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Abstract. The analysis of deformation fields, such as those generated
by non-rigid registration algorithms, is central to the quantification of
normal and abnormal variation of structures in the registered images.
The correct choice of representation is an integral part of this analysis.
This paper presents methods for constructing a general class of multi-
dimensional diffeomorphic representations of deformations. We demon-
strate that these representations are suitable for the description of defor-
mations of medical images in 2 and 3 dimensions. Furthermore, we show
that the non-Euclidean metric inherent in this representation is superior
to the usual ad hoc Euclidean metrics in that it enables more accurate
classification of legal and illegal variations.

1 Introduction

Non-rigid registration algorithms [4, 6, 12, 19] automatically generate dense (i.e.,
pixel-to-pixel or voxel-to-voxel) correspondences between pairs and sets of images
with the aim of aligning analogous ‘structures’. The deformation fields implicit
in this correspondence contain information about the variability of structures
across the set. In order to analyse quantitatively this variability, we need to
be able to analyse the set of deformation fields. Such analysis must be based
(either implicitly or explicitly) on a particular mathematical representation of
the deformation field.

Previous work on the analysis of shape variability has used a range of rep-
resentations; examples include polygonal [8] or spline [2] representations based
on a small set of corresponding points (landmarks), Fourier representations [20]
or spherical harmonics [3], medial based representations [17], or combinations of
these [21]. The importance of the choice of representation has been demonstrated
by the fact that explicitly optimizing the representation can lead to improved
model performance [9]. Recent work on modelling dense 2D and 3D deformation
fields has either used the densely-sampled deformation vectors directly (e.g., [13,
15]), or has employed a smooth, continuous representation of them (e.g., [18]).
Neither of these methods guarantees that the deformation field is diffeomorphic
(although B splines can be guaranteed diffeomorphic given certain non-trivial
constraints on the control-point displacements [7]).

We contend that the appropriate representation should be continuous and
diffeomorphic, as only a diffeomorphic representation allows an unambiguous
one-to-one correspondence between all points in any pair of images. Where such
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a correspondence is not actually physically meaningful (e.g., in the case where
additional structures such as tumours appear), this should be indicated by the
warp parameters assuming atypical values. When we are considering the cor-
respondence between discrete and bounded objects such as brains, it is also
desirable that the warps themselves should be discrete and bounded. This leads
us to suggest that a suitable representation is that of the group of continu-
ous diffeomorphisms with some appropriate set of boundary conditions. Such a
representation can be constructed using an approach based on Geodesic Interpo-
lating Splines (GIS) [5]. In previous work [5, 16, 23] it has been shown that this
approach also allows the construction of a metric on the diffeomorphism group.

In this paper, we demonstrate the construction of these diffeomorphic rep-
resentations using a variety of spline bases. We show that these representations
generate warps that are suitable for the task in hand, giving biologically ‘plau-
sible’ warps in both two and three dimensions, whilst being of a relatively low
dimensionality. We further study the significance of the metric (geodesic) dis-
tances between warps, and show that using it provides a measure of atypical
variation that has greater discriminatory power than näıve measures based on
the ad hoc use of a Euclidean metric on the space of warp parameters.

2 The Geodesic Interpolating Spline

2.1 Interpolating Splines
Consider a vector-valued spline function f(x), x ∈ Rn that interpolates between
data values at a set of knotpoints {xi : i = 1 to N}, where f(xi) = f i. We will
restrict ourselves to the class of splines that can be expressed as the minimiser
of a functional Lagrangian of the form:

E [f ] =
∫

Rn

dx ‖Lf(x)‖2 +
N∑

i=1

λi (f(xi)− f i) , (1)

where L is some scalar differential operator. The first term in the Lagrangian is
the smoothing term; the second term with the Lagrange multipliers {λi} ensures
that the spline fits the data at the knotpoints. The choice of operator L and
boundary conditions defines a particular spline basis. The general solution can
be written in the form:

f(x) = g(x) +
N∑

i=1

αiG(x,xi), (2)

where:
the affine function g is a solution of: Lg(x) = 0, (3)
the Green’s function G is a solution of:

(
L†L

)
G(x, y) ∝ δ(x− y), (4)

and L† is the Lagrange dual of L. In the table overleaf are a selection of
commonly-used Green’s functions. Dn is used to denote the unit ball in Rn,
and ∂Dn is its boundary.

