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Abstract. Diffeomorphic image registration, where images are aligned
using diffeomorphic warps, is a popular subject for research in medical
image analysis. We introduce a novel algorithm for computing diffeomor-
phic warps that solves the Euler equations on the diffeomorphism group
explicitly, based on a discretisation of the Hamiltonian, rather than using
an optimiser. The result is an algorithm that is many times faster than
those considered previously.

1 Introduction

Image registration has received much research over the past few years, not least
because of its many applications in medicine. For example, it is useful for re-
moving motion artefacts caused by patient breathing, heartbeat, and patient
movement [1], aligning to an atlas [2], monitoring disease progression [3], as-
sisting in disease diagnosis [4], and measuring anatomical variability between
subjects [5]. For further details about these applications see [5]. A more general
survey of image registration, highlighting its uses in synthetic aperture radar
and other applications is given in [6].

For applications in disease diagnosis and measuring anatomical variability,
some form of measurement on the space of images is essential, to allow statistical
analysis of the image warps. This generally requires using diffeomorphic image
registration, where the choice of image warps that can be used to solve the reg-
istration problem are constrained to be diffeomorphisms, i.e., smooth functions
that have smooth inverses. There has therefore been recent interest in the use
of diffeomorphic deformations (warps) to align medical images.

In 1966 Arnold made the profound discovery that the Euler equations for a
perfect fluid are geodesic equations on the group of volume-preserving diffeomor-
phisms with respect to a group-invariant metric defined by the kinetic energy
of the fluid [7]. This point of view allowed stability and existence results [8]
that have not been bettered today. For diffeomorphic image warping, it is the
group of all diffeomorphisms that is considered, and the warp φ is constructed
as a geodesic (shortest path) between two images, leading to a right-invariant
Riemannian metric. This diffeomorphism has typically been computed as an
optimisation problem; see [9, 4] for an overview.



In this paper we introduce a novel formulation of the problem that is based
on solving the partial differential equations that govern the motion. These PDEs
are the Euler equations for the full diffeomorphism group, given by equations (1)
and (2) below; for derivations, following [7], see [9, 10]. We introduce a particle
method that enables us to solve for the diffeomorphism directly, resulting in an
algorithm that is orders of magnitude faster than previous ones. We demonstrate
the algorithm using standard forward-Euler and Runge-Kutta integrators, and
discuss the benefits of using a symplectic integrator.

1.1 Problem Formulation

The aim of diffeomorphic image registration is to find a diffeomorphism φ that
takes a free image F to a reference image R, i.e., R = F ◦φ. The diffeomorphism φ
is defined on some domain Ω ∈ R2 or R3, and the images are typically greyscale,
so that R,F : R2 → R or R,F : R3 → R. The method used to find the desired φ
is generally optimisation of some norm ‖R−F ◦ φ‖. Typical choices include the
L2 norm (sum-of-squares error) and mutual information [11, 12], although there
are other alternatives, including the correlation ratio [13] and the normalised
gradient-based method [14].

In this paper, we describe a novel method of constructing the diffeomor-
phisms. The standard approach is to use an energy minimisation, which pro-
duces the diffeomorphism as a geodesic [4, 17, 15, 16]. Instead, we compute the
Hamiltonian of the Euler equations on the diffeomorphism group, discretise them
and integrate them explicitly. For the case of the full diffeomorphism group,
G = Diff(Rn), that we consider here, the Euler equations are (see [18, 19] for
further details):

ṁ + u · ∇m +∇uT ·m + m(div u) = 0, (1)

where ṁ denotes differentiation with respect to time, u(x, t) (u, x ∈ Rn, t ∈ R)
is a velocity field, and m(x, t) its associated momentum. The velocity u and
momentum m are related by:

m = Au, (2)

where A is an elliptic operator (e.g., A = (1−∇2)k) called the inertia operator.
The inverse of A is given by convolution with the Green’s function G of A, i.e.,
u = G∗m, where ∗ denotes convolution and AG(x, x′) = δ(x−x′) for x, x′ ∈ Rn.

A striking feature of Euler equations on diffeomorphism groups is that they
admit (formally, at least) exact solutions in which the momentum is concentrated
at a finite set of points. For fluid equations these are point vortices, which are
widely studied both in their own right and as a means of approximating the
evolution of smooth or other vorticities [20, 21]. In analogy with the point vortices
of fluid dynamics, we call the image registration equivalents point particles.

