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Abstract

Non-rigid registration finds a dense correspondence between a pair of images, so
that analogous structures in the two images are aligned. While this is sufficient for
atlas comparisons, in order for registration to be an aid to diagnosis, registrations
need to be performed on a set of images. In this paper we describe an objective
function that can be used for this groupwise registration. We view the problem of
image registration as one of learning correspondences from a set of examplar images
(the registration set), and derive a Minimum Description Length (MDL) objective
function.

We give a brief description of the MDL approach as applied to transmitting both
single images and sets of images, and show that the concept of a reference image
(which is central to defining a consistent correspondence across a set of images)
appears naturally as a valid model choice in the MDL approach.

In this paper we demonstrate both rigid and non-rigid groupwise registration
using our MDL objective function on two-dimensional T1 MR images of the human
brain, and show that we obtain a sensible alignment. The extension to the multi-
modal case is also discussed. We conclude with a discussion as to how the MDL
principle can be extended to include other encoding models than those we present
here.
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1 Introduction

Reliable registration of medical images has the potential to assist greatly in
medical diagnosis. Medical images in 2D and 3D from imaging modalities as
disparate as x-ray and MRI can be brought into alignment though a combina-
tion of affine and non-rigid image warps, and the resultant ‘deformation fields’
can be analysed to find patterns characteristic of certain diseases.

There are a myriad of methods of automatic non-rigid image registration of
pairs of images (e.g., [1–4]); see [5] for a review of general image registration
algorithms, not limited to medical images. Such algorithms typically involve
two independent choices: the objective function, the extremum of which de-
fines what is meant by the ‘best’ correspondence between the images, and
the representation of the deformation field that defines the dense correspon-
dence between the images. The choice of representation of the deformation
field applies implicit constraints on the possible deformations, and hence on
the possible correspondences. The objective function is typically a sum of sev-
eral terms – a voxel-based similarity measure, and terms that assign a cost to
each deformation.

In our approach to non-rigid registration, we assume that the inferences we
make about the data do not depend on hypothetical data-generating processes.
This effectively means that we are considering inter-subject registration, i.e.,
images of different subjects, where there is no underlying physical process that
generates the data. Hence, in the absence of expert anatomical knowledge (i.e.,
for the case of purely automatic registration), the meaning of correspondences
should be derived purely from the available data (the set of images).

In intra-subject registration there is often some actual physical process de-
termining the observed deformation, for example, tissue deformation due to
patient position, the insertion of an external object such as a needle, or patient
and organ motion. Alternatively, the deformation may be caused by atrophy,
such as in dementia, or growth, as in a tumour. In either case, the most suitable
choice of registration algorithm may well be one that closely models the un-
derlying physical process, leading to physically-based registration algorithms
(e.g., [6,7]), or physically-based models (e.g., [8]) that can be used to evaluate
the results of non-rigid registration algorithms.

We are focussing here on providing an assisted diagnosis system based on
images from many different subjects — providing a useable diagnosis system
will require a classifier to be trained on a very large number of medical images,
including examples of the known disease groups and normal patients. Current
registration methods work only on pairs of images, and so the registration
algorithm will have to be run many hundreds of times, once for each image
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Fig. 1. Left: A consistent correspondence (solid arrows) between a set of images for a
single point. Right: A consistent correspondence (dashed arrows) generated via corre-
spondence to a reference (solid arrows).

against the chosen reference. Furthermore, the choice of reference image, which
is used for the alignment of every image, is crucial. Pick a reference image that
is not representative of the set, and not only will each registration take much
longer, but the results will be biased.

There is another difficulty with this approach of using successive pairwise reg-
istration. The final classifier system will be based on statistical methods based
on the distance between images. In previous work [9] we have shown that for
these computed distances between images to be correct, the image warps all
need to be based on the same set of knotpoints. Hence, it is not sufficient
to use successive pairwise registrations, because the knotpoints computed in
each image will be different. Thus, we believe that the only solution is to de-
velop a groupwise registration algorithm that brings an entire group of images
into registration simultaneously. In this way we can guarantee that the same
knotpoints are used in each image, and that the reference image is correctly
chosen to be representative of the full set.

The default assumption of non-rigid registration is that all structures present
in any one image are present in all of the images, which means that the corre-
spondence between any pair of images should be strictly one-to-one. For group-
wise registration, this pairwise correspondence should be consistent across the
whole set of images. While this is not necessarily true for multi-modal regis-
tration – something that is considered later in the paper – we assume that the
differences are relatively small compared to the structures that do correspond.
One way to represent consistent groupwise correspondence is by defining the
correspondence between each image and some reference image, as shown in
figure 1. The correspondence between any pair or set of images is that in-
duced by this correspondence with the reference image, and is by definition
consistent. This reference image need not be an image from the group, but if
it is taken as an image from the group (or the mean of the currently-aligned
images), then this consistency criterion gives us the näıve view of groupwise
registration as successive pairwise registration, where the objective function
is just the sum of the relevant pairwise objective functions. We consider a
different approach here.
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We present an objective function that is suitable for this problem of groupwise
registration, and demonstrate its utility by integrating it with our existing
image registration software [10]. In previous work [11] we have demonstrated
that we can select common knotpoints across a set of images, and we now
extend this with a groupwise objective function that is based on the Minimum
Description Length (MDL) principle [12]. MDL is a model selection method
that has been growing in popularity recently, including applications in the
parameterisation of shapes defined by a set of points on their boundary [13]
and statistical genetics [14]. However, the application of the method to images
is certainly non-trivial, because there are several incommensurate terms that
have to be amalgamated. This is one of the problems that is discussed in this
paper. One benefit of using MDL is that all of the parameters of the non-
rigid registration can be set out as modelling choices. This makes it a useful
framework for the comparison of methods, and allows for the optimisation of
the modelling choices within the algorithm, something that will be further
developed as part of this research.

