
Unsupervised Learning of Patterns in Data Streams
Using Compression and Edit Distance

Sook-Ling Chua and Stephen Marsland and Hans W. Guesgen

School of Engineering and Advanced Technology
Massey University

Palmerston North, New Zealand
{s.l.chua, s.r.marsland, h.w.guesgen}@massey.ac.nz

Abstract

Many unsupervised learning methods for recog-
nising patterns in data streams are based on fixed
length data sequences, which makes them unsuit-
able for applications where the data sequences are
of variable length such as in speech recognition, be-
haviour recognition and text classification. In or-
der to use these methods on variable length data se-
quences, a pre-processing step is required to man-
ually segment the data and select the appropriate
features, which is often not practical in real-world
applications. In this paper we suggest an unsuper-
vised learning method that handles variable length
data sequences by identifying structure in the data
stream using text compression and the edit distance
between ‘words’. We demonstrate that using this
method we can automatically cluster unlabelled
data in a data stream and perform segmentation. We
evaluate the effectiveness of our proposed method
using both fixed length and variable length bench-
mark datasets, comparing it to the Self-Organising
Map in the first case. The results show a promising
improvement over baseline recognition systems.

1 Introduction

While there are many methods of performing unsupervised
learning (i.e., clustering and classification) described in the
literature, very few of them can cope with data sequences
of variable length. Essentially, most work by taking input
vectors of known dimensionality and identifying prototypes
or exemplars that best represent clusters within the data us-
ing a distance metric in the vector space of inputs; exam-
ples include the Self-Organising Map, Principal Component
Analysis and its variants, and hierarchical clustering; see
e.g. [Marsland, 2009; Bishop, 2006] for an overview. While
useful for a great many applications, these solutions may not
be practical in applications where the inputs are not of fixed
dimensionality, so that data sequences are variable in length,
such as speech recognition, behaviour recognition, text clas-
sification, etc. Even where data are of fixed length, they may
be embedded into a data stream, which requires segmentation
before the individual input vectors can be assembled. In this
paper we address the problem of identifying and then learning

patterns of variable length in a data stream without any prior
knowledge about them. This includes both the segmentation
of the data stream into suitable patterns and the identification
of patterns when they are seen during testing.

The essential observation of our method is that within a
data stream, patterns are repeated observations, albeit with
the presence of noise. They can therefore be considered to
be redundant in the representational sense. Since the purpose
of compression is to remove redundancy in a data stream, by
using a dictionary-based compression algorithm we are able
to identify potential patterns. We represent data as a set of
tokens; here, characters in the Roman alphabet. Depending
upon the data, a token could be a representation of an in-
stance of an attribute such as an instance of motion primitive
(e.g. the arm is stretched), a pixel in an image, phonetic rep-
resentation or a sensor reading. A pattern is therefore a re-
peated set of tokens, which we call a word. We then use the
Lempel-Ziv algorithm [Jacob and Abraham, 1978] (although
any dictionary-based compression algorithm could be used)
to build a codebook of potential patterns, which is then pro-
cessed to produce the prototype vectors of our clusters.

Lempel-Ziv is a lossless compression algorithm, which
means that it does not generalise to variations of the input,
which is part of the role of the distance metric in normal un-
supervised learning methods. Potential variations that could
appear within the data stream are that there could be extra to-
kens present (e.g. ‘hyello’) or absent (e.g. ‘ello’), that tokens
could occur in different order (e.g. ‘helol’), or that there is
minor variations in a token (e.g., ‘hfllo’). To allow for these
kinds of variability, a lossy algorithm is more suited to our
problem, or at least a lossy matching algorithm that allows
variations of a word to be matched in the dictionary. We will
present such a method based on the edit distance.

The method that is most similar to our approach is that of
Cilibrasi and Vitányi [2005], who propose a similarity dis-
tance based on the length of compressed data files, the ‘nor-
malised compression distance (NCD)’ and then use hierarchi-
cal clustering to identify clusters within the data based on the
most dominant shared feature, which is computed from the
lengths of the compressed data files.

