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Abstract - Sub-pixel registration has application in many image pixel offset may be estimated with this approach has been
processing tasks. Predictive interpolation, a novel registration examined in previous work in the absence of noise [13]. The
technique, solves the problems of choosing a particular focus of this paper is to present a simplified analytic analysis
interpolation function and needing to search for the best offset. of the effects of noise on the systematic bias associated with
Predictive interpolation determines the optimum interpolation offset estimation and to verify the analytic results using
functionfor a given pair of images, and estimates the offsetfrom the
interpolation weights. The estimate of the offset between the images experimental image data.
is biased, and this bias depends strongly on any noise present in the For simplicity, the analysis here will be restricted to 1-D
image. It is shown that the bias resultingfrom the noise is opposite (although it easily generalises to two and higher dimensions).
from the bias from the image. This leads to the counter-intuitive Letj(x) represent the pixel values for the reference image. The
result that the registration accuracy can improve significantly (by a target image g(x) is offset fromf by u such that f(x + u) is in
factor of 10 for a second order filter) with the addition of moderate
amounts ofnoise. A 5th order filter is accurate to better than 0.5% of registration with g(x), i.e.
a pixel over a wide range of noise levels. These results are verified f(x + u) = = g(x). (1)
by measuring the accuracy ofregistration on sample images.

In practise, all imaging systems introduce noise from a
Keywords - sub-pixel, super-resolution, registration, motion range of sources: imaging (shot) noise, amplifier noise,

estimation, interpolation, linear prediction, imaging model, noise quantisation noise, and so on. In the analysis here, we assume
that the total combination of noise from all the sources can be

A. Introduction considered as additive white Gaussian noise with zero mean
and standard deviation a. Let ; and ; to be noise vectors,

Image registration is an important step in many image such that:
processing applications. While pixel accurate registration is
adequate for many applications, many techniques can benefit f(x) = f(x) + j (2)
from registration to sub-pixel accuracy. These include: super- g(x)= g(x) + 4
resolution [1]; motion compensation for video coding [2]; The sub-pixel registration problem is then to estimate u
sensor fusion [3]; stereo imaging; image stitching [4]; motion
detection using optical flow [5]; and image stabilisation. given the noisy images f and g, where 0 < u < 1. The

Given two images (or subimages in some applications), f performance outside this range is also of interest because of
and g, which differ only by a translation (rotation and scaling the possibility of error in the pixel-level registration.
are not considered in this paper), registration involves Most analyses of image processing operations, including
estimating the offset between the pixel locations of the two registration, assume that the images are band-limited. In
images. The general approach is to designate one of the particular, the Nyquist sampling criterion requires that the
images as the reference, and measure the offset of the other highest sinusoid frequency component within an image is less
image relative to this reference. than twice the sampling frequency to prevent aliasing. In

Sub-pixel registration requires estimating the offset to an practice, many images of real world objects contain some
accuracy of a small fraction of a pixel. Often this takes place degree of aliasing by virtue of the fact that objects have sharp
in two steps: first the images are registered to the nearest edges or boundaries. Natural objects in particular have detail
pixel, and then the offset within the pixel is estimated. In this at a wide range of scales so will contain energy over a broad
paper, it is assumed that the images have been pre-registered bandwidth. The only bandwidth limiting elements within
to the nearest pixel (using any method described in [6] or [7]). image capture systems are the optical transfer function of the
A novel linear approach is described for estimating the sub- lens, and area sampling performed by the sensor. Therefore

pixel offset that avoids the non-linear minimisation associated some degree of aliasing is inevitable. In fact, applications such
with conventional methods. The accuracy with which the sub- as super-resolution require that the input images be aliased in
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order to obtain more information from the image ensemble Since (5) is linear, the optimal filter coefficients may be
than is available within any single image [8]. Consequently, easily determined by least squares minimisation. As an
any sub-pixel image registration technique should be interpolator, the prediction weights are subject to the
insensitive to, or at least tolerant of aliasing. constraint

The rest of this paper is structured as follows: Section 11 E hj = 1. (6)
defines predictive interpolation and derives the optimal REw
interpolator. This is then used to estimate the sub-pixel offset If this was not the case, then the intensity within uniform
between the target and reference images. The bias associated regions would change. Eliminating ho from (5) gives:
with the estimated offset, and the effects of noise on this bias
are analysed in section III for step image models and different f0toEh(-f-W)i (7)
order predictive interpolation filters. Section IV compares the ieW,i.O
bias observed from real data with that from the theoretical Least squares minimisation can then be used over the
analysis. The implications are discussed in Section V. whole image to give the values of the coefficients that

minimise the prediction error fromfto g. Ifwe define
II. PREDICTIVE INTERPOLATION

g = go -fto8
While there are many different registration methods (see Ag_fA (8)