We begin the paper by discussing the links between modelling, correspondence,
and image registration. This allows us to link image registration to shape and
appearance modelling, since registration aims to compute a meaningful dense
correspondence between a set of images, while shape and appearance modelling
rely on such a dense correspondence being defined. We then introduce the
MDL framework, beginning from first principles, before showing how MDL can
be used to encode images. We consider the general framework of using MDL
to encode images and then show how it can be used to encode individual
images and sets of images. This provides us with the tools that we require
to develop the full objective function, which is done in section 5. We then
describe how the objective function can be implemented for rigid registration
(section 5.2) and non-rigid registration (section 5.3), where the use of the
objective function in complete non-rigid registration of groups of images is
demonstrated. Section 5.4 gives the case where some parts of the images are
obfuscated, so that successive pairwise registrations would not produce the
correct results, but our groupwise registration does.

2 Modelling and Correspondence

We will first consider the case of shape modelling. The scenario is that we are
given a training set of shape examples, and we wish to represent all of these
shape examples as specific instantiations of some parametric shape model.
Conventional approaches such as the Statistical Shape Model (SSM) (as used
in Active Shape Models [15]), or medial representations such as MREPS [16],
represent the shapes in the training set as deformed examples of a single ref-
erence shape. This means that we have an explicit, consistent correspondence
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across all the shapes in the training set. In the case of point-based represen-
tations such as the SSM, the initial correspondence is provided by means of
a set of manually-placed landmarks on each shape in the training set: this
suffers from the problem that it is a time-consuming and subjective process,
as well as being extremely difficult to perform for 2D shapes (surfaces) in 3D.
In volumetric representations such as MREPS, the correspondence is implicit
in the medial representation. Given a consistent correspondence across the
training set, the reference shape is then conventionally defined as the mean
shape across the training set, using an appropriate metric. Given the corre-
spondence and the reference shape, the remaining part of the shape model is
the set of deformations between the reference shape and the training set.

It is usual to first factor out any affine/similarity transformation part of the
deformations through the use of some alignment algorithm (e.g., Procrustes
Analysis). The remaining non-rigid part of the set of deformations is then
usually represented in some convenient dimensionally-reduced fashion – for
example, in the case of the SSM, the set of shape deformations is represented
using a multivariate Gaussian (which then gives a set of modes of variation).
The final shape model then consists of the reference shape, the parameterised
set of non-rigid deformations of this reference shape, and the set of affine
deformations. To allow for the fact that there may be some mismatch between
the actual training shapes and their representation by the shape model, we
also allow a set of residual deformations, which represent this discrepancy
between the model representation and the actual shape.

This modelling approach can be extended to regions of interest in a set of train-
ing images, in approaches such as the Active Appearance Model (AAM) [17].
As previously, the model-building starts from a set of manually-placed land-
marks on the boundary and interior of the region of interest. The reference now
consists of a reference shape, and the image appearance (pixel values) within
the reference shape. The deformations of this reference required to reproduce
each training example now include both a spatial deformation of the reference
and a pixel-value deformation of the reference appearance. The required de-
formations can be combined into a single statistical model, which allows for
correlations between shape change and appearance change. Note that the sen-
sible combination of the incommensurate quantities of spatial deformation and
pixel-value deformation into a single model is only possible because we know
the correspondence; the scaling between spatial and pixel-value deformation
can be chosen so that both parts have equal variance. As in the shape case,
the model-building process starts from a user-defined correspondence across
the set of training images.

Shape modelling is dependent upon the correspondence of the set of training
shapes – altering the correspondence whilst maintaining the representation
of the shapes will generate different shape models. Figure 2 gives a simple
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Fig. 2. From the left: Original shape, rotated shape with correct correspondence (as
indicated by point size and colour), rotated shape with incorrect correspondence.

example. The sizes of the points and their shading indicate the correspondence,
and so it can be seen that the correspondence between the first and second
shapes is correct (a rotation of the points in the square of about 60 degrees
clockwise has taken place). The alternative correspondence shown in the third
image requires a much more complicated transformation, which will result in
a significantly more complicated shape model being required to describe a set
of such transformations. If we have an objective function that allows us to
compare models, we can – by varying the correspondence – find the optimal
shape model, and hence the optimal correspondence for a particular set of
training shapes. This was the approach taken in the Minimum Description
Length (MDL) [12] approach to shape modelling [13], where it was found that
the resulting models had improved performance compared to models built
using other methods. The application of the MDL principle to model selection
is described in the next section.

In summary, we see that the conventional approaches to both shape modelling
and shape-and-appearance modelling rest on a definition of a dense correspon-
dence across a set of training examples. In contrast, the aim of automatic
non-rigid registration algorithms is to find a meaningful dense correspondence
across a set of training images. This suggests that we should view groupwise
non-rigid registration as a modelling problem, where the sought-for dense cor-
respondence across the training set of images is one that produces the optimal
model. How this model of images is constructed, and the criterion used to
define the optimal model is the subject of the next section.