2 A Particle Method for Image Registration

We are considering the deformation of an image Ω, with the deformation de-
fined by a set of points i (some subset of the pixels of the image) with position



and momentum (qi(t), pi(t)), where pi = q̇i as they move from their initial state
(qi

0, p
i
0) to their endpoints at t = 1. Starting from the Euler equations on the

diffeomorphism group ((1) and (2)) we compute the Hamiltonian (see [22] for
a derivation of the Hamiltonian from the Lagrangian via the Legendre trans-
form), which is the kinetic energy, and then discretise it by introducing the
particle ansatz m(x, t) =

∑N
j=1 pj(t)δ(x − qj(t)), where δ(·) is Kronecker delta

function.The evolution of the particles is then given by the Hamiltonian:

H =
1
2

∑
i,j

pi · pjG(qi − qj), (3)

where G(·) is the Green’s function corresponding to the chosen metric on Diff(Ω).
The most common choice in image registration, and the one that we will use in
this paper is the H∞ metric, which corresponds to using a Gaussian Green’s
function G(r) = 1

ε2 exp(−r2/ε2), where ε is the length-scale in the metric. Other
choices include the thin-plate and clamped-plate splines – see [4] for a review.

Solutions to (1) of this form obey Hamilton’s equations for (3), in which the
components of qi and pi are canonically conjugate variables (see [23] for further
details). Here q1, . . . , qN represent the positions of the N particles that define
the deformation, and p1, . . . , pN their momenta. The equations of motion of the
point particles are:

q̇i =
N∑

j=1

G(‖qi − qj‖)pj , (4)

ṗi = −
∑

j

(pi · pj)G′(‖qi − qj‖)
qi − qj

‖qi − qj‖
. (5)

Computing the diffeomorphism defined by qi and pi is then simply a case of
integrating the motion forward in time using (4) and (5), and then interpolating
the motion of the rest of the image in some way. The integration requires fewer
timesteps than the optimisation methods, enables the accuracy of the method
to be computed explicitly, and is computationally significantly faster. This leads
us to a description of our complete algorithm for image registration, following
which we discuss several important implementation details.

Our Image Registration Algorithm

– Choose point particle positions q on image T
– Initialise the particle momenta p randomly
– Optimise ‖R− T ◦ φ‖ over p:

• For current p, integrate point particles forward in time
• Integrate positions of the test particles
• Interpolate between the test particles
• Compute ‖R− T ◦ φ‖ for chosen distance measure

– Add more point particles and iterate



Position of point particles There are several possible choices for placing the
point particles, such as placing them in a grid, positioning them on points
of interest in the image (such as edges and corners), or using the discrep-
ancy image [24] to select places where the two images do not match. In line
with [24], for registration of brains, we initially place some points around the
skull of head images and, after optimising them, place more points using the
discrepancy image method. For the hand images shown in the next section,
we use a uniform grid.

Initialisation of point momenta In the current implementation, the momenta
of the point particles are initialised with a uniform random direction, and
with a small uniform random magnitude for the warp. One option that im-
proves the results, although at a moderate computational cost, is to perform
a coarse search over this relatively small number of parameters (2 for each
of the point particles, of which there may be 10-20 on the initial pass).

Choice of integrator The primary component of our method is the computa-
tion of the current geodesic, based on q and the current p. This is calculated
by numerically integrating the particle dynamics forward in time using (4)
and (5). We can choose a timestep for the integration, and the method of nu-
merical integration. The standard choices would generally be Euler’s method,
or a second-order improvement, such as second-order Runge-Kutta.
The factors that affect the computation of the diffeomorphism are the num-
ber of point particles and test particles, the number of timesteps, and the
order of the integrator (how errors accumulate during the integration). In
consideration of the last two of these points, in section 5 we discuss the pos-
sible benefits and disadvantages of using a symplectic integrator, together
with a possible reduction in the computational complexity of the algorithm.

Test particles and interpolation We can induce the value of the actual dif-
feomorphism φ(x) by the current geodesic on each pixel by placing test
particles with zero momentum (so q(0) = x, p(0) = 0) on the pixels, and
computing their trajectories under the induced velocity field (i.e., solving the
ODE q̇ = f(q, t)). Assuming that the deformation is not too large (‖Tφ− 1‖
is small), we can make some computational savings by placing a test particle
every k pixels, and interpolating φ between them. This saves a factor of k2

computations, but changes the computed diffeomorphism from the exact one
that relates to the flow (it may actually stop the warp being diffeomorphic,
although this does not seem to be a problem in general). We have found that
using k = 4 and bi-linear interpolation has negligible effect on the accuracy
in real registrations, as is demonstrated in the table on the left of Fig. 3.