We demonstrate our approach on two datasets. The first
is Fisher’s iconic iris dataset, which we use to demonstrate
our method will work on fixed length data sets. This en-
ables it to be compared to the Self-Organising Map (SOM),

1231

Proceedings of the Twenty-Second International Joint Conference on Artificial Intelligence

although the SOM ‘knows’ that the data is four-dimensional,
which our algorithm does not. We chose the SOM because
it is a well-known algorithm for unsupervised learning and,
as Learning Vector Quantization (LVQ) [Kohonen, 1990;
Somervuo and Kohonen, 1999], it can also be considered to
be building a codebook of prototype vectors. The difference
is that LVQ finds the similarity between the input vector and
codebook vectors by minimising the Euclidian distance in a
fixed dimensional space, while our approach attempts to min-
imise the edit distance in a space of potentially varying di-
mensionality. The second dataset is a set of readings from
sensors installed at a smart home, with the aim being to iden-
tify and recognise behaviours from the sequence of sensor
events.

2 Unsupervised Learning Using Compression

The idea of compression is to reduce the size of data with the
aims of reducing data storage and/or transmission time. It has
been a topic of interest for a very long time, but was put on a
theoretical footing with the birth of information theory in the
work of Shannon [1948]. A common method of performing
compression is to exploit regularities in the data by building
a dictionary of codewords, and then replacing each instance
of a word with an index into the dictionary, with shorter in-
dices being used for frequent words, and longer indices for
words that are less frequently used. Provided that the indices
are shorter than the words in the codebook, compression is
achieved. One of the main attractions of most compression
algorithms is that they require no prior knowledge about the
input data, and can deal with codewords of different lengths
without problem.

Figure 1 shows an overview of our approach. Standard
lossless compression of the data stream is performed us-
ing the Lempel-Ziv-Welch (LZW) algorithm [Welch, 1984],
which produces a dictionary of phrases that are seen most
frequently in the data. This will include a number of varia-
tions of each word, and we then edit this dictionary to pro-
duce individual prototype datapoints. Based on this reduced
dictionary, lossy matching (i.e., allowing some relatively mi-
nor changes between the input and the dictionary words) is
used to find the closest matching word in the dictionary.

2.1 Selecting patterns from an unlabelled data
stream

The only input that we expect to see for our approach is
the unannotated data stream. The LZW algorithm is used
to parse this and to identify potential sequences that can be
added to the dictionary. As an example, the second time
the phrase ‘mo’ is seen in the token sequence ‘mousemouse-
mousemouse...’, it will take the index of ‘mo’ found in the
dictionary and extend the phrase by concatenating it with
the next character from the sequence to form a new phrase
(‘mou’), which is later added to the dictionary. The search
then continues from the token ‘u’. The dictionary produced
by LZW is typically large, since it contains everything that
has been learnt during training, including all the substrings of
each dictionary word (see Figure 1).

To identify patterns, we are only interested in the longest
frequent words in the dictionary. To illustrate this, we use the

Figure 1: Lossless compression is first performed on the
unlabelled data stream using the Lempel-Ziv-Welch (LZW)
method, which creates a dictionary of phrases. There are
codewords associated to each substring in the dictionary, but
they are omitted for clarity. The dictionary is then quantised
using lossy compression, which is based on edit distance. The
word ‘mouse’ after quantisation represents a pattern.

problem of behaviour recognition in a smart home as a run-
ning example. Assuming for now, we use the word ‘mouse’ to
represent the tea making behaviour, where token ‘m’ could be
a sensor event on the kitchen door, ‘o’ that the tap was run-
ning, ‘u’ that the kettle was switched on, ‘s’ that the fridge
was opened and ‘e’ that the teapot was in use. Since LZW or-
ganises around a dictionary by concatenating a phrase found
in the dictionary with the next character from the token se-
quence, this will results the dictionary containing many sim-
ilar phrases such as ‘mo’, ‘ou’, ‘us’, ‘mou’, ‘ous’, etc. We
want to identify the longest possible common ‘words’, argu-
ing that they represent patterns; thus we want ‘mouse’ to rep-
resent one complete tea making behaviour, rather than ‘mo’
and ‘use’ separately. Thus, the next step is to perform a re-
duction of the dictionary so that it contains only the prototype
words.