3 The Minimum Description Length (MDL)

The Minimum Description Length is a model-selection criteria. The MDL
principle states that the best model to represent a set of given data is the
one that requires the shortest message to transmit the data to some observer
when the data is encoded using the specified model. The measure of message
length that is used is the ‘stochastic complexity’ of the data [12]. In general, a
complete message consists of two parts – the parameter values of the model,
and the data encoded using the model. Code lengths (the length of the en-
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coded message required to transmit one parameter, or one piece of data) are
calculated using the fundamental result of Shannon [18] – if there are a set of
possible, discrete events {i} with associated model probabilities {pi}, then the
optimum code length required to transmit the occurrence of event i is given
by:

Li = − ln pi nats, (1)

where the ‘nat’ is the corresponding unit to the ‘bit’ when logarithms are
taken to base e. The total message length/description length is then given by
the sum of the parameter length and the data length:

L = Lpara + Ldata, Ldata =
∑

i

Li, (2)

where the parameter length Lpara is the sum of the code lengths for trans-
mitting the set of parameter values of the model. The data length Ldata is
minimised when the model probabilities {pi} exactly match the empirical dis-
tribution of the data. The MDL criterion minimises the description length
L, balancing model complexity (as measured by Lpara) against the degree of
match between the empirical and model distributions.

Suppose that we wish to transmit a positive integer of the form n = 2k, k ∈ Z+.
Representing the number in binary form requires k bits, which can be also
written in terms of n:

Lint(n) = k bits = 1 + int (log2 n) bits. (3)

Converting to natural logarithms rather than base 2 for theoretical conve-
nience, this then gives an approximate message length for transmission of an
unsigned integer n of:

Lint(n) ≈ 1

e
+ ln n nats, (4)

where we have converted to a continuum version of the function. If our quan-
tized data to be transmitted is encoded according to some parametric sta-
tistical model, this is equivalent to saying that the model assigns a non-zero,
normalised probability to every possible quantized data value. Hence, the prob-
ability used in the above equation is the probability of the occurrence of this
particular quantized data value according to the model.

Encoding a real number is not much more complicated, except that we have
to include a parameter δ = 2k, k ∈ Z that describes the accuracy to which we
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wish to encode the real number. The description length for the real number
and the accuracy δ are then given by:

Lreal(x; δ) = Lint

(
x

δ

)
≈ 1

e
+ ln

(
x

δ

)
nats, (5)

L(δ) = 1 + int| log2(δ)| bits ≈ 1

e
(1 + | log2(δ)|) nats. (6)

It is important to note that in this final approximation, L(·) is not a continuous
function – it is only defined for arguments δ = 2k, k ∈ Z.

As an final example, and one that will be useful later, we will compute the
description length of transmitting a quantized, pixellated grayscale image I
with N pixels according to the image histogram of that image. We assume that
the pixel-values {I(x) : x = 1, . . . N} are integers in the range [1, M ], and
that there are nm pixels in the image with pixel intensity m, with occupied
bins situated at positions {mα}. Using this image histogram as the model,
this gives the associated probability for each pixel being in histogram bin m
as p(m) = nm

N
. The transmission then consists of the set of positions, {mα}, of

the occupied bins (assuming a flat distribution over the allowed range, so that
all pixel intensities are equally likely), the number of occupants of each bin,
{nmα}, (which allows the receiver to construct the full image histogram), and
then finally the ordered set of actual pixel values in the image, encoded using
the histogram as model. The description length is hence the combination of
these three parts:

Lhist =
∑
bins

Lbin location +
∑
bins

Lbin occupation + Lpixels

=−
∑
α

ln
(

1

M

)
+
∑
α

Lint(nmα)−
N∑

x=1

ln p(I(x)). (7)

4 Applying MDL to Images

In this section we consider how we can encode images within the MDL frame-
work. Since MDL is a model-selection criteria, we can consider using a variety
of different models, and then selecting the one that gives the shortest descrip-
tion length. We begin by investigating two different methods of encoding a
single image, using either the image histogram, whose encoding was described
in the previous section, or a single Gaussian. We then choose between these
two encoding methods experimentally by encoding a series of different images.
Following this, we examine how we can extend this to describe a set of images,
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either by using a reference image, or just transmitting the set of images. We
will then be ready to describe our groupwise objective function in section 5.

4.1 Encoding a Single Image

Let us consider the simple case of transmitting one-dimensional ordered quan-
tized 1 data {ŷi : i = 1, . . . N}, with quantization parameter ∆. We will sup-
pose that the data is such that the mean is approximately zero, and that the
receiver already knows this and knows the quantization parameter. However,
we will not assume that the range of the data is known a priori.

The first model we will consider is one of the simplest parameterised models;
we choose a Gaussian model, of zero mean and width σ̂. The width is quantized
using a parameter δσ, where δσ is restricted to the set of values {δσ = 2k : k ∈
Z, δσ ≤ σ}. Both δσ and σ̂ have to be transmitted.

We will consider here just the case where 2 σ̂ � ∆. The full set of model
probabilities {p(ŷ) : ŷ = m∆, m ∈ Z} can then be approximated by:

p(ŷ) =
1√

2πσ̂2

ŷ+∆
2∫

ŷ−∆
2

exp

(
− ŷ2

2σ̂2

)
≈ ∆√

2πσ̂2
exp

(
− ŷ2

2σ̂2

)
(8)

⇒ ln(p(ŷ)) ≈ ln(∆)− 1

2
ln(2π)− ln(σ̂)− ŷ2

2σ̂2
. (9)

We hence obtain a complete description length of:

LGauss({ŷi}) = Lint

(
σ̂

δσ

)
+ L(δσ)−

N∑
i=1

log2(p(ŷi)) bits

≈−N ln ∆ +
N

2
ln(2π) +

1

e
+ N ln(σ̂)

+ ln

(
σ̂

δσ

)
+ L(δσ) +

N∑
i=1

ŷ2
i

2σ̂2
nats. (10)

If we treat the quantized variable σ̂ as a continuous variable σ (i.e., we take
the limit δσ → 0) then, for fixed data, the optimum continuum value is given

1 We will use ·̂ to denote quantized variables.
2 The case of Gaussian models where σ̂ ≈ ∆ is dealt with in [13], although only for
the case of data where the range is known.
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by:

σ2
opt =

1

N + 1

N∑
i=1

ŷ2
i . (11)

We would also like to be able to estimate the optimum value for δσ – that
is, we wish to find a continuous function of δσ that approximates the discrete
function given in (10). Note that there will be two types of terms involving δσ:
the approximation of the log2 term, and terms arising from the quantization
of σopt.