Choice of metric Inherent in the choice of Green’s function G(r) is a choice
of the metric under which the particle dynamics occur. There is complete
freedom of choice over this metric. By far the most common choice to date for
image registration has been to use a Gaussian metric, i.e., Green’s function
G(r) = 1

ε2 exp(−r2/ε2), where ε is the length-scale in the metric. The role
of this length-scale is important. If it is set too small (say smaller than the
pixel spacing) then the kernels will not overlap, and the movement of each
particle will be entirely independent of the rest of the image. This will require



the number of point particles to tend to infinity to represent an arbitrary
diffeomorphism. We do not consider how to choose the length-scale in this
paper, but it may be that starting with a large value of ε and allowing it to
shrink is a useful method of iteratively refining the solution.
The Gaussian is by no means the only possible choice of metric. One fairly
general formulation, which includes the Gaussian as the limit as k → ∞,
are the Hk metrics, (1 − ε2∇2)k; see [25] for a discussion of these. Finally,
it may well be useful to choose the metric so that it vanishes on some set of
motions that are not important. Examples could be affine or rigid motions.

Optimisation method The choice of a suitable optimiser is obviously crucial,
together with the choice of objective function for the image matching. In the
current implementation we are using the sum-of-squares distance measure,
which leads fairly naturally to a least-squares non-linear optimiser. We use
the lsqnonlin function in Matlab 7.1, which is a subspace trust region
method based on the interior-reflective Newton method. Experimentation
has found that allowing 100 iterations is usually more than sufficient for
the algorithm to converge, although further work will investigate this more
thoroughly.

Adding more points In our implementation we position new point particles
for further levels of optimisation using the discrepancy image. This uses the
objective function (here the sum-of-squares error) to find regions where the
two images do not match, and then places new point particles there. We
tested initialising the momenta of these particles as either zero, or small
random numbers, and found that the first was the most effective. This is not
surprising, because points with zero momentum are carried along with the
flow, which is a reasonable initial guess for how they should behave, and the
optimiser then improves on this.

3 Experiments

We present four main experiments in this paper. In all of them, the image is
scaled into [−1, 1]2 and a value of ε = 1 was used. The first experiment considers
how far apart the spacing should be between the test particles – the wider apart,
the faster the implementation, but the less accurate the approximation to the
true diffeomorphism. In order to decide a suitable spacing, we took a series
of 10 registrations of hands, as used for the registration shown in Fig. 2 and
described below, and tested out different spacings between the test particles for
two different numbers of point particles (with the initial values for the momenta
of the point particles fixed between the runs). The average results over the
10 registrations are shown in the table on the left of Fig. 1, and show that a
spacing of 4 between test particles provides a reasonable compromise between
computational time and final function value, hence we have used a spacing of 4
for all the computations used in this paper.

For the second experiment, we investigated how the performance of the in-
tegrators change as the number of timesteps is varied. The right of Fig.1 shows



Spacing Time (s) Final function value

9 point particles

12 39.13 7.78e7
8 43.13 7.43e7
4 47.71 7.08e7
1 112.6 6.95e7

25 point particles

12 123.17 1.06e8
8 133.95 9.82e7
4 163.05 9.37e7
1 944.72 8.85e7

Timesteps 1 2 4 8

Small perturbation, initial error 60.2%

Integrator
Euler 5.2% 3.6% 2.9% 2.5%
RK2 4.3% 2.2% 2.2% 2.2%

Large perturbation, initial error 84%

Euler 16.3% 10.3% 8.6% 8.1%
RK2 4.3% 5.9% 6.4% 6.7%

Fig. 1. Left: Comparison of changing the spacing between the test particles. Results
are the average of 10 values. A spacing of 4 appears to give a reasonable compromise
between computational cost and the final diffeomorphism. Right: The effect of changing
the number of timesteps (errors relative to reference image). For RK2 the integration
error is far below other sources, but for Euler it is significant for large perturbations.

the results for registrations with 9 point particles using the peaks(40) function
in Matlab to make the reference image, with the free image being the same
image with a rotation applied. The second-order method needs fewer timesteps
than the first-order forward-Euler. Indeed, adding more timesteps can make the
second-order results worse. The reason for this is currently under investigation.

Fig. 2. Chequer-board plots showing the difference between the initial images of the
hands (left), the final images (centre), and the change between the initial and final
versions of the free image (right).