The choice of Green’s function depends on the boundary conditions and
smoothness appropriate to the problem considered. For example, the CPS Green’s
function is useful for discrete objects such as brains, whereas an image of knee
cartilage would require asymptotically linear boundary conditions.



Name Dim L†L Boundary
conditions on f(x)

G(x,y)

thin-plate [10]

(TPS)

even (∇2)2 asymptotically
linear

‖x− y‖4−n log ‖x− y‖

thin-plate [10]

(TPS)

odd (∇2)2 asymptotically
linear

‖x− y‖4−n

biharmonic

clamped plate

[1, 23] (CPS)

2 (∇2)2 f = f
′
= 0

on and outside ∂D2
‖x− y‖2 (

A2 − 1− log A2
)
,

A(x, y) =
√
x2y2−2x·y+1

‖x−y‖

triharmonic

clamped plate

[1] (CPS)

3 (∇2)3 f = f
′
= 0

on and outside ∂D3
‖x− y‖ (

A + 1
A − 2

)
,

A(x, y) =
√
x2y2−2x·y+1

‖x−y‖

Gaussian n exp
(
−∇2

4β

)
asymptotically
linear

exp
(−β‖x− y‖2)

2.2 The Affine Function
Taking the general form of f(x) given above, and substituting into equation (1),
we obtain:

E [{αk}] =
∑

i,j

G(xi,xj)αi ·αj = Gijαi ·αj .
1 (5)

The spline coefficients {αi} and the affine function (see equation (3)) are then
obtained by optimising this form of the energy function with the set of constraints
g(xi) = Gijαj − f i.

For operators where the boundary conditions are that the deformation is
asymptotically linear, the affine function is the general linear function; using the
notation of Camion and Younes [5], this can be written (in n dimensions) in the
form:

Q =




x1
1 x2

1 . . . xn
1 1

...
x1

N x2
N . . . xn

N 1


 , gµ(xi) = Qiaγµ

a , µ = 1, . . . , n; a = 1, . . . , n + 1, (6)

where {xµ
i } are the coordinates of the ith knotpoint, and the affine parameters

{γµ
a } are combinations of the scaling parameter, the rotation angle(s), and the

coordinate translations. Solving for {αi} and {γµ
a }, we then obtain:

γµ
a =

(
QT G−1Q

)−1

ab
QT

biG
−1
ij fµ

j , αµ
i = G−1

ij

(
fµ

j −Qjaγµ
a

)
.2 (7)

For the case of the clamped-plate spline, we will take the affine function to be
that defined in equation (3), with the boundary conditions being imposed after
the affine alignment.

Let us now consider using the splines defined above to represent the densely-
sampled deformation field of an image, where a point at original position x is

1 We adopt the summation convention that we sum over repeated indices.
2 Note that the expression for γµ

a differs from [5], where there is a typographical error
and the second factor of G−1 has been omitted.



warped to a position x + f(x). There will be some set of knotpoints (with as-
sociated initial and final positions) and knotpoint displacements for which the
interpolated displacement field exactly matches our given displacement field at
all sample points. We will call such a set of knotpoints and knotpoint displace-
ments a representation of the deformation field f(x). However, such an inter-
polated deformation field is only guaranteed to be diffeomorphic in the limit of
sufficiently small displacements (see Fig. 1, plots (iii) and (vi) for examples).

2.3 Geodesic Interpolating Splines
The usual approach to constructing a large-deformation diffeomorphism is to
consider such a deformation as an infinite sequence of infinitesimal deforma-
tions [5, 11, 14, 22]; that is, we have an infinite sequence of the spline-part gener-
ated by the Green’s function G, and an infinite sequence of infinitesimal affine
transformations. We have a flow-time t, where our knotpoints now follow paths
{xi(t); t ∈ [0; 1]}, with an associated energy (the generalisation of equation (5) ):

E [αk(t)] =

1∫

0

dtG (xi(t),xj(t)) (αi(t) ·αj(t)) . (8)

The spline parameters {αi(t)} and the affine parameters {γµ
i (t)} are now related

by the obvious generalisation of equation (7), where the displacements {fµ
i } are

replaced by the velocities of the knotpoints
{

vµ
i (t) = dxµ

i (t)

dt

}
. Note that we no

longer have an exact solution, since the knotpoint paths are only constrained at
their end-points. We therefore have to numerically optimise the expression for the
energy in equation (8), where the free variables are the knotpoint paths between
their fixed end points. We use the optimisation scheme previously described
in [23]. For an example of the curved optimised paths, see Fig. 1.