If δσ < 1:

L (δσ) ≈ 1

e
− ln (δσ) nats. (12)

We know that:

|σ̂opt − σopt| ≤
δσ

2
, (13)

and that the data, and hence σopt, are fixed, whilst δσ, and hence σ̂opt, vary.
We therefore take σ̂opt = σopt + dσ, where we will assume that dσ has a flat
distribution within the range |dσ| ≤ δσ

2
. So, our estimate of functions f(σ̂opt)

is:

f(σ̂opt) ≈ 〈f(σopt + dσ)〉dσ
≈ f(σopt) +

δ2
σ

24
f

′′
(σopt) + O

(
δ4
σ

)
. (14)

Then we find that:

ln(σ̂opt)≈〈ln(σopt + dσ)〉dσ
= ln(σopt)−

δ2
σ

24σ2
opt

+ O
(
δ4
σ

)
, (15)

1

σ̂2
≈
〈

1

(σopt + dσ)2

〉
dσ

=
1

σ2
opt

+
δ2
σ

4σ4
opt

+ O
(
δ4
σ

)
. (16)

Substituting from (12, 15, 16) into (10), we obtain:

LGauss({ŷi}; δσ)≈ 2

e
−N ln(∆) +

N

2
ln(2π) + (N + 1) ln(σopt)−

(N + 1)δ2
σ

24σ2
opt

− 2 ln(δσ) +
1

2

N∑
i=1

ŷ2
i

(
1

σ2
opt

+
δ2
σ

4σ4
opt

)
+ O

(
δ4
σ

)
nats. (17)

10



Fig. 3. Graphs showing description length as a function of δσ for 3 datasets with different
variances, with N = 50. Crosses: the exact description length (equation (10)), with
the minimum circled, Solid line: the continuum approximation (equation (19)), with
the position of the minimum shown by the dashed line.

Hence, to lowest order, the optimum value of the parameter accuracy δσ is
given by:

δ2
σ =

12σ2
opt

(N + 1)
. (18)

Substituting from (11) and (18) into (17) gives the final optimised form of the
description length:

LGauss({ŷi})≈
2

e
−N ln(∆) +

N

2
ln(2π) +

(N + 3)

2

+ (N + 1) ln(σopt)− ln

(
12σ2

opt

(N + 1)

)
nats. (19)

In figure 3 we compare the exact expression for the description length (10)
with the approximate continuous form (17) for 3 datasets of varying variance.
Each dataset {ŷi} consists of 50 quantized values randomly selected from a
Gaussian distribution, with the mean being precisely zero. In each case, we use
the calculated value of σ̂opt or σopt as appropriate, since it was found that this
gives an extremely good estimate of the true optimum value of σ, whatever
the value of δσ. We can see from the figure that equation (18) gives a good
order-of-magnitude estimate for the optimum value of δσ, across a range of
values of σopt that covers 7 orders of magnitude, despite the fact that the
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approximate continuum expression was derived just for the case δσ < 1, and
despite the relatively small size of the dataset (i.e., N = 50). The minimum
value for the description length given by equation (19) is also seen to be a
reasonable estimate.

The Maximum Likelihood estimate for σ is given by optimising the sum of log
probabilities from (9); the conventional error estimate for σML is given by the
Cramér-Rao-Frechet lower bound:

σ2
ML =

1

N

N∑
i=1

ŷ2
i , δ2

CRF =
σ2

ML

N
. (20)

As we might have expected, the Gaussian model MDL estimate of σopt differs
slightly from the Maximum Likelihood estimate, and ditto the estimates of
the optimum value of δσ.

The second model we will consider consists of simply transmitting the his-
togram of the data as our model, with the bin widths given by the quantiza-
tion scale of the data ∆. In terms of parameterised models, this is the most
complex, since the model is exactly the empirical distribution of the data.

The set of occupied bin positions is given by {bα : bα = mα∆, mα ∈ Z}, with
occupancies {nα ≥ 1}. Hence, the message length for transmitting all the
parameters of the histogram (using equation (7)) is:

Lhist:param =
∑
α

{
1

e
+ Lint(1 + |mα|) + Lint(nα)

}
nats

≈
∑
α

{
3

e
+ ln(1 + |mα|) + ln(nα)

}
nats, (21)

giving a final description length of:

Lhist = Lhist:param + Lhist:data

= Lhist:param −
∑
α

nα ln
(

nα

N

)
. (22)

It should be noted that the data length Lhist:data for transmitting data according
to its empirical distribution is just the size of the dataset multiplied by the
Shannon entropy H ({nα}) of the data histogram, where:

H ({nα}) = −
∑
α

nα

N
ln
(

nα

N

)
. (23)

So, in the context of MDL, the Shannon entropy is meaningful in its own right,
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and should not be considered as just a badly-behaved approximation to the
differential entropy.