for example [1,6,7,9]), this paper focuses on a relatively new =f- fo
technique: predictive interpolation. This was first introduced then (3) transforms to
in [ 1 ] and analysed in more detail in [ 10] and [ 11 ]. argmi - 2

h, = arg min ~~~~~~(9)Conventional interpolation based methods for sub-pixel hj=
xEl -

registration use an interpolator to create a continuous surface
from the reference image samples. The continuous surface is which has well defined gradients, and being quadratic in hi,
then offset (and effectively resampled) and compared with the has a single global minimum that can be determined
target image. The sub-pixel offset is determined by searching analytically. Taking the partial derivative with respect to each
for the offset that gives the best fit with the target image: coefficient and solving for when these derivatives are equal to

u=arg.mink0- 2(3) 0 gives a system of linear equations. The order of the
u= argm1nllg0 -tull (3) interpolator is given by the number of independent

coefficients fitted (which is 1 less than the size of 1). For
Interpolation can be considered as a linear filter. The example, for a 3rd order predictive interpolator:

resampled, offset reference image may be formed by using a r 2 1 -

sampled interpolation function, resulting in a discrete filter: f EEE f-2 Fh -g

fu ++hf I+hofo+IAf+hf22+ YE - Ef2IAf2 = j1g (10)= hifji(4) Lz2zfj2 jLh2
where W is the region of support for the interpolation kernel, or more generally
and the filter weights hi, depend on the desired offset u. Fh= (11)
Different interpolation kernels are derived based on making This is then solved to give the optimal interpolation
different assumptions about the image. As a result, they may
have different regions of support, and Will give different sets wegt. Th prbe hni o odeemn h fstfo
of w ddifferiedfreo tofs assumptio. the interpolation coefficients. In previous work [11], we have
ofweightsderived from thoseassumptiobe e matched the weights to those that would be obtained usingSolving (3) is non-trivial because the difference conventional low order polynomial interpolators. This wasthe target and reference image is a non-linear relationship of valid for a first order filter (linear interpolation in 1-D) wherethe offset, u, and doesn't necessarily have well-defied the equations are the same. However for higher orders thegradients. Consequently, the offset iS usually found through q . gierativen.optimisation thniques. optimal interpolation function does not necessarily correspond.redictivination avoidsthi. s b turningt with any standard interpolation method, so matchingPredictive interpolation avoids this search by tuminmg the coficet ishre. ojsiy

problem around. It does not choose a particular interpolation co nsider toffsti
,
.

function, but instead uses the image data itself to determine If we consider integer offsets i.e. gofdthen in the absence
the interpolation kerel. It uses the pixel values in the of noise the optimum interpolation procedure will derive the
reference image to predict those in the target image, c f c h

et dete..... . ..rmining the 'best' (that is, optimal in a least remaining coefficients to be 0. In the general case, however,
'. ~~~the target image is partway between pixels, so a mixture ofsquressese 12] iterolaio kenel(h, i 14) hatrelte reference pixels iS used to predict the target. If we assume thatthe targettothe reference the offset iS a linear combination of the filter coefficients

g0 ~~~Ehit~~~(5)
jeW
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u=~3w1h (12) ~ h=argmin I g 2 (16)
iE=W h ,iE-W,i.O

then from the super-position principle, we get the weights as region
wi = i. (13) This effectively considers, and averages over, all of the

different configurations of the pixel values as a result of an
Note that this is exactly the same as the result obtained by eg en oehr ihntergo fspot h

matching the weights produced for a polynomial interpolator adgeb ofexpiil enoring the cons of (6) Tha
(for example a spline with finite support) and solving the theretis o citionfromeg the regio of
resulting equations for the offset, u. It can be shown that (13) support (becauseofnthe subtraction in (7)).
holds regardless of the particular interpolation kernel used.

The fact that ho makes no contribution to the offset, is why The elements of F (and similarly g) are of the form:
it is convenient to eliminate ho rather than one of the other fJJ f = f(( _ )o)(i + lo )
weights in (7). Combining (11) and (12) we get - (17)

(14) = ((f + J) (fo + Jo ) Jo
where w is a row vector made of the sample locations within Expanding and taking expectations:
the region of support, eliminating the origin (iO). Note that (f-f) _f0)+ 2= ff +2 fr
the P-1 term depend only on the reference image, so the pixe ° V frl J
matrix inverse only needs to be calculated once regardless of pixels (18)
the number of target images that are registered. The rows of (j f )2 +2U2 = E _ +2cU2 for i=j
this inverse are then weighted (by w) giving a single row pixels pixels
vector that depends only on the reference image. This leads to shows that the elements of F and g are sums of two
an efficient implementation when there are a number of target components: one is data dependent and one is noise. The
images that need to be registered relative to one another (for X2thatpleinsered olutobristered relativetooneanother(fo elements of g and the off-diagonal elements of F contain