As in section 2.2, we take the initial and final knotpoint positions to be a rep-
resentation of the diffeomorphism generated by the interpolation. We denote such
a geodesic interpolating spline (GIS) diffeomorphism by ω({xi(0)}, {xi(1)}). As
was shown by Camion and Younes [5], who considered using the GIS for inex-
act landmark matching, the optimised value for the energy has the important
property that it can be considered as the square of a geodesic distance function
d on the group of diffeomorphisms. That is, Eopt(ω) = d2(e, ω), where e is the
identity element of the group. This distance function has the important property
that it is invariant under (left-) multiplication by an arbitrary group element [5].
This means that, if we are considering the pairwise geodesic distances between
a set of warps generated by non-rigid registration of a set of images, then the
calculated distances are independent of the choice of reference image. We also
note that this metric provides us with a principled way of defining warps that
interpolate between any two given warps [23]; the flow in the space of diffeomor-
phisms gives a geodesic on the space of warps, and the geodesic distance allows
us to calculate a warp on this geodesic halfway between the two initial warps.

As an example, we consider the diffeomorphisms generated by the motion of a
small set of knotpoints with random displacements. We use the Gaussian Green’s
function with a fixed value of the parameter β. The initial knotpoint positions are
shown in plot (i) of Fig. 1. For each random set of knotpoint displacements, we



Fig. 1. Example random displacements with geodesic and non-geodesic spline interpolants.
(i) Initial knotpoints positions (black circles), final positions (grey circles) and the knotpoint
paths (grey lines). (ii) The GIS Gaussian warped image and knotpoints. (iii) The non-
geodesic thin-plate spline warp. (iv) The rotated displacements. (v) The GIS Gaussian
warp. (vi) The non-geodesic thin-plate spline warp.

also consider the same displacements, but with an added affine transformation
of a rotation of π

8 about the central point (shown in plot (iv) in the figure). This
additional part of the transformation should not affect the computed geodesic
distance of this warp from the identity as it is purely affine, and the additional
affine part of the transformation should appear in the flow in the space of affine
functions. The GIS warped versions of the grids are shown in plots (ii) and (v).
For comparison, we also give the thin-plate spline interpolant (plots (iii) and (vi))
of the same deformation fields (i.e., NOT the geodesic interpolating spline). It
can be seen clearly that both these non-geodesic warps fold and are therefore
not diffeomorphic, in contrast to both of the GIS warps (plots (ii) and (v)), which
do not fold, despite the large knotpoint displacements.

We compared the computed geodesic distances for a set of 98 random dis-
placements with and without a rotation. The computed geodesic distances ranged
from 0.05 to 0.9 across the set of examples. It was found that the geodesic dis-
tances with and without rotation were almost identical for all 98 examples, with
a mean fractional difference between the values of less than 2%, and a cor-
relation coefficient between the values of 0.9982; we would not have expected
the values to be absolutely identical, given the numerical errors inherent in the
finite-dimensional representation of the knotpoint paths.

3 Representing Diffeomorphisms

3.1 Representing 2D Diffeomorphisms
When considering warps of 2D biological images, it is obviously important that
the generated warps are not only diffeomorphic, but also biologically plausible.
To investigate this, we considered a set of 2D T1-weighted MR axial slices of



Fig. 2. An example 2-D brain slice
with the bounding circle.

Fig. 3. Left: Annotation (white line) and knotpoints
(white circles) on the original brain slice. Right: The
same knots positioned on another brain slice.

brains, where the slices chosen show the lateral ventricles. For each image, the
positions of the lateral ventricles and the skull were annotated by a radiologist
using a set of 163 points. We took a subset of 66 of these points to be the positions
of our knots (see Fig. 3). Given a pair of images, the knotpoint positions on the
images give us the initial and final positions of our knotpoint paths. We then
calculated the geodesic interpolating spline warp corresponding to these positions
using the 2D clamped-plate spline as Green’s function. The bounding circle for
the spline is as shown in Fig. 2.