The description lengths for these 2 models (equations (19) and (22)) were
then applied to a set of 8-bit (= 8

e
≈ 2.943 nats) greyscale images, with the

data being centred before transmission. The description lengths per pixel for
each image are shown in figure 4. The set of images consists of 3 images of
ordinary objects, 2 medical images (a mammogram and a slice from a 3D MR
image of a normal human brain), and an artificial image constructed from a
set of independent Gaussian random variables. We can see that the description
length per pixel is of the correct order compared to the greyscale resolution
of the original images if we remember that the transmitted data has been
centred – this then requires an upper bound of 2 × 8 bits ≈ 5.886 nats to
transmit any such centred image without encoding. It can be seem that in
all cases, even that of the Gaussian image, the increased parameter length
for the model using the empirical distribution is more than compensated for
by the exact fit to the data. This discrepancy is not due to any errors in
approximating the optimum parameters for the Gaussian; the change in the
Gaussian description length per pixel between taking the exact optimum value
of δσ and equation (10), and that given by equation (19) was in all cases less
than 3.0× 10−5 nats.

As well as giving a smaller description length, encoding according to the empir-

Fig. 4. Top row: The description lengths per pixel for a set of images, encoded using the
2 different models, Optimised Gaussian: grey crosses, Empirical distribution:
black circles. Middle row: Thumbnails of the images with image dimensions in pixels,
Bottom row: The centred image histograms, all to the same scale.
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Fig. 5. The original image with various amounts of Gaussian white noise.

ical distribution potentially offers greater discrimination, given that the range
of description lengths using this model (0.8743) is greater than the range ob-
tained using the Gaussian model (0.8296). We therefore conclude that the
appropriate description length for transmitting a single image is that given by
the empirical distribution of the data.

4.2 Encoding a Set of Images

Having decided how to encode a single image, we next need to consider the
problem of encoding a set of similar images. Conventional approaches to mod-
elling represent a set of training examples as deformations of some reference
example. This fits naturally into the MDL approach to statistical inference
when we consider transmitting a dataset (our training set) to a receiver.
Rather than transmitting the data directly, we attempt to reduce the total
length of the transmission by encoding the data using some model. If our data
is quantized, this can obviously be done using a message of some finite length.
The optimal encoding of the data is then defined to be the encoding that has
the shortest total transmission length, which is the description length. We will
consider two different models: sending each image separately, and generating
a reference image (the mean of the set) plus a set of ‘discrepancy images’
showing how each image in the set differs from the reference.

We investigate transmitting a set of aligned 8-bit greyscale images, and our
experiments will use sets of images created by taking an original 190×190
pixel image and adding Gaussian white noise of varying variance (see figure 5
for examples). Images will be sent using the histogram encoding, except that
we will now use the fact that the range of the image values is fixed, being
0 : 255 for an ordinary greyscale image, and −255 : 255 for a discrepancy
image. So, we take {nα ≥ 1 : α = 1, . . . A} as being the occupancies of the set
of non-empty bins at positions {mα}, where M is now the width of the range
of allowed bin positions. We take a flat distribution across this range when
encoding the bin positions. This means that the expression for Lhist:param from
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Fig. 6. The ratio of description lengths with and without an 8-bit reference image as a
function of the number of images in the set, for varying values of the noise variance.

equation (21) now becomes:

Lhist:param = A ln (M) +
A∑

α=1

(
1

e
+ ln(nα)

)
, (24)

where the range M is 256 for greyscale images, and 512 for discrepancy images.
Lhist:data ({nα}) is as given previously in equation (22).

The first question is whether sending a reference image and discrepancy images
gives an advantage over sending the original images separately. To test this,
we took sets of ns noisy images, with the noise variance fixed. The reference
image was taken as the mean of each set, with the same data resolution as the
original images (i.e., 8-bit). We then computed the ratio of description lengths
for transmission with and without a reference image, as a function of size of the
set ns, and as a function of the noise variance. The results are shown in figure
6. It can be seen that for all the values of noise variance considered, encoding
using an 8-bit reference becomes advantageous (i.e., the ratio of description
lengths is less than one) provided that the number of images in the set ns is
large enough. And, as we might have expected, the lower the noise variance,
the lower the critical value of ns.

In the approach described above, the reference image is considered as part of
the model we are using to send the set of images. As the reference is taken
to be the mean, it can be considered to consist of the information/structures
that are common across the set. We therefore ask whether we are justified
in using a full 8-bits (256 grey levels) to describe the reference. The question
is answered by the graphs shown in figure 7. The variance of the noise was
fixed at 0.2, and the number ng of quantized grey levels in the reference was
varied, whilst the range of the data was maintained. It can be seen that for
all set sizes ns ≥ 3, there is an advantage to using a reference, provided ng is
suitable chosen. Furthermore, as the number of images in the set ns increases,
the optimum value of ng also increases. However, for a set of 20 images, the
optimal reference image encoding would take only 4 bits.
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Fig. 7. The ratio of description lengths with and without a reference image as a function
of the number of grey levels in the reference, for varying numbers of images in the set
(ns). The minimum point of each graph is circled.

5 An MDL Objective Function for Image Registration

5.1 Description of the Approach

We have shown in the preceding section that sending a set of (aligned) images
encoded using a reference image of some type generally provides shorter de-
scription lengths than sending each image separately. This allows us to make
the critical link between methods of image transmission and correspondence,
as illustrated in figure 1: in some sense, the reference image contains the struc-
tures that are common to the set of aligned images, and it also allows us to
define a consistent spatial correspondence across the image set, the genera-
tion of which is the aim of automatic non-rigid registration algorithms. If we
employ a model of the general form described in the previous sections, then
the total message consists of the following parts:

• The reference image
• The parameters of the model used to describe the set of deformations of the

reference example
• The representation of each training example according to the model
• Any residual deformations

The total description length L can thus be written as a sum of corresponding
terms:

L = Lref + Lparams + Ldata:model + Lresidual. (25)

The only additional factor we need to add is the spatial transformation be-
tween the original image planes/volumes and the reference image plane/volume,
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Fig. 8. The set of transformations between reference and image frames.