Our approach to this problem is to consider a modifica-
tion to the LZW algorithm that enables it to perform lossy
compression, so that the dictionary after reduction is biased
towards longest words, while still being common in the data
stream. Lossy compression is normally applied to data where
some loss of fidelity is acceptable in order to achieve a higher
compression ratio, and thus is often used in video, sound
or images. While there are a variety of ways that the loss
can happen, such as the truncation of high frequency signals
in sounds files, one common option is to use some form of
quantisation, mapping the number of allowable values that
the signal can take into some smaller set so that fewer bits are
required to describe each one, with the hope that the lost com-
ponent of the data is either not important, or is even simply
the noise in the signal.

The aim of the dictionary reduction is to find a single pro-
totype vector for typical data entries. In fact, we also wish
to use the quantisation to ensure that allowable variations on
the ‘word’ in the dictionary are recognised as being equiva-
lent to the dictionary exemplar during use of the algorithm,
which is a related problem. We have chosen to approach both

1232

of these problems by using the edit distance [Levenshtein,
1966] (also known as Levenshtein edit distance), which pro-
duces a measure of the similarity between pairs of strings.
The edit distance can be efficiently computed by dynamic
programming and is commonly used for biological sequence
analysis [Sokol et al., 2006], spell checkers [Brill and Moore,
2000], and plagiarism detection [Zini et al., 2006]. It works
by computing the minimum number of actions required to
transfer one string into the other, where an action is a sub-
stitution, deletion, or insertion of a character into the string.
Thus, the edit distance dist(p, q) to turn a string p with word
length |p| to string q with word length |q| is defined as:

min

⎧⎪⎨
⎪⎩

disti−1,j−1 +

{
0 if p[i] = q[j]
1 otherwise

disti−1,j + 1
disti,j−1 + 1

(1)

where p[i] is the ith character of the string p, i = 1, . . . , |p|;
and q[j] is the jth character of the string q, j = 1, . . . , |q|.

For example, given p =‘feast’ and q =‘fest’, the edit dis-
tance is 1 since we only need to perform one delete action
i.e., deleting the letter ‘a’ from ‘feast’. The edit distance uses
a two-dimensional matrix ((|p|+1)× (|q|+1)) to keep track
of the edit distance values.

Based on this distance, we are now in a position to quantise
the dictionary. We do this by picking a phrase from the dic-
tionary at random, and finding its ‘neighbouring’ phrases, i.e.,
those that are edit distance 1 away. From this set, the word
with the highest frequency count and longest word length is
selected as the potential pattern, and the algorithm iterates un-
til the pattern does not change. Algorithm 1 shows the steps
of using edit distance for lossy compression. The average
computational complexity of our method is O(Tn2), where
T is the number of words, and n is the maximum length of a
word.

Algorithm 1 Lossy Compression using Edit Distance
Input: LZW dictionary D
Initialisation: m = length of D

P = get first phrase from D
while not end of m do

for l = 1 tom do
ω ← Using Eq. 1, find phrases where dist(P,Dl) = 1

end for
if ω �= 0 then

select ω̃ ⊆ ω where max(freq count + word length)
delete ω from D
P = ω̃

else
P = get next phrase from D

end if
end while
output quantised dictionary D′

Once the prototype ‘words’ for the dictionary have been
selected, the next task is to use these prototypes to identify
words in the data stream. This is described next.

2.2 Recognising patterns in the unlabelled data
stream

Given a dictionary, we need to parse the data stream to
recognise dictionary exemplars and allowable variations on
them. To formulate the problem, given the data stream
S = {d1, d2, d3, . . . , dk} and the quantised set of words
D = {w1, w2, w3, . . . , wn} in the dictionary, we are trying
to find a match wr; r = 1, . . . , n, for some subset of S, and
then make that subset maximal given wr, so that the distance
between w and d is minimal.