Note that we did not affinely align the knots before calculating the warp;
hence the algorithm has to deal with a non-trivial pseudo-affine part. Includ-
ing the affine part would have made the task easier. Example results are shown
in Fig. 4. It can be seen that the warps are indeed diffeomorphic, and appear
to be very smooth – each of the brain slices still looks biologically plausible,
which would not be true had a simpler scheme been used. The warped images
are not resampled – the images are instead plotted as coloured surfaces, so that
the size and position of each warped pixel is retained. The pairs of images were
chosen to illustrate cases where the required deformation was considerable, both
in terms of the change in shape of the ventricles and skull, and in terms of the
difference in scale and orientation of the slice as a whole. The resultant warped
images do indeed appear to be biologically plausible, despite the relatively low
dimensionality of the representation used – structures other than the labelled
ones have been brought into approximate alignment. This suggests that a dense
correspondence (for instance, one given by a non-rigid registration using maximi-
sation of mutual information) could also be represented by these warps without
an inordinate increase in the dimensionality of the representation.

3.2 Representing 3D Diffeomorphisms
We have shown that this geodesic interpolating spline basis can generate biologi-
cally plausible warps in 2D; we now proceed to show that we can also do the same
in 3D. Furthermore, we need to show that given a warp, we can choose the knot-
points appropriately. To do this, we consider a set of segmented hippocampi.
Each example consists of a triangulated surface with 268 vertices, where the



Fig. 4. Three examples of warp interpolation using the clamped-plate spline. Pixel intensity
is unchanged, but note that the image structures are approximately aligned. Left: Source
image, Centre: Warped image, Right: Target image.



Fig. 5. Target (bottom) and
source (top) hippocampi with
knotpoints (black circles). The
correspondence between the
shapes is indicated by the shading.

Fig. 6. Distribution of point discrepancy between
source and target (grey bars), and warped source and
target (white bars). Units as in Fig. 5.

vertices for each example have been manipulated to give the optimised corre-
spondence [9]. Examples are shown in Fig. 5. Pairs of hippocampi were chosen
at random, and the 2 shapes aligned using generalised Procrustes analysis. We
used the triharmonic clamped-plate spline (see section 2.1) as our GIS basis,
each hippocampus being scaled to fit within the unit sphere. The required warp
between source and target was calculated iteratively – the warp was optimised
for a given set of knotpoints, then new knotpoints added and the warp recalcu-
lated. New knotpoints are selected from the vertices using a greedy algorithm:
the discrepancy between the vertices of the warped source and the target are
calculated, and new knotpoints are then selected from those vertices that have
the largest discrepancies.

Fig. 6 shows the distribution of the discrepancies between the aligned source
and target, and the final warped source and target, for a set of 70 knotpoints.
It can be seen that the distribution of discrepancies as a whole has been shifted
towards smaller values. In Fig. 7, we show the maximum, median and mean-
square discrepancies for non-knot points only as a function of the number of
knotpoints for 4 random pairs of hippocampi. Note that the nature of our greedy
algorithm for selecting knotpoints means that the maximum discrepancy is not

Fig. 7. The maximum, median and mean square discrepancies (in units of the initial
discrepancy), for non-knot points only, as a function of the number of knots. Data is shown
from 4 randomly selected pairs of hippocampi.



guaranteed to decrease monotonically. However, all three graphs show that the
algorithm quickly reaches a reasonable representation of the required warp, for
a number of knotpoints that is approximately 25% of the number of vertices.

4 Modelling Discrete Structures

4.1 A Simple Example

There are numerous examples in biological and medical im-

Fig. 8. The

distance s be-

tween the dis-

crete structures

varies.

ages of cases where a pair of structures remain discrete, al-
though the spacing between them varies considerably across a
population, for example, the lateral ventricles in the brain. We
constructed a simple dataset to investigate the problems asso-
ciated with modelling such a variation, the basic idea of which
is shown in Fig. 8. Elements of the dataset comprise 6 points
defining two triangles, with the separation s between the two
triangles constrained to remain positive. A training set of 100
examples was generated, with the separation s being chosen
at random. A standard method for analysing such a dataset
is to build a statistical shape model (SSM) [8]; the training set was Procrustes
aligned, and a linear SSM constructed.