while the diagonal elements of F contain 2a2. The
III. EFFECT OF NOISE ON BIAS consequence of this is that as the noise begins to dominate, the

interpolation weights will tend to become equal regardless of
Any estimate of the offset between the two images will be the actual image offset. This will lead to an estimated offset of

subject to uncertainties resulting from the characteristics of the 0.5 pixels for odd order filters and 0 pixels for even order
images. There will also be uncertainties resulting from filters, regardless ofthe actual offset.
underlying differences between the two images (for example
noise or aliasing). It has been demonstrated [10] that when A. Ist Order
performing predictive interpolation with a sufficiently large
image area the bias in the estimate dominates over the In previous work [11], we have analysed performance of
variance, making the bias of particular interest. The bias in the the first order predictive interpolation on a step edge in
estimator can be defined as any systematic deviation of the presence of noise for interval 0 < u < 1. The effect of noise
measured offset from the actual offset: was to add an additional term that depends on noise to the

Bias = E[]-u. (15) numerator and denominator.
IU+1,U2 U3I +3&2

To obtain an analytic expression of the bias, it is necessary E[] 34 4 2 (19)
to have a mathematical model of the features within the + 6U

images. Many images can be approximated by piecewise For low or no noise the bias is dominated by the signal, but
constant regions (with step edges in between). In forming the when ar is large, the expected value of the offset estimate
image, a step edge is blurred to a single pixel wide ramp by tends towards 0.5.
area sampling. This means that the edge pixels take on an It was shown that the bias in the absence of noise is
intermediate value depending on the exact position of the edge towards the nearest grid location and is away from the centre
relative to the sampling grid. Without loss of generality, in the of the interpolation region of support; whereas the bias
following analysis we will consider an image with a single introduced by the noise is in the opposite direction i.e. towards
step edge of height 1. the centre. At intermediate levels of noise, the bias partially

Since the location of the edge is unknown relative to the cancels out.
sampling grid position, the expected value is calculated by
assuming that all possible relationships are equally likely B. 2nd Order
within the image. The sum in (9) is replaced by an integral
over all possible edge positions within the region of support of Second order predictive interpolation has extended region
the interpolator: of support oftwo pixels (-1 < u . 1). For the step edge model,
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the expected value of the estimated offset for second order u7 = 1/6 . Bias function for these higher orders is a fraction
estimator is: oftwo polynomials:

E[U^ u= u u3 /6 -1 < u < 1. (20) * The denominator is a function of &2 and is alwaysEaII]=&+5/6' positive,
The bias from the deterministic signal can be found by * The numerator is a polynomial function of u and U2,

substituting zero for a in (20) and subtracting u: * For third and higher order filters 2 = 1 iS a root
Bias =E[u]-u=1 < .<1. (21) of the numerator, making the bias zero at this level of

Bis=E-15 noise for any offset, u.
Both the 3rd and 5t order interpolation filters give excellent

From (21)it can be seen that the bias from the (better than 10 of a pixel) registration performance over a
deteminsticsigal s toard theedg ofthe egin o wide range of noise levels. At higher noise levels, the higher

support and away from the centre (i.e. u is overestimated theorder ofthefilter,the better theperformance
when negative and underestimated when positive). This is
similar to the result from the first order interpolator. Likewise, 0.055 I I: I

equation (20) indicates that bias due to noise is towards the 2 -r--T
centre of the region of support (as a increases, the estimated I-
offset tends toward zero). This creates a partial cancellation of 0.045
bias for intermediate levels of noise. This can be clearly seen 004I-
from Fig. 1, which shows the bias curve for anumber of noise 0.035- - L-- L L

levels. 003 0.4 . 0
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Increasing t Fig. 2. The effect of noise on bias.
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Offset, u, pixels IV. VALIDATION WITH REAL IMAGES
Fig. 1. Bias in estimating the offset using 2ndorder predictive to ssessatere east ration . it isblurkinterpolation for a range of noise levels:r 0:0.05:0.35. Tolassessthe regir accur itis necssaryt iwr

with images where the offset is known in advance. Capturing
a sequence of images with precisely known offsets is difficult,

C. Higher Orders if not impossible. Therefore, a high-resolution image was used

Weoinvestoigatedpredictiverinterpolation filters up tofifth
as the image source, and a simple imaging model was used to

