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Abstract

Novelty detection is about recognising features that
do not fit into the pattern of previous perceptions. It
is an important survival trait for animals, and is also
useful for robots. For example, a robot equipped with
the ability to detect novelty can select which features
of an environment to investigate and learn about.

In this paper we enable a mobile robot to learn a
model of an environment that the robot experiences
through the images of a monochrome camera while
exploring. Once the robot has learnt a model of this
environment we move the robot to a new environment
and ask it to detect those features of the new environ-
ment that do not fit into the model, i.e., the novel fea-
tures. We describe a number of different algorithms
for producing an input vector from the image that
is suitable for presentation to the novelty filter, and
demonstrate results using the approach that worked
best.

1 Introduction

In animals, the ability to detect novel features of their
environment is an important survival trait, as any
unusual perception may be a potential predator. For
robots, too, this ability can be very useful. For ex-
ample, a robot that could detect novelty would be
able to decide which features of an environment to
concentrate on and learn about. Another use for a
novelty detecting robot is as an inspection agent. In
a training phase, the robot could explore a number
of environments that were known to exhibit no prob-
lems. Once the robot had learnt an accurate model
of these environments, it could explore the whole en-
vironment, highlighting those features that did not
fit into the model previously acquired. These would
be the sites of potential problems.

In previous work we have proposed a novelty filter
that can operate online, and is therefore suitable for
use on a mobile robot. The filter has been used to
direct the attention of a mobile robot to novel and

therefore potentially interesting stimuli [6], and to
learn a model of an environment using the robot’s
sonar sensors [7]. In this paper, the novelty filter
is used in conjunction with a monochrome camera
to demonstrate that the concept can be extended to
using camera images of an environment. The camera
is positioned facing the wall nearest to the robot, and
records an image every 10cm of travel.

2 Related Work

A number of novelty detection techniques have been
proposed in the literature. The first was Kohonen’s
Novelty Filter [5, 4], which is trained to reproduce
the inputs at the output so, after training, any input
presented to the network produces one of the learned
outputs. Then, the bitwise difference between the
input and the output highlights novel components of
the input.

Several other approaches have used the Self-
Organising Map [4]. Ypma and Duin [13] proposed
a novelty detection mechanism based on measuring
the quality of the match between a trained SOM and
a particular dataset. By training the SOM on data
that is known to be normal and then evaluating the
measures on a new dataset, they compute how likely
it is that the new dataset comes from the same dis-
tribution as the training data.

Another approach is to calculate the distance of the
winning neuron from neighbourhoods that fired when
training data known to be normal was introduced,
and counting as novel those inputs where the distance
is beyond a certain threshold. This method was used
by Taylor and MacIntyre [12] to detect faults when
monitoring machines. The network was trained on
data taken from machines operating normally and
data deviating from this pattern was taken as sig-
nifying a machine fault.

Another novelty filter, the FamE model, has been
proposed by Bogacz et al. [1]. Inputs are presented
to a Hopfield network, and the energy of the net-
work evaluated. If the energy is low, the input is
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Figure 1: An example of how the synaptic efficacy varies
when habituation is modelled using equation 1. In both
curves, a constant stimulus S(¢t) = 1 is presented at ¢t = 0,
causing the efficacy to fall. The stimulus is removed (S(t) =
0) at time ¢t = 60 where the synaptic efficacy rises again, and
becomes S(t) = 1 again at t = 100, causing another drop.
The two curves show the effects of varying 7 in equation 1.
A larger value of 7 causes both the learning and forgetting
to occur faster. The other variables were the same for both
curves, & = 1.05 and yo = 1.0.

assumed to be familiar, otherwise it is considered to
be novel. The model has recently been applied to
a mobile robot application [2]. The robot takes pic-
tures of a ‘picture gallery’ of orange rectangles on a
white wall and the FamE model evaluates the novelty
of the simple images produced.

3 The Novelty Filter

3.1 Habituation

Habituation is a decrement in response when a stim-
ulus is seen repeatedly without any ill effects. A
number of researchers have produced mathematical
models of the effects of habituation on the efficacy
of a synapse. We use a simple model proposed by
Stanley [11]. In his model the synaptic efficacy, y(t),
decreases according to the following equation:

dy(t)

T =a [yo —y(t)] = S(t),

(1)
where yo is the original value of y, 7 and « are time
constants governing the rate of habituation and re-
covery respectively, and S is the stimulus presented.
A graph showing the effects of the equation can be
seen in figure 1.

3.2 Using Habituation in a
Novelty Filter

In effect, habituation allows an animal to ignore stim-
uli that are seen often, so that the animal can concen-
trate on other, potentially more important features.
This is exactly the functionality required of a nov-
elty filter — removing stimuli that are seen frequently.
The novelty filter that we describe uses habituation
in conjunction with a clustering neural network to
highlight novel stimuli.

