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Abstract. This paper considers the general problem of the analysis of
groups of shapes, and the issue of correspondence in that context. Many
papers have been published on the topic of pairwise shape distances and
pairwise shape similarity measures. However, most of these approaches
make the implicit assumption that the methods developed for pairs of
shapes are then sufficient when it comes to the problem of analyzing
groups of shapes. In this paper, we consider the general case of pairwise
and groupwise shape analysis within an infinite-dimensional Riemannian
framework. We show how the issue of groupwise or pairwise shape cor-
respondence is inextricably linked to the issue of the metric. We discuss
how data-driven approaches can be used to find the optimum correspon-
dence, and demonstrate how different choices of objective function lead
to different groupwise correspondence, and why this matters in terms of
groupwise modelling of shape.

1 Introduction

It is generally agreed that a “shape” is what is left when the “nuisance” degrees
of freedom corresponding to translation, scaling, and rotation (i.e., pose) have
been filtered away, as was proposed by Kendall [8]. Underlying this definition is
the idea that the shape itself is an object with an infinite number of degrees of
freedom, such as a continuous curve or surface. The analysis of shape is then the

General Shape Analysis:
• Define a suitable representation for our shapes, hence a space of shapes.
• Define an energy or distance function on that space, a measure of the simi-
larity between any two such shapes.

Pairwise Shape Analysis:
• To provide a continuous, optimal
path, that allows interpolation between
the two shapes.
• To give a quantitative measure of the
degree of similarity.

Groupwise Shape Analysis:
• To provide a method of interpolation
across a training set of shapes.
• To provide a means of analysing the
statistics of the training set of shapes.

Fig. 1. The key aspects of general, pairwise, and groupwise shape analysis.
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related problems of representing the infinite dimensional curves, defining met-
ric distances between different shapes, finding optimal correspondences between
shapes, and performing statistical analysis on the manifold of shapes. In Fig. 1
we identify these problems within the general framework, and then in the con-
crete cases of pairwise and groupwise shape analysis. The last of these, which has
been generally neglected, is probably the most important for real shape analysis.

In oder to remove the transformation group of rotation, translation, scaling, a
method of shape alignment (such as Procrustes analysis) is often defined a priori.
In fact, the same approach has been taken to defining a correspondence between
shapes as well, and this causes problems. Defining a correspondence between
shapes makes assumptions about how to best interpolate between shapes. When
such an a priori choice is applied to interpolation between a pair of shapes, the
result may not reflect what is actually seen when we come to consider a group
of shapes. This is shown in Fig. 2, where two choices of correspondence lead
to different interpolated shapes. We contend that the issue of correspondence
should be left open, and the various alternative hypotheses considered, so that
the result of interpolation may then be chosen to agree with what is seen from
the entire group of shapes.

Fig. 2. For the same pair of shapes (left & right), different correspondences (indicated
by colours) leads to different hypotheses as to the intermediate shapes.

In this paper we present a framework for shape analysis, and place many of
the recent papers on the topic within that framework. We will first show how the
question of shape correspondence is inextricably linked to the use of a Rieman-
nian metric, both in terms of the tangent space, and in terms of the associated
Levi-Civita connection, and then discuss how to optimise correspondence, both
pairwise and groupwise.

2 The Metric

We start by considering parameterised shapes, where a shape is described by
a function c(θ) ∈ Rn, where θ = {θα : α = 1, . . . m} represents a point in
the m-dimensional parameter space M . All that we require is that there is a
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continuous, one-to-one correspondence between the shape and the parameter
space, so that {cθα

.= ∂c
∂θα

} are not all zero (i.e., no pleats). The mapping from
the parameter space to Rn can be either a smooth immersion (self-intersections
in Rn permitted) or a smooth embedding (self-intersections in Rn not permitted).
In order to define a Riemannian metric between shapes, we need to consider the
tangent space to our space of parameterised shapes at the shape c, the space of
all possible infinitesimal deformations of c(θ). This can be represented by:

c(θ) ⇒ c′(θ) .= c(θ) + εh(θ), ε ¿ 1, (1)

where h(θ) is a continuous and (piecewise) smooth Rn-valued vector field3, de-
fined everywhere on M . This hence represents the infinitesimal deformation of
our original shape in the direction defined by h(θ). This gives the most general
description possible of deforming a shape, in that the deformation of every point
on the original shape is given, with the only constraint being that the deforma-
tion is smooth and continuous. However, this very generality means that trans-
lations (constant vector fields), rotations, scalings, and re-parameterisations of
the original curve (purely tangential vector fields) are also included as elements
of the space of vector fields.