which is what is computed by the registration algorithm. The transformations
between frames involved in the encoding and decoding processes are sum-
marised in figure 8. We have a set of images {Ii : i = 1, . . . ns} and a reference
image Iref. There is also a set of diffeomorphic transformations {ti} between the
image plane/volume of the reference image and the image plane of each image
in the set. It is this set of transformations that defines the dense correspon-
dence across the set of images, in the manner described in figure 1. Defining a
transformation ti also defines the pullback transformation tinv

i . Note, however,
that it is not strictly required that tinv

i is the exact inverse of ti, just that it is
also diffeomorphic, and that the transmitter and receiver both use the same
algorithm to compute the set {tinv

i } from the set {ti}. The set {ti} on its own
is enough to define a consistent correspondence across the set, allowing us to
find, for each point in the reference, the set of corresponding points across
all the images. However, without an exact inverse, t−1

i , we cannot find all the
points corresponding to a point in image Ii.

Encoding the set of images then proceeds as follows. The transmitter first
computes the initial reference image Iref, as the mean of the image set, and
computes image transformations {ti} to bring each the reference image into
alignment with each image Ii. She then constructs the pullback mapping {tinv

i },
and maps each image Ii into the plane/volume of the reference. The image
values from Ii are then resampled onto the regular grid Xref of the reference
to give the image Ĩi(Xref) (we assume that transmitter and receiver have pre-
viously agreed on a resampling scheme). The full set of resampled images in
the frame of the reference {Ĩi(Xref)} is then averaged to create the new refer-
ence image Iref(Xref). This reference image is transformed to the image plane
of each image Ii in turn, and resampled onto the regular image grid Xi to give
the image Ĩref(Xi), and the discrepancy image between the warped, resampled
reference and the image Ii is computed, Idisc

i (Xi) = Ii(Xi)−Ĩref(Xi). The trans-
mission then consists of the reference image Iref(Xref), the set of parameterised
transformations {ti}, and the set of discrepancy images {Idisc

i (Xi)}, which fits
naturally into the scheme that was described previously.
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To decode the ith image, the receiver decodes the reference image Iref(Xref),
the warp ti, and the ith discrepancy image Idisc

i (Xi). She then applies the
transformation to the reference image, and resamples the warped reference
on the regular image grid of image Ii (which is the same as the grid of the
discrepancy image) to create the image Ĩref(Xi). Adding the discrepancy image
Idisc
i (Xi) to the image Ĩref(Xi) then allows her to reconstruct the original image

Ii(Xi) exactly. The description length for this encoding is given symbolically
by:

L = Lparams ({ti}) + L (Iref(Xref)) +
ns∑
i=1

L (Idisc

i (Xi)) , (26)

where Lparams ({ti}) is the message length for transmitting the set of quantized
parameters of the transformations, plus the set of quantization scales.

The only free parameters of the encoding are the set of transformations {ti};
a set of such transformations automatically defines the correspondence across
the set of images. The optimum correspondence is then that given by the
set of transformations that minimises the description length in equation (26).
Finding these transformations is the task of the chosen registration algorithm.
From an implementation point of view, it is important to note that we can
optimise each transformation ti individually; varying ti alters the contribu-
tion of the ith image to the mean, which alters the reference image, which
hence alters the discrepancy images for all images in the set. So, although
we can sequentially optimise the transformations, the effect is actually a fully
groupwise one. Each iteration of the algorithm can thus correspond to opti-
mising just one of the transformations {ti}, which can significantly simplify
the implementation, and the inclusion of our objective function into existing
registration algorithms.

In the next sections we discuss suitable encoding schemes for transformations
for both rigid and non-rigid registration algorithms, and provide a series of ex-
perimental results, demonstrating that the MDL objective function is suitable
for the task of image registration.

5.2 Rigid Registration

To demonstrate the feasibility of the above scheme, we first consider the sim-
plest case of a set of images produced by simply translating and resampling
a single image. The transformations {ti} are then just translations, with pa-
rameters {xi, yi}. If we suppose that these are transmitted to an accuracy δ,
and with some maximum modulus l, then the message length for the trans-
formations is given by:
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Fig. 9. Rigid Groupwise Registration Top Row: The group of 5 images to be aligned
(translated versions of the same image). Second Row: The description length divided
by the total number of pixels in the group of images as a function of iteration number,
Bottom Two Rows: The mean/reference image at each iteration.

Lparams ({ti}) =
(

1

e
+ | ln(δ)|

)
︸ ︷︷ ︸

transmit δ

+

(
1

e
+ ln

(
l

δ

))
︸ ︷︷ ︸

transmit l

+
ns∑
i=1

2

[
1

e
+ ln

(
2l + 1

δ

)]
︸ ︷︷ ︸

transmit xi, yi

nats, (27)

and the images are individually transmitting using the histogram encoding
described earlier (see equation (24)).

The results of such an optimisation for a set of ns = 5 images are shown in
figure 9. The images are 2D axial T1 MR slices of human brains. They are
8-bit grayscale images of size N = 100 × 100. As we might have expected,
the optimisation produces a good result after ns iterations, i.e., one iteration
of optimisation for each image. It is clear that the final reference image is
exactly the generalization of the image set we would have expected, and that
the algorithm converges to it despite the extremely poor quality of the initial
reference image.
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5.3 Non-Rigid Registration

We now consider the case of full non-rigid registration. We choose as our
parameterised set of transformations the polyharmonic Clamped-Plate splines
(CPS) [9,19], which have successfully been used in non-rigid registration [10].
The CPS interpolates the motion of a set of knotpoints, hence the parameters
of a transformation are the initial and final positions of those knotpoints. The
boundary conditions on these splines are that the transformation vanishes
smoothly on a the surface of a ball, which in our case (2D), we take to be the
circumcircle of the images. We choose to use the biharmonic CPS.