The novelty filter uses a clustering network to learn
a representation of the robot’s perceptions. Input
vectors of the robot’s perceptions are presented to
the clustering network, which finds the best-matching
neuron using a winner-takes-all strategy. Each neu-
ron in the map field is connected to the output neu-
ron via an habituable synapse, so that the more fre-
quently a neuron fires, the lower the efficacy of the
synapse and hence the lower the strength of the out-
put. The behaviour of the habituable synapses is con-
trolled by equation 1. The strength of the winning
synapse is taken as a novelty value for the particular
winning neuron, and hence the perception presented,
with more novel stimuli having values closer to 1, and
more common stimuli values closer to 0.

We have experimented with a number of different
clustering networks for use in the novelty filter. The
one that performs best is a network designed espe-
cially for the task. The network, termed the ‘Grow
When Required’ (GWR) network, has the capabil-
ity of growing a new node whenever none of the
nodes currently in the network matches the input suf-
ficiently well. This means that the network grows un-
til it is sufficiently large to represent the inputs to the
required accuracy. Details of the GWR network and
demonstrations of the novelty filter implemented with
this network for sonar-based environment inspection
are given in [8].

4 Image Processing

Images are captured from the camera as a two dimen-
sional array of greyscale pixels. The image capture
process is described in section 6. Before the novelty
of each image can be evaluated, an input vector must
be generated that is suitable for presentation to the
novelty filter. However, the quality of the images was
not high, and therefore a number of different prepro-
cessing techniques were tried to improve the quality of
the image. We report only those algorithms that were
used. General references that deal with the types of
image processing described are [3, 10].



Figure 2:
tensity before histogram equalisation. Right: The same his-

Top: Left: A typical histogram of image in-

togram after histogram equalisation. Bottom: The images
that produced the histograms.

4.1 Histogram Equalisation

The images were of low contrast. This can be seen
by looking at the histogram of the brightness of the
image over the range of greyscales (0 — 255). The
histogram is sharply peaked, with very little spread
of values, as can be seen on the top left of figure 2.
Histogram equalisation flattens the peaks and en-
hances the minima of the histogram by increasing
the distance between the points where the histogram
is large, so spreading the histogram out to cover all
the available image intensities.

5 Producing the Input Vectors

Once the image has been preprocessed, it can be used
as input to the novelty filter. This requires the gener-
ation of an input vector. Generating the input vector
reduces the amount of information that is stored, and
therefore the choice of technique is very important.
We tried several methods of producing input vectors
from the images. In this section we describe the three
that worked best.

The inputs to the novelty filter were all scaled to
lie between 0 and 1. This was done during the cal-
culation of the input vector, using the techniques de-
scribed in the next section.

5.1 Fingerprints

The most simple technique, which also seems to per-
form the best on the novelty detection problem de-
scribed in this paper, was to use as an input vec-
tor the intensity values of the image at particular
points. After experimentation with a number of dif-
ferent shapes, it was found that using inputs from
the spiral shown in figure 3, starting at the centre
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Figure 3: The spiral pattern used to generate the ‘finger-
print’ input vector to the novelty filter.

and working out to the edge produced the most use-
ful information. This provides most information from
the centre of the image, but does include pixels from
the edges. It is this technique that was used in the
experiments reported in this paper.

5.2 Histograms

Another technique that was tried was to take his-
tograms in both the x— and y— directions. The his-
togram could be taken of the intensity values of the
images directly, or an edge detection routine could
be applied first, and then the histogram of the edge-
detected image taken. It was found that using a sim-
ple edge-detection routine first improved the perfor-
mance of this filter.

5.3 Principal Component Filters

We also tried an algorithm based on Sanger’s image
compression algorithm [9]. The image is partitioned
into non-overlapping 8 x 8 squares of pixels. The
Generalised Hebbian algorithm [9] is used to gener-
ate the first eight principal components of each small
square of the image. The weights generating these
principal components are saved and the trained net-
work is applied to squares taken from each successive
image. The principal component values produced by
each of the squares is stored as a representation of
that square. These principal component values are
used as input to the novelty filter. If the first image
if not representative of all the images, this filter does
not work well, which makes it unsuitable for online
use.

6 Experiments with the
Novelty Filter

6.1 Experimental Procedure

The experiments described in this paper parallel
those used to investigate novelty detection with sonar



sensors

-« 16 infrared
sensors

Figure 4: The Nomad 200 robot used in the experiments.
Note the position of the camera at the top of the turret.

perceptions [7]. The Nomad 200 robot shown in fig-
ure 4 explored an environment from some arbitrary
starting point by using a wall-following behaviour to
travel adjacent to one wall, staying between 20cm
and 60cm away from the wall. The robot stopped
every 10cm to take a photograph.