One of the challenges in segmentation is that the presen-
tation of a pattern will almost always vary between instances
of the same behaviour. Using the same example of the word
‘mouse’ to represent the tea making behaviour, two related
words, ‘moue’ (i.e., missing token, which literally means that
the tea is made without the milk) and ‘mosue’ (different or-
ders of token activations, where somebody takes the milk out
from the fridge before turning on the kettle), could well rep-
resent the same behaviour. For this reason, we use the edit
distance to identify the matches between the token sequence
and the set of words – that correspond to behaviours – in the
quantised dictionary. Segmentation of the data stream can be
summarised as a three-step procedure:

1. Compute the edit distance between each wr and the
data stream S.

We compute the edit distance for each wr in the quantised
dictionary and the data stream S. The distance values are
stored in a two-dimensional matrix (dist).

2. Select the maximal ‘word’ in S with edit distance
below some threshold ε.
A threshold ε is chosen to control how much variation is al-
lowed between word samples. Based on experiments, the ε
value that we used is half the word length of the word in dic-
tionary. Referring to the example in Figure 2, the ε value for
the dictionary word ‘mouse’ is 2.5. Looking at the figure, the
distance values in the last row for columns 4 and 12 are less
than 2.5, which indicates a match.

3. Perform backward-traversal

We identified two ways to determine a match when a low edit
distance score was found. The first works when there is a
perfect match, i.e., with a distance value of 0 (such as in the
last row of column 12 in Figure 2). The second is for use
when there are errors in the match (i.e., those with distance
value greater than 0, but less than ε). When a perfect match is
found, we can determine the number of steps to move back-
wards through the word length. In this example, the word
length for ‘mouse’ is 5 and thus we can move backward 5
steps. However, when there are errors in the match, then this
approach is not sufficient, as it is hard to know if there is a
missing or extra letter included (e.g. ‘mose’) or a switch of
a letter (e.g. ‘moues’). An example of this is shown in col-
umn 4 of Figure 2 when the edit distance is 1. In this case
the starting point of the word boundary can be identified by
traversing the dist matrix back and upward to find the mini-
mum distance of min(dist[i, j−1], [i−1, j−1], [i−1, j]). By
traversing back and upward i.e., following the shaded paths in
Figure 2, we can identify the starting point of word boundary

1233

Figure 2: Illustration of how backward traversal is performed
on the distance matrix to identify the starting point of the
word boundary. When a perfect match is found i.e. when
the distance is 0 (column 12), the number of steps to move
backward is based on word length. When there is an error
(column 4), the algorithm recursively traverses the distance
matrix back and upward by finding the minimum distance
(shown in dashed arrow). For details, see the text.

and thus segment the data stream according to the ‘words’ in
the quantised dictionary.

3 Experimental Results

In this section, we describe our experiment setup and the
datasets used. In fact, the datasets that we have used do have
labels, and thus are suitable for supervised learning. We have
only used this annotation as a ground truth for the test set. We
report experiments on two datasets. The first has fixed length
inputs and is well-known as a test dataset: the iris set. This
enables us to compare the results with other unsupervised
learning algorithms, here the SOM. The second dataset is the
sensor readings for a smart home, and the behaviours that
should be identified are of variable length. The main statistic
that we are interested in is recognition accuracy, which is the
ratio of the total number of activities correctly identified by
the algorithm divided by the total number of activities used
for testing.

3.1 The Iris Dataset

Fisher’s iris data [Fisher, 1936] is widely used for cluster
analysis and is available through the University of California,
Irvine (UCI) machine learning database [Frank and Asun-
cion, 2010]. The data has four attributes, which are mea-
sured on fifty iris specimens from each of three species: Se-
tosa, Vericolor and Virginica. We partitioned the dataset into
5 equal partitions and used leave-one-out cross validation,
training on 4 partitions and using the last one for testing. The
recognition accuracy is calculated by averaging the accura-
cies in each run. Since the iris data are numeric, to use it
with our compression approach, we transformed the data into
a series of tokens using quantisation by treating each dimen-
sion separately and breaking it into ten equally spaced steps,
with tokens ‘a’ to ‘j’. Thus, attribute instances whose values
were in the range [0, 0.1) were assigned token ‘a’, those in
[0.1, 0.2) were assigned token ‘b’ and so on.