We need to establish a spatial reference frame, which is equivalent to defining
the knotpoint positions {xref

α , yref
α : α = 1, . . . nk} on the reference image. Then

the set of transformations {ti} is defined by specifying the knotpoint positions
{xi

α, yi
α : i = 1, . . . ns, α = 1, . . . nk} on each image in the set. The description

length for the parameters of the set of transformations {ti} is then:

Lparams ({ti}) =
(

1

e
+ | ln(δ)|

)
︸ ︷︷ ︸

transmit δ

+

(
1

e
+ ln

(
l

δ

))
︸ ︷︷ ︸

transmit l

+ 2(ns + 1)nk

[
1

e
+ ln

(
2l + 1

δ

)]
︸ ︷︷ ︸

transmit ti

nats, (28)

where, as before, l denotes the range of allowed values of the coordinates, and
δ the accuracy, with the centre of the image circumcircle being the origin of
coordinates. If we denote the CPS interpolant by ω

(
{x(0)

α , y(0)
α } → {x(1)

α , y(1)
α }

)
,

then the transformations are given by:

ti = ω
(
{xref

α , yref

α } → {xi
α, yi

α}
)
, tinv

i = ω({xi
α, yi

α} → {xref

α , yref

α }). (29)

tinv
i is not the exact inverse of ti, but as mentioned previously, this does not

matter! The CPS is not guaranteed diffeomorphic, however, we have found in
practice that for these types of images, folding never occurs 3 .

In this and the following sections, we present examples of non-rigid registra-
tions using our objective function. In all of the examples we use the same
N = 100 × 100 axial MR brain slices that were used in the rigid registration

3 If images were used such that this became a problem, it should be noted that there
is also a guaranteed diffeomorphic version of these splines [9]. This is discussed in
section 6.
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Fig. 10. Non-rigid Registration Top Row: The group of 5 images to be aligned, with
the reference image knotpoints positions superimposed, Second Row: The description
length divided by the total number of pixels in the group of images as a function of
iteration number, Bottom Row: The mean/reference image at the start, and at the
2nd, 4th, 6th, 8th, and 10th iterations.

above, although in these experiments, the images have already been affinely
aligned.

The CPS interpolates the motion of a set of knotpoints, so that the parameters
of a transformation are the initial and final positions of those knotpoints (in
the frame of the reference image). Transmitting a spatial deformation is then
equivalent to transmitting the positions of a set of knotpoints. We quantize
the knotpoint positions to an accuracy δ, with a range of possible positions
equal to the size of the image, and a flat distribution over this range; this then
comprises the probabilistic model for the encoding of the knotpoint positions.
We encode the reference image using the histogram encoding given earlier (7)
with M = 256 since we have 8-bit grayscale images. Because the number
of training examples is small, we do not assume any relation between the
discrepancy images for different training examples, and instead we transmit
each discrepancy image according to its own histogram, shifting the data so
that M = 512 for the discrepancy images. In future work we will examine
whether it is possible to reduce the description length further by encoding the
discrepancy images.

Our registration algorithm is based on that given in [10]. We first generate
a set of nk = 10 equi-angularly spaced knotpoints around the skull for each
image. We then take the average positions of these points across the set as
our reference image knotpoint positions {xref

α , yref
α }, which remain fixed, and

provide us with our spatial reference. For the purposes of illustration, the
image knotpoint positions were initialised to the reference knotpoint positions
(as is shown in figure 10), so that the transformation starts at the identity. We
take each image in turn, and then take one knotpoint at a time, and optimise
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its position on this image. We use a fixed position accuracy of δ = 0.05 pixels.

As can be seen in figure 10, as the optimisation proceeds, the reference image
sharpens – after 10 iterations (that is, 2 passes through each image), we see
that the skulls are aligned, giving a clear distinction in the reference image
between skull, CSF, and the brain surface. These are the structures in the
vicinity of the knotpoints. The brain structures far from the knotpoints (i.e.,
the ventricles and sulci) are only approximately aligned, as we would expect.
Note also that the final reference does not have the same skull shape as any
of the originals. In these results we have only shown the first stage in the
registration – as in [10], the registration would be refined by adding more
knotpoints, and then re-optimising.

5.4 Optimising the Reference Image

Our choice to use the continually-updated mean as the reference image was
initially motivated by the analogy that we drew with the standard approaches
to the reference in shape-modelling. We could have used one of the training
examples itself as the reference image – however, it is well known that changing
the choice of reference can greatly change the final results when it comes
to atlas construction. Bhatia et al. [21] perform groupwise registration to a
varying spatial reference, yet use a fixed example from the training set as the
intensity reference. The problem with such a fixed choice of intensity reference
is illustrated in the following example.

We take a seed image of a brain slice, and generate a training set of transformed
versions of this seed image by translating and re-sampling. We then obscure
part of the brain in each training example, as is shown in figure 11. It is
obvious that using any of these training examples as the intensity reference
(as in [21]) will give poor results, since none of the training examples contain
all the structures present in the seed image. However, as can be seen from the
figure, aligning to the continually-updated mean produces good results, with
all the examples being brought into the correct relative alignment. Note that
the final spatial reference is not fixed, but will vary depending on the order in
which the transformations of the training examples are optimised.