As can be seen in figure 4, the camera is on the top
of the robot, about 1 m off the ground. In these exper-
iments the camera faced the wall that was being fol-
lowed. This meant that each image is of a small sec-
tion of wall, as is shown in figure 2. The preprocessed
photograph was presented to the novelty filter, which
produced a novelty value. Before the experiment be-
gan, the camera was focussed manually. However,
the focussing ring on the camera slipped over time,
and the robot did not stay a constant distance from
the wall, so some of the images are blurred.

Once the robot had travelled 10m in an environ-
ment, the experiment was paused, and the robot was
returned to the beginning of the run. After each pass
through the environment with the novelty filter learn-
ing a model of the environment, a second pass was
performed with learning turned off. The novelty fil-
ter still produced a value of the novelty for the cur-
rent perception, but the network did not learn. This
enables us to see how much was learnt during the
previous run.

6.2 Results

Initially the novelty filter was initialised randomly,
and the robot was allowed to explore an environment.
The results of this exploration are shown on the left
of figure 5, which is labelled environment A. The dia-
gram at the top of the figure shows the appearance of
the environment. The robot is shown facing in the di-
rection of travel adjacent to the wall that it followed,
and that the camera faced. The graphs show the
amount of novelty in the image at that point, with
a spike signifying total novelty and no spike meaning
that the image is similar to previous perceptions.
Once the novelty filter had learnt an accurate
model of environment A (meaning that no percep-
tions were found to be novel), which took four learn-
ing runs, the environment was changed. A door on
the right-hand side of the robot, the side that the

camera faced, was opened. This changed the percep-
tions at that point. The outputs of the novelty filter
for these perceptions are shown on the right of fig-
ure 5, labelled environment A*. It can be seen that
the perceptions of the doorway are found to be novel,
but that no other part of the environment is. This
is to be expected, as the rest of the environment is
identical to the first one.

The novelty filter trained on environment A was
also used in two different environments. Figure 6
shows the amount of novelty found when the novelty
filter trained in environment A was placed into a new
environment. The first environment (shown on the
left of the figure) is environment A*, as shown in
figure 5. The results for two new environments are
also shown in figure 6. It can be seen that the amount
of novelty found in environment A* after learning in
environment A is low, as would be expected since
they are the same section of corridor with only one
change made.

The first of the new environments (environment B)
is a similar section of corridor. The amount of nov-
elty found is this environment is shown in the middle
graph of figure 6. The novelty filter recognised many
of the perceptions, but found the images of the door-
ways to be novel. There are two reasons for this. One
is that the novelty filter has only seen perceptions
of one doorway, so they are still seen to be slightly
novel, and the other is that the doorjambs are painted
black, instead of white as they were in the first cor-
ridor. This is why there is still a lot of novelty found
in this environment, although less than was found in
environment A with the untrained filter.

Environment C, the final environment, is a very
different corridor. This can be seen from the fact
that the novelty filter trained in environment A finds
this environment very novel (shown on the right of
figure 6). Instead of breezeblock on the wall, there are
bricks, so the appearance of the wall is very different.
The wall was found to be novel in the two runs in this
environment, although the novelty filter soon learned
to recognise it. In addition, at the end of the run are
a number of posters. These were also found to be
novel.

7 Conclusions

In this paper we have demonstrated that a novelty
filter capable of learning online can be used on a mo-
bile robot equipped with a camera to learn an in-
ternal model of an environment perceived through
the images captured by the camera. Once this model
has been acquired, the perceptions highlighted by the
model are those that do not fit into the pattern of
previous inputs.

Experiments demonstrating the effects of the filter
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Left: The output of the novelty filter when the robot explores an environment without prior training (peaks

Figure 5:

Initially everything is novel, but the novelty filter soon learns to recognise

are perceptions with high novelty values).

perceptions such as the wall, that are seen often. Right: After training in environment A a door is opened. This changes
the perceptions around the doorway and the robot explores the changed environment. It can be seen that only the changed

perceptions of the doorway are found to be novel.
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Runs in Environments

The results of the first inspection experiment.

Runs in Environments

The graph on the left shows the robot learning first in

environment A, and then in environment A*. It can be seen that once the robot has learnt about environment A, very
little in A* is novel. The middle graph shows how the amount of novelty increases when the robot explores environment

B after learning about environment A, and finally the graph on the right shows how the novelty increases when the robot

begins to explore environment C.

on perceptions of a number of different environments
that the robot explored are given. For reasons of
space, the results have only shown the effects of one of
the ways of generating an input vector for the novelty
filter from the image and preprocessing has not been
discussed fully.

One area that has not been addressed in this paper
is that of sensor fusion. Previous experiments have
demonstrated that the novelty filter works well with
inputs from the robot’s sonar sensors, and this pa-
per demonstrates that the filter works with images
from a camera. It is possible that using both types
of sensor as input would also be useful, this is under
investigation. Another area where work is needed is
to investigate whether the novelty filter can be used
to differentiate between different environments. This
would enable robot behaviours to be tailored to the
particular environment that the robot was currently
in.
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