In this experiment, we also used a SOM as a baseline to
understand how effective our proposed method is. The train-

ing of the SOM was in batch mode and was trained for 100
epochs. Recognition accuracy for the SOM was calculated by
determining the nodes that were the best match according to
the target classes in the map. The results are presented in Ta-
ble 1. Our algorithm did very well given that it did not know
that the input data were four dimensional, which the SOM ob-
viously did. However, we were interested in how much of the
error was caused by the quantisation that was required to turn
the data into tokens. We therefore re-transformed the tokens
back into numbers, by replacing each token by the median
of the values range for each tokens (e.g. token ‘a’ is trans-
formed into 0.05, token ‘b’ into 0.15, etc.). The results in the
final column of Table 1 show the results when the SOM is
trained on these quantised data, which leads to a significant
reduction in the accuracy of the SOM, and makes the accu-
racy of our method comparable to the baseline. The choice
of how to quantise the data into tokens is an important one,
providing a trade-off between compression rate and accuracy.
One can use a smaller range of values for the transformation
to achieve a higher compression rate or use a larger range of
values to achieve a higher recognition accuracy.

3.2 The Smart Home Data

One aim of our method is that it works well where the in-
puts are of variable length, such as behaviour recognition and
speech recognition, where conventional unsupervised learn-
ing algorithms do not do well. There are a number of chal-
lenges implicit in recognising human behaviours, such as the
fact that the sensors present only a very partial picture of what
the inhabitant is doing, are noisy and that the number of sen-
sory inputs that define a behaviour is not fixed and the presen-
tation of the behaviours almost always vary at different times
(e.g., the order of events can change, the particular events
within a behaviour vary, etc.).

To demonstrate our algorithm on this type of problem, we
used a real smart home dataset from the MIT PlaceLab [Tapia
et al., 2004]. They collected data using a set of 77 state-
change sensors that were installed in an apartment and col-
lected data while a person lived in the apartment for a period
of 16 days. The sensors were attached to objects within the
home, such as the washing machine, toaster, and refrigera-
tor. The dataset was annotated by the subject, meaning that
there is a ground truth segmentation of the dataset, although
there are notable omissions and inaccuracies in the annota-
tions. To simplify the experiment, we examine 5 different be-
haviours (toileting/showering, grooming/dressing, preparing
meal/snack/beverages, washing/putting away dishes and do-
ing/putting away laundry). Based on these behaviours, there
are a total of 310 activity examples and 1805 sensor observa-
tions.

We used the annotation in the training set only to attach
a recognisable label to the words in the quantised dictionary
and used the annotation of the test set as a ground truth. Once
the prototype ‘words’ for the dictionary have been identified,
we parse the tokens from the test set to recognise dictionary
examplars.

In this experiment we compare the unsupervised approach
using compression with a supervised method based on Hid-
den Markov Models (HMM), where the sensors and activ-

1234

Test Recognition Accuracy
Sets Self-Organising Map Our Proposed Method Self-Organising Map

(on original IRIS data) (compression and edit distance) (on transformed IRIS data)
1st Set 90% 90% 90%
2nd Set 97% 90% 90%
3rd Set 93% 87% 83%
4th Set 93% 93% 87%
5th Set 97% 93% 90%

Average 94% 91% 88%

Table 1: Iris data: A comparison results between the Self-Organising Map (SOM) method and our proposed method

Test No. of Activity No. of Activities Unidentified Recognition
Sets Examples Correctly Identified Activities Accuracy

1st Set 31 25 2 81%
2nd Set 54 41 7 76%
3rd Set 20 18 0 90%
4th Set 33 30 0 91%
5th Set 49 41 3 84%
6th Set 34 27 2 79%
7th Set 37 32 2 86%
8th Set 52 41 3 79%

Average 83%

Table 2: Results for the Smart Home dataset using unsuper-
vised learning based on compression and edit distance on dif-
ferent training/testing splits.