Note, however, that the MDL formulation is not limited just to the choice of
the mean of the aligned images as the intensity reference – the values of the
reference image are a part of the model, and so could theoretically be optimised
over. This is illustrated in figure 12, where we take the set of transformations
given in the previous figure, but rather than computing the mean, we instead
compute the median of the aligned training examples. As can be seen, this not
only gives a much smaller description length, but also gives a reference image

22



Fig. 11. Top Row: The set of training images, Other Rows: The reference image as
the registration progresses, with the value of the objective function (the total description
length for the set in nats).

Fig. 12. The mean and median of the aligned training set from figure 11 compared to
the seed (original) image. The value of the total description length for the two choices
of reference is given below the image.

that is much closer to the original seed image. We would not necessarily expect
to be able to reconstruct the reference image exactly, since the re-sampling
will introduce some blurring.

This result for the refined reference image shows not only that we are able
to correctly align a set of images, despite missing structures in each of the
images, but also that the same MDL approach has allowed us to correctly
extract the union of structures from the training set, not just the commonality
of structure. This suggests possible links to the problem of super-resolution,
which is something that will be considered in future work.

Continually computing the reference image as the mean is, however, a compu-
tationally expensive operation. We therefore investigated whether it is strictly
necessary. Figure 13 shows a larger registration of ns = 7 images. In this ex-
periment, the reference image was not recomputed every iteration, but only
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Fig. 13. Non-rigid Registration Top Row: The set of training images, Other Rows:
The reference image as the registration progresses, with the value of the objective
function (the total description length for the set in nats divided by the total number
of pixels in all the images). The graph shows the objective function decreasing as the
registration progresses.

after ever 3 iterations. This saves significant computational time, although it
means that the optimisation is not always as efficient. One effect of this is
that the objective function is not monotonic as a function of the iteration
number, as can be seen in figure 13. Note that in this image set there are
significant variation between the pixel intensities in the images, which would
cause problems for an algorithm that only varies the spatial reference.

5.5 Comparing Different Classes of Model

In the examples given above, we used a single class of model, and showed
that optimising the transformations {ti} gave us a reasonable registration,
whilst also optimising the pixel-values of the reference image enabled us to
integrate information across the training set. Both of these results can be
seen as specific examples of optimising the parameter values for a given class
of model. However, the MDL approach also allows us to compare different
classes of model, since the description lengths can be compared directly.

For example, if our training set contains examples of different diseases as
well as normals (with these images classified by an expert) then the MDL
framework could be used to enable disease diagnosis from this, by finding
suitable reference images from each different class. This could even be done as

24



Fig. 14. Top Row: The 2 seed images, and the absolute difference between them.
Bottom Row: The reference images for the two sub-sets, and the combined set, with
the total description length in nats.

an unsupervised learning problem, so that the algorithm discovers the number
of classes in the training set and identifies them. A simple example is illustrated
in figure 14. We take two 2D N = 129×129 seed images from the BrainWeb 4

database, chosen to be slices that are close together, so that they show the
same structures. We generated two subsets of images by translating and re-
sampling each seed image as before, united them to create our final training
set. The results shown in figure 14 compare describing the whole training set
using a single reference to describing each subset separately, using the same
registration algorithm as earlier.

If we compare the description lengths for the case of two reference images
as opposed to just one, the summed cost with two reference images is 4%
lower than the cost for the combined transmission – this is as expected, since
the combined training set really only contains two independent images, that
is, the original seed images. Investigating this further, and developing the
unsupervised learning algorithm briefly mentioned above is an important part
of our future work.

6 Discussion and Conclusions

We have described an objective function that is suitable for non-rigid reg-
istration of groups of images. The objective function comes from the MDL
framework, which we have motivated by highlighting the links between image

4 http://www.bic.mni.mcgill.ca/brainweb/
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registration, where a correspondence between images is computed, and image
modelling, where such a correspondence is assumed.

In this paper we have provided a proof-of-concept for this objective function
for both rigid and non-rigid registration. We have used 2D T1-weighted MR
images. The principal reason for this is that our current implementation is
in Matlab, and a 3D experiments will require a compiled implementation of
our algorithm. This is currently under development. However, the objective
function that we have described, and the algorithm that we have used can be
extended to 3D without any significant difficulties.

In addition, the extension to multi-modal images is also currently under in-
vestigation. The principal difficulty with multi-modal images is that there is
not necessarily a one-one correspondence between the images. However, we
have demonstrated in section 5.4 that our algorithm can deal with substantial
differences between the images, even missing slices of the images. We have
previously [22] developed a reference image/discrepancy image histogram en-
coding suitable for multi-modal images, thus, multi-modal image registration
should not be a problem using this algorithm. As was identified in the previous
section, we also plan to investigate whether the registration algorithm itself
can be used as an unsupervised learning algorithm to cluster the images into
different disease groups.

Another area that is still in need of further work is the optimisation. We
currently use a line search method, which is inefficient. Investigations into a
better optimisation scheme, possibly taking into account approximations to
the gradient are also planned. This should significantly speed up the registra-
tion.

The principal motivation for our investigation of groupwise registration is the
necessity for consistent landmarking across a group of images to allow image
variation to be described numerically [9]. These computations are based on dif-
feomorphic warps between the images. In this paper we do not in fact compute
diffeomorphic warps, the clamped-plate spline warps used in the registration
algorithm are not guaranteed diffeomorphic. One possible solution is to instead
use the geodesic interpolating clamped-plate spline that we have previously
developed [9]. However, this would have significant computation costs as con-
structing the spline requires another optimisation with the optimisation of the
final knotpoint positions. Instead, we believe that this analysis is something
that should occur after the images have been brought into alignment. At this
stage the full diffeomorphic warps can be computed, and the distances across
the image set computed. Instead, we approximate the diffeomorphic warps
using the clamped-plate spline, and we have not yet found examples in real
images where this is a problem.
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