The model correctly displayed only one mode

Fig. 9. Geodesic distance versus

model parameter for the discrete

structure dataset.

of variation; example shapes generated by the
model are shown in Fig. 10. As was expected,
this simple linear model can generate illegal
shapes – when the model parameter went be-
low a threshold of approximately −2.22 stan-
dard deviations, the triangles intersected, so
that the structures were no longer discrete.
This was not seen in the training set and there-
fore should not be allowed. We then calculated
the CPS geodesic warps generated by taking
the 6 points that define each pair of triangles
as knotpoints and warping between examples
generated by the model for varying model pa-
rameter and the model mean shape. The CPS

was a suitable choice of Green’s function because the triangles are discrete ob-
jects. The variation of the geodesic distance from the mean shape, plotted against
the model parameter (which is equivalent to the Mahalanobis distance, a dis-
tance defined by imposing a Euclidean metric on the space of point positions)
is shown in Fig. 9. Positive values of the model parameter, which correspond
to increasing separation of the triangles, show a relationship between model pa-
rameter and geodesic distance that is very close to linear, but for negative values
of the parameter (decreasing separation), the geodesic distance diverges at the
precise value of the parameter that corresponds to zero separation. The geodesic
distance therefore allows us to differentiate between physical and non-physical
variations in a way that näıve linear models cannot.



Fig. 10. Example shapes generated from the SSM model of the discrete structures dataset
for varying model parameter (Mahalanobis distance). The change in scale as the model
parameter varies is caused by the fact that the points have been Procrustes aligned.

Fig. 11. Top: Examples from the train-
ing set. Bottom: Legal (left) and illegal
(right) examples generated by the SSM.
Knotpoints are indicated by black circles;
lines are for the purposes of illustration.
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Fig. 12. Mahalanobis vs. geodesic dis-
tances from the mean shape for grey cir-
cles: illegal shapes generated by the SSM,
white triangles: legal shapes generated by
the SSM, black triangles: the training set.

4.2 Using the Geodesic Distance to Classify Variations
We now consider the role of the geodesic distance in classifying legal and illegal
variations in real biological data. We take as our dataset the annotated outlines
of the anterior lateral ventricles as used in section 3.1 in the axial brain slices.
Each example consists of 40 knotpoints (see Fig. 11). The set of training examples
was Procrustes aligned and then scaled to fit inside the unit circle. A linear SSM
was built from this training set in the usual way. We then used this SSM to
generate random example shapes. These examples were classified as legal if the
outlines of both ventricles did not intersect either themselves or each other, and
illegal otherwise. The training set of shapes are, by definition, legal.

We then calculated the GIS warps, using the biharmonic CPS basis, between
the classified set of shapes and the mean shape from the model. The geodesic
distance from the mean is compared with the Mahalanobis distance from the
mean in Fig. 12. It is immediately obvious that we cannot separate the legal
and illegal shapes by using the Mahalanobis distance from the mean. However,
using the geodesic distance, it is possible to construct a simple classifier (shown
by the dotted grey line) that separates the two groups, with only one example
shape being misclassified (the grey circle just below the line). Given that the
Mahalanobis distance for the SSM is equivalent to a Euclidean metric on the
space of point deformations, this again demonstrates the superiority of the GIS
metric over an ad hoc metric.



The correspondences that we have used in this example are a subset of the
correspondences that we would expect to be generated by a successful non-rigid
registration of the images. Increasing the density of points on the training shapes
would have left the result for the Mahalanobis distance essentially unchanged.
However, the result for the GIS warp would have improved, giving a greater sep-
aration between the two sets of shapes. This is because, in the limit where the
lines become infinitely densely sampled, it is actually impossible to construct a
diffeomorphism for which the lines cross, which would mean that the geodesic
distance for the illegal shapes would approach infinity as the sampling density
increased. We can now extend this result to the case of modelling the defor-
mation fields for the non-rigid registration; a linear model of such deformation
fields would suffer the same problem as the linear SSM, where now the overlap-
ping structures would correspond to a folding of the warp. The GIS cannot, by
definition, generate such a folding since it is guaranteed to be diffeomorphic.

5 Conclusions
This paper has introduced a principled diffeomorphic representation of defor-
mation fields with an inherent non-Euclidean metric. The spline basis of this
representation is defined by the choice of Green’s function and boundary condi-
tions, which can be altered to suit the particular task in hand. We have demon-
strated that this representation method can accurately represent real biological
variations in both two and three dimensions.

Conventional linear modelling strategies impose a Euclidean metric on the
space of parameters (in our case, the knotpoint positions). The Mahalanobis
distance that we have used for comparisons in this paper is derived from such
a metric. The example in section 4.2 clearly shows the superiority of the non-
Euclidean metric in quantifying variation.
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