ities are known a priori. For the HMM, the observations
are the tokens from the sensors and the hidden states are
the events that caused the observations. For example, the
token could be that the shower is turned on and a possible
state that arises from this token is that somebody is show-
ering. We trained a set of HMMs, where each HMM rep-
resents one behaviour (e.g. we have one HMM to repre-
sent the ‘toileting’ behaviour, another HMM to represent ‘do-
ing laundry’ behaviour, etc.). We trained the HMMs using
the standard Expectation-Maximization (EM) algorithm [Ra-
biner, 1989] and used the method described in [Chua et
al., 2009] to perform segmentation and behaviour recogni-
tion. The central idea of the method is to slide an ini-
tial window of length 10 across the sensor stream and pre-
senting the 10 observations in the window to the sets of
trained HMMs for competition. A winning HMM, λ, is
chosen based on the HMM that maximises the likelihood
of the 10 observations (O1, O2, . . . , O10) in the window,
(i.e. argmaxλP (O1, O2, . . . , O10|λ)). Segmentation is per-
formed by using the forward algorithm [Rabiner, 1989] to
calculate the likelihood of each observation in the window
according to the winning HMM.

For each method, from the total of 16 days of data, we
used 14 days for training and the remaining two days for
testing. We used a leave-two-out cross validation method
for each evaluation in order to calculate the confusion ma-
trix and measure the recognition accuracy. We repeated the
process 8 times, with the final recognition accuracy being cal-
culated by averaging the accuracies in each run. The results
for the compression-based unsupervised method are shown in
Table 2 and Figure 3, while those for the supervised HMMs
are shown in Table 3.

For the unsupervised learning approach, some behaviours
were too rare and compression simply could not be achieved,
which results in some behaviours (such as ‘doing/putting

Test No. of Activity No. of Activity Recognition
Sets Examples Correctly Identified Accuracy

1st Set 31 28 90%
2nd Set 54 49 91%
3rd Set 20 19 95%
4th Set 33 30 91%
5th Set 49 45 92%
6th Set 34 31 91%
7th Set 37 35 95%
8th Set 52 44 85%

Average 91%

Table 3: Results for the Smart Home dataset using supervised
learning based on the hidden Markov models (HMM) on dif-
ferent training/testing splits

away laundry’ and ‘washing/putting away dishes’) not be-
ing identified when building the dictionary. This is shown as
‘unidentified activities’ in Table 2. However, it is still instruc-
tive to see if there are consistent reasons for these to occur.
Instances in these behaviours vary from the usual norm and
the behaviours are often interrupted by another event or noise
from other sensors. This results in high values in the edit dis-
tance, meaning that our algorithm is unable to recognise the
word. We expect that if there had been more examples of
those words, they would have been identified successfully.

The results from Tables 2 and 3 show that the proposed
unsupervised method, with a recognition accuracy of 83%,
is comparable to the supervised method with 91% recogni-
tion accuracy. This means that the unsupervised method pre-
sented in this paper works effectively to identify behaviours
from the unlabelled data stream. Our results are promising
since firstly, our method does not need any prior annotations,
which is likely to be the aim of any real smart home, which
would want to learn from scratch without any built-in prior
knowledge when the sensors are installed in the home, since
there is such variation between houses, sensors, and the ac-
tivities of people. Secondly, our method works effectively
on data with variable length data sequences without requiring
any pre-processing step for segmentation.

4 Conclusions

We have presented a new method based on compression and
edit distance to recognise patterns from the unannotated data.
We have demonstrated the applicability of using compression
to exploit regularities in the data stream, which we define to
be patterns, without any prior knowledge or human labelling.
In order to allow for variations in the patterns, we perform
lossy compression based on edit distance to quantise the dic-
tionary produced by the Lempel-Ziv-Welch (LZW) method

1235

Figure 3: Visualisation of the output of the ground truth (top) and proposed method (bottom). The lower case letters on the
x-axis show the sensor readings, while the y-axis shows the potential behaviours (which corresponds to the top-right of the
figure). The notation ‘W6’ refers to ‘Word #6’ in the quantised dictionary (shown on the bottom-right of the figure). The
example is based on 5 activity examples on the 3rd test set.

by using the edit distance, which is also then used to segment
the data stream into patterns that we have identified. This is
performed by identifying matches between the tokens in the
data stream and the quantised words in the dictionary. We
have demonstrated that our method works effectively both on
data with fixed length data sequences (the Iris data) and vari-
able length data sequences (the MIT PlaceLab data).