We now present two different image registrations. The first is of a pair of hand
images, while the second are two 2D T1-weighted MR scans of the human brain.
The hand results shown in Fig. 2 were computed using 9 knotpoints, positioned
in a 3×3 grid on the image. The optimiser ran for 40 iterations before converging,
and then an additional 7 points were added to the image using the discrepancy
image. It can be seen that even after this relatively small amount of computation,
the registration is very good. Computing this registration took 251.4 seconds on



Fig. 3. The registration of the two hands. The reference image, together with the
positions of the particles and their momenta are shown on the left, the final result is
shown in the middle, and the effect of the warp on a grid is shown on the right.

a 1.8GHz G5 Apple Macintosh. Another 37 iterations were then performed by
the optimiser, with the final result being that shown. Fig. 3 shows the positions
of the points and the initial momenta on the reference image, the final output,
and the effect of the warp on a regular grid.

Fig. 4 show a sample registration of 2 brains. A set of 10 points were posi-
tioned evenly around the skull, and the result optimised for 20 iterations. Fol-
lowing this, an additional set of 11 knotpoints were added, with 50 iterations of
optimisation then being performed. This registration took under 7 minutes on
the same computer, and it can be see that the final result is not bad. There is
still work to be done on the interior (and further optimisations do indeed correct
this), but the skull and major structures have all been brought into alignment.

These results are much faster than using an optimisation method for finding
the diffeomorphism – the method described in [4] took just under 2 hours to
perform the brain registration described above. One of the main reasons for
this is that those optimisation methods take many more timesteps to find the
diffeomorphism, usually 20 timesteps are used to guarantee a diffeomorphism.
With our current method, for relatively small deformations, only 1-4 timesteps
are needed.

4 Optimising Positions and Momenta

In the experiments described above we chose locations for the point particles,
and then optimised their momenta. However, there is no reason why one cannot
optimise the point locations as well as their momenta. We have performed some
initial experiments with this based on the images produced by the peaks(40)
function in Matlab. A typical result is shown in Fig. 5. The free image is a rotated
version of the reference image (note that no affine registration is performed).
The top line shows the optimisation if only the momenta of the particles are
optimised, not their positions, while the bottom line shows the results when both
are optimised, starting from the points being arranged on the uniform grid. It



Fig. 4. Chequer-board plots showing the different between the initial images of the
T1-weighted brains(left), the final images (centre), and the change between the initial
and final versions of the free image (right). The registration has lined up the skulls
and the major structures within the brain, but there is still more fine-scale work to be
done.

can be seen that the particle locations move to form a circle that reflects the
rotation that was applied. Averaged over registrations of 10 random rotations,
the final objective function value after 20 optimisation iterations was 5.85 for
the momenta-only optimisations, and 1.59 for the full optimisation (the initial
objective function value is around 2000).

The problem is that the method becomes more prone to becoming stuck in
poor local minimas as the complexity of the image grows, since the dimensional-
ity of the optimisation is so large. When it works it does very well, and resolves
smaller image features, but for medical images it is only successful about half of
the time. Finding suitable implementation methods to get around this problem,
possibly using multiple scales of resolution, is a current area of research.

5 Use of Symplectic Integrators

The equations of motion (4, 5) are Hamiltonian and their flow is therefore sym-
plectic [26]. In long-time simulations of Hamiltonian systems (in celestial and
molecular mechanics, for example) it has been found extremely advantageous to
use symplectic integrators, which preserve the symplectic structure. This leads
to good energy behaviour and a lack of dissipation. Therefore, it is natural to
consider their use here; it is also in accord with the ‘Discrete Mechanics and
Optimal Control’ philosophy in which both the cost function and dynamics are
discretized in a parallel, Hamiltonian way [27]. In fact, some implementations of
image registration by diffeomorphisms have used symplectic integrators, because
calculating geodesics by minimizing a discrete path length gives such an inte-
grator [4]. However, the diffeomorphism itself, calculated from the motion of the
test particles, has never been done symplectically. We give a preliminary analysis
of the cost and benefits of using a symplectic integrator in image registration.

At first sight, the cost is a problem. The cheapest, explicit symplectic inte-
grators apply to separable Hamiltonians of the form T (p) + V (q); Eq. (3) is not



Reference Free Image Grid

Reference Free Image Grid

Fig. 5. Two regimes of optimisation. Top: Optimatisation of particle momenta only.
Bottom: Simultaneous optimisation of both particle locations and momenta. The par-
ticles form into a ring showing the rotation that occurred.

separable, so only implicit symplectic integrators, notably the Gaussian Runge-
Kuttas [26], are available; these methods have unconditional stability for linear
problems, which allows larger time-steps to be used. These involve solving a set
of equations for s internal stages; when s = 1, we have the midpoint rule

xk+1 = xk + ∆tf(x̄k), x̄k = (xk + xk+1)/2.