Wrer. arethinv ig pic.interenise sub-pireict iteationfs up toh simulate the capture of the sample images. A 1700x1700oredger.Sincethei primary paterestiis sub-pixel registration, the source image was filtered using a Ix20 horizontal box average
bias is averaged over an offset interval of 1 pixel (to give filter to simulate ID area integration. Shifting this blurred
indication of the perfonrance on average) by calculating the image by an integer number of pixels and sub-sampling
RiS bias over that interval. Assuming the images are afready horizontally by a factor of 20 (to 1700x85) produces a series
pre-registered to within one pixel, for odd order filters offsets of low-resolution images with known offsets in steps of 0.05
in the range of 0 < u < 1 were considered. For even order pxl.By taking different offset images as a reference, the
filters, the symmetry about 0 suggests that it is more above scheme provides 20 pairs of low-resolution images for
appropriate to consider offsets in the range -0.5 < u < 0.5. The each sub-pixel offset.
results are shown in Fig. 2 for noise standard deviations up to To calculate the bias for each sub-pixel offset, each of the
the edge height. 20 pairs of images had white Gaussian noise of required

As observed previously, the addition of modest levels of variance added to them and registered. This was re-peated 10



measurements over the range of offsets of interest (0 < u < 1 the better the performance. This can be explained by a wider
for odd order filters and -0.5 < u < 0.5 for even orders). region of support of the interpolation kernel, which offers

Fig. 4 shows the measured bias obtained from the test additional averaging. This is similar to passing the signal
image "Beach" (Fig. 3) as a function of added noise. The through a low-pass filter with a lower cut-off frequency. As
pattern of the bias is very similar to that obtained analytically the natural images tend to have 1/f frequency content and the
from the step edge model (shown in Fig. 2). This implies that noise is white, the signal to noise ratio is increased.
the piecewise constant model with area sampling provides a This improved performance of higher order filters at higher
reasonable representation of the dominant image noise levels comes at the expense of an increased
characteristics in terms of registration using predictive computational cost. The most time consuming step is
interpolation. The bias from the test image is slightly higher performing the summations to form F and g. The number of
than that estimated from the model because the model does eentedh the square of Theflroer.

not eactl mathth chaacterstic of he iage.elements calculated grows with the square of the filter order.
This is offset by the fact that only a single pass is required
through each of the reference and target images. A further
advantage of using higher order filters is the initial pre-
registration of the images to the nearest pixel is also relaxed.

_~~~~~~~~~~~~~~~~~2dor6derrtt X f0.06 - -

/ ~ ~~~ ~~~~ ~~ ~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~*I;;IM

I Storder~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

0.02 1todr
Fig. 3. Sample low-resolution image, "Beach", dominated by low

frequencies, with some sharp edges resulting in a limited degree of aliasing. 0.01- I-
Here the image was downsampled by a factor of 20 in both directions for v I l

displaying purposes.5
0 0.01 0.02 0.03 0.04 0.05

The minima in the bias characteristics with noise occur at Noise standard deviation, 6
different levels of standard deviation compared with the Fig. 4. Bias characteristics measured from the "Beach" test image for
model. This is because the effect of noise will depend on both different order interpolation filters (first to fifth order).
the number of significant edges within the image, and their
height. It is the noise standard deviation relative to the edge The results have been validated with a typical scene, giving
height that is significant in determining the noise level that results that closely match those obtained theoretically from a
gives the minimum bias. This makes it difficult to know how simple piecewise constant with area sampling image model.
much noise to add to an unknown pair of images to eliminate This implies that such a model closely approximates the
the registration bias. important image characteristics from the point of view of

registration. The method needs to be tested with a wider range
V. DISCUSSION AND CONCLUSIONS of images, particularly to investigate the effects of significant

aliasing on registration accuracy. Preliminary experiments
Different order filters have shown to have quite different indicate that when significant aliasing is present, the bias

noise characteristics. Comparing the performance of different increases and the bias pattern changes subtly.
order filters in the absence of noise, as done in [13], offers a The analysis here needs to be extended from 1-D to 2-D
helpful insight into the bias mechanism, but cannot give a registration. While in principle the predictive interpolation
definitive answer which filter is more favourable for a filters are straight forward to implement, in general the
particular application. For example, the first order interpolator optimal filters are not separable, making the analysis
is significantly better than the second order filter for low noise significantly more complex. For example the 2-D equivalent
conditions, yet it performs very poorly at moderate noise; and of a 1-D 3rd order filter has 15 degrees of freedom
both of these are extremely poor in a high noise situation. A (independent filter coefficients).
similar trade-off can be seen with the third and fourth order For lower order filters, it would be useful to have a method
filters, where the third order interpolator performs better at of estimating the level of noise that needs to be added to
lower noise and is worse at higher noise levels. minimise the bias. The bias for the second order filter in

If thenoise level isiunknown, or possibly a wholerrange of particular improves by a factor of 10 with the right level of
noise levels can be encountered in the images to be registered noise added.
- using a third or fifth order filter may be best, as these have To conclude, predictive interpolation offers a way to
low (less than 1%o of a pixel) bias over a wide range of noise register translated images in the presence of noise with very
levels. At high noise levels, the higher the order of the filter
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