One option that we have not explored in this paper, but will
in the future, is the use of the compression approach to iden-
tify the behaviours that should be learnt. Each behaviour can
then be learnt by separate HMMs, so that we get the ability
to use supervised learning methods on what is actually unla-
belled data. We also plan to extend our work by exploring
other methods of quantisation, such as fuzzy clustering.

5 Acknowledgments

We would like to thank MIT PlaceLab and UCI for providing
access to their dataset. The financial support from Massey
University is gratefully acknowledged. We also acknowl-
edge the support of the other members of the MUSE group
(http://muse.massey.ac.nz).

References
[Bishop, 2006] Christopher Bishop. Pattern Recognition and Ma-

chine Learning. Springer, 2006.
[Brill and Moore, 2000] Eric Brill and Robert C. Moore. An im-

proved error model for noisy channel spelling correction. In ACL
’00: Proceedings of the 38th Annual Meeting on Association for
Computational Linguistics, pages 286–293, 2000.

[Chua et al., 2009] Sook-Ling Chua, Stephen Marsland, and
Hans W. Guesgen. Behaviour recognition from sensory streams
in smart environments. In Australasian Conference on Artificial
Intelligence, AI ’09, pages 666–675. Springer-Verlag, 2009.

[Cilibrasi and Vitányi, 2005] Rudi Cilibrasi and Paul M. B. Vitányi.
Clustering by compression. IEEE Transactions on Information
Theory, 51(4):1523–1545, 2005.

[Fisher, 1936] Ronald A. Fisher. The use of multiple measurements
in taxonomic problems. Annals of Eugenics, 7:179–188, 1936.

[Frank and Asuncion, 2010] A. Frank and A. Asuncion. UCI ma-
chine learning repository, 2010.

[Jacob and Abraham, 1978] Ziv Jacob and Lempel Abraham. Com-
pression of individual sequences via variable-rate coding. IEEE
Transactions on Information Theory, 24(5):530–536, 1978.

[Kohonen, 1990] Teuvo Kohonen. The self-organising map. Pro-
ceedings of the IEEE, 78(9):1464–1480, 1990.

[Levenshtein, 1966] Vladimir Levenshtein. Binary Codes Capable
of Correcting Deletions, Insertions and Reversals. Soviet Physics
Doklady, 10:707, 1966.

[Marsland, 2009] Stephen Marsland. Machine Learning: An Algo-
rithmic Perspective. CRC Press, New Jersey, USA, 2009.

[Rabiner, 1989] Lawrence R. Rabiner. A tutorial on hidden Markov
models and selected applications in speech recognition. Proc. of
the IEEE, 77(2):257–286, 1989.

[Shannon, 1948] Claude E. Shannon. A mathematical theory of
communication. Bell System Technical Journal, 27:379–423,
625–56, 1948.

[Sokol et al., 2006] Dina Sokol, Gary Benson, and Justin To-
jeira. Tandem repeats over the edit distance. Bioinformatics,
23(2):e30–e35, 2006.

[Somervuo and Kohonen, 1999] Panu Somervuo and Teuvo Koho-
nen. Self-organizing maps and learning vector quantization for
feature sequences. Neural Processing Letters, 10:151–159, Oc-
tober 1999.

[Tapia et al., 2004] Emmanuel M. Tapia, Stephen S. Intille, and
Kent Larson. Activity recognition in the home using simple and
ubiquitous sensors. In Pervasive, pages 158–175, 2004.

[Welch, 1984] Terry A. Welch. A technique for high-performance
data compression. Computer, 17(6):8–19, 1984.

[Zini et al., 2006] Manuel Zini, Marco Fabbri, Massimo Moneglia,
and Alessandro Panunzi. Plagiarism detection through multilevel
text comparison. In AXMEDIS ’06: Proceedings of the Sec-
ond International Conference on Automated Production of Cross
Media Content for Multi-Channel Distribution, pages 181–185,
2006.

1236

