set that define the correspondence across the set of
images, (iii) a set of discrepancy images that show
where the aligned reference image differs from
the unencoded image, so images are transmitted
exactly.

The MDL approach allows us to find optimum pa-
rameter values (and, in principle, parameter accu-
racies) for a particular class of encoding model; it
also allows us to decide between different classes
of model (e.g., where two classes of images may
require two separate reference images) – all of this
can be done by comparing the appropriate descrip-
tion lengths. We have demonstrated that using a
reference image reduces the description length for
a set of images, even when the images are noisy,



Figure 2: Top Row: The group of 3 images to be aligned with the reference image points superimposed,
Second Row: The description length divided by the total number of pixels in the group of images as a
function of iterations, Bottom Row: The mean/reference image at the 0th, 2nd, 4th, and 6th iterations.

providing that the set is sufficiently large. We have
then shown that an objective function for image
registration can be constructed as the description
length required to transmit the set of images en-
coded using the mean of the set and some warp
parameters, and have demonstrated this on a small
set of 2D MR images of the human brain. The
reference, or mean, image has been shown to get
sharper as the algorithm proceeds, showing that
the images are being brought into alignment. This
demonstrates a proof-of-concept on a small group
of images with very coarse registration. Demon-
strating the method on larger groups of images,
with greater number of knotpoints, especially in
3D, is currently under investigation, as is com-
paring the accuracy of the method to successive
pairwise registrations, and performing multimodal
registration.

To summarise, the MDL framework allows us to
compute optimum parameters, as well as allowing
us to choose between different classes of encod-
ing model. So, for example, with regard to the
registration results, the next level of comparison
would be between sets of transformations with dif-
ferent numbers of knotpoints. Optimising the sets
of transformations is the part of the algorithm most
closely related to the task of registration, but it
should also be possible to optimise the encoding
of the discrepancy images. In this paper, each
discrepancy image was transmitted separately –
a groupwise approach that models the set of dis-
crepancy images (plus further corrections terms
between the model representation and the actual

discrepancy images) is also possible, and should be
simple to compute.

Acknowledgements

This research was supported by the MIAS IRC
project, EPSRC grant GR/N14248/01.

References
[1] J. Rissanen, Stochastic Complexity in Statistical

Inquiry. Singapore: World Scientific, 1989.

[2] R. H. Davies, et al., “3D statistical shape models
using direct optimisation of description length,”
Lecture Notes in Computer Science, vol. 2352,
pp. 3–20, 2002.

[3] A. Hagemann, et al., “Biomechanical modelling of
the human head for physically based, nonrigid reg-
istration,” IEEE Transactions on Medical Imaging,
vol. 18, no. 10, pp. 875–884, 1999.

[4] J. A. Schnabel, et al., “Validation of non-rigid
registration using finite element methods,” Lecture
Notes in Computer Science, vol. 2082, pp. 344–357,
2001.

[5] C. Shannon, “A mathematical theory of commu-
nication,” Bell System Technical Journal, vol. 27,
pp. 379–423,623–656, 1948.

[6] S. Marsland and C. Twining, “Constructing diffeo-
morphic representations for the groupwise analysis
of non-rigid registrations of medical images,” IEEE
Transactions on Medical Imaging, vol. 23, no. 8,
pp. 1006 – 1020, 2004.

[7] S. Marsland and C. J. Twining, “Constructing
data-driven optimal representations for iterative
pairwise non-rigid registration,” Lecture Notes in
Computer Science, vol. 2717, pp. 50–60, 2003.