Moreover, to ensure exact symplecticity and that the solution varies smoothly
with respect to the initial conditions, the equations must be solved extremely
accurately, generally down to round-off error. In most situations, it is best to
simply solve the equations by iteration

xl+1
k+1 = xk + ∆tf((xk + xl

k+1)/2), l = 0, 1, 2, . . .

after choosing some initial guess x0
k+1. If m iterations are required then the cost

per time step is ms times the cost of Euler’s method. In initial value problems
with a large time step, as we want to use here, m can be quite large, say 5–15.

However, this cost penalty for initial value problems vanishes for optimization
problems, in which we want to repeatedly solve the same initial value problem
for a sequence of nearby initial values. We simply store the internal stage val-
ues as part of the orbit segment and use this as initial guesses (e.g. x0

k+1 for
the midpoint rule) when the initial conditions are changed. Most optimization
algorithms estimate the derivatives of the objective function using finite differ-
ences, which requires repeatedly altering the initial conditions by about 10−6;



for these evaluations we can solve the implicit equations in a single iteration.
The error constants of the Gaussian Runge-Kutta methods are extremely small
so we expect that this method could be superior both for cost and accuracy.

For the point particles, the simple iteration (5) can be improved using the
4N × 4N Jacobian derivative matrices of f ; calculating these is essentially cost-
free, because the entries are simply related to the Green’s functions, which have
already been evaluated. Newton’s method would cost O(N3), which is presum-
ably prohibitive, but the modifed iteration

x̄l = (xk + xl
k+1)/2, wl = xk + ∆tf(x̄l) (6)

xl+1
k = wl +

1
2
∆tf ′(x̄l)(wl − xl

k) (7)

converges much more quickly than (5) and still costs only O(N2). Moreover,
the derivatives of the stage values with respect to the initial momenta can be
approximated in a similar way, giving excellent initial guesses. Experiments will
determine whether this cost is justified.

For very large numbers of point particles, the cost O(N2+NM) of evaluating
the vector field may be too expensive. The cost can be reduced to O(N +M) us-
ing the marker-and-cell method [28], while still using symplectic integrators for
the particle paths [29]. A regular grid with O(N) grid points is laid over the do-
main and the particle momenta interpolated to the grid. Then the velocity field
induced by the momentum field is calculated on the grid using a fast algorithm,
such as multigrid (O(N)) or Fourier transform (O(N log N)). This velocity field
is interpolated back to the particle positions, which are then updated. This al-
gorithm has been implemented with enormous numbers (more than 1 million)
particles in an initial value problem in atmospheric dynamics [29]. However, very
large numbers of point particles, which may well be required for convergence to
an arbitrary diffeomorphism, will introduce new difficulties for the optimiza-
tion has the problem has now become ill-posed. Some degree of regularization,
enforcing smoothness of the initial momentum field, will be required.

6 Conclusions and Open Questions

We have presented a method of performing diffeomorphic image registration
that has links to the methods of discrete mechanics and optimal control. The
implementation described in this paper has been demonstrated to perform high
quality registrations in reasonably short computational time – orders of magni-
tude less than using energy minimisation methods. While they are not necessary
for all image registration tasks, for applications where it is variation that is of
interest, for example in disease diagnosis or measurement of anatomical vari-
ability, the access to a right-invariant Riemannian metric on the diffeomorphism
group makes diffeomorphic registration methods essential.

There are a great many unanswered questions and areas for future research.
We are particularly interested in the dynamical behaviour of the Euler equa-
tions on the diffeomorphism group, and how it relates to point vortices in fluid



dynamics, which act on the volume-preserving subgroups. Some of our work on
these topics is available in [25, 30].

However, with regard to using the method for image registration, there are
also several areas for further work. Firstly, we are currently investigating the use
of the midpoint rule symplectic integrator and the marker-and-cell method, as
discussed in section 5, and a second question that we highlighted earlier in the
paper is that of a suitable choice of metric and corresponding length-scale.
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et ses applications à l’hydrodynamique des fluides parfaits. Annales de L’Institut
Fourier (Grenoble) 16(1) (1966) 319–361

8. Ebin, D.G., Marsden, J.E.: Groups of diffeomorphisms and the motion of an
incompressible fluid. Annals of Mathematics 92 (1970) 102–163
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