It is important to note that this definition defines a point-to-point corre-
spondence between two infinitesimally-separated shapes c and c′, given by the
value of the parameter, so that c(θ) corresponds to c′(θ). This mapping can also
always be made one-to-one, because even if, for some value of ε, there are points
where c′θα

= cθα + εhθα = 0 ∀ α, we can always adjust ε so that it is not the
case, since there is always some α such that cθα 6= 0.

Fig. 3. Correspondence between two curves, c and c′, showing how the vector field
changes h → hψ as c′ is reparameterised.

3 In what follows, we will often absorb the factor of ε into the definition of h, hence
take c(θ) + h(θ) as our deformed shape.
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We can also change the correspondence between the infinitesimally-close
shapes, by reparameterising the curve c′: c′(θ) → c′(ψ(θ)) (see Fig. 3). Hence
changing the correspondence between the two shapes means changing the vector
field h → hψ, whilst keeping the set of points {c′(θ) : θ ∈ M} fixed.

A Riemannian metric on our space of shapes is then an assignment of an inner
product between elements of the tangent space at c, denoted by Gc(h, k). The
energy and length of the path segment between the (infinitesimally) separated
shapes c(θ) and c(θ) + h(θ) are then given by:

δEnergy = Gc(h, h), δLength = (Gc(h, h))
1
2 . (2)

We take as an exemplar (open or closed) parametric planar shapes (PPS). Defin-
ing our basic notation:

Curves and vectors in the Argand plane: c(θ), h(θ) ∈ R2 = C.

Arc-length: (ds)2 ≡ |c(θ + dθ)− c(θ)|2.
M = unit line or circle for open or closed curves, θ ∈ [0, 1] or: θ ∈ [0, 2π].

Derivatives: Ds ≡ ∂

∂s
, Dθ =

∂

∂θ
, Dθf(θ) ≡ fθ.

Unit tangent vector: vc = cs =
cθ

|cθ| , Unit normal to curve: nc = i.vc.

Following Michor & Mumford [12, 11], and Younes et al. [14] we can then define
the local and almost-local metrics:

Local: Gc(h, k) =
∫
〈Lh(θ), Lk(θ)〉dµ(θ), (3a)

Almost local: Gc(h, k) =
∫

Φc(θ)〈Lh(θ), Lk(θ)〉dµ(θ), (3b)

where dµ(θ) is our integration measure (which may involve the total length of the
curve lc), Φc(θ) is a function of lc and the curvature κc, (where κcnc

.= Dsvc(s)),
and L is some differential operator, such as (Ds)n. The inner product 〈·, ·〉 will
usually be the Euclidean inner product on R2.

The shortest-path c(θ, t) (the geodesic) between two finitely-separated shapes
c(θ, 0) and c(θ, 1) is then given by minimising the total energy4:

∫ 1

0

Gc(θ,t)(ct, ct)dt, (4)

wrt variations of the path c(θ, t), whilst keeping the endpoints fixed. If we take
an algebraic approach, we will need to compute the variation of terms such as
the metric, as we vary the path c(θ, t). It is convenient to define the variational,
Gâteaux derivative:

Dc,mGc(h, k) .=
d

dλ

∣∣∣∣
λ=0

Gc+λm(h, k), (5)

4 As in the case of finite-dimensional Riemannian geometry, the total length and total
energy have the same minimizer, and the total energy is simpler to work with.
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where λm(θ) represents an infinitesimal variation of the curve c(θ) in the direc-
tion m(θ). We can then define derivatives of the metric Hc and Kc, where:

Gc (Kc(m,h), k) .= Dc,mGc(h, k). Gc (m, Hc(h, k)) .= Dc,mGc(h, k). (6)

The formal solution is then given by the geodesic equation:

ctt =
1
2

(Hc(ct, ct)− 2Kc(ct, ct)) . (7)

The path ahead in the pairwise case now seems simple – we make our choice
of metric, solve the geodesic equation (either numerically [12] or algebraically
if possible [14]), and hence compute the geodesic between any pair of shapes.
Given the geodesic path between the shapes, it is then trivial to compute the
length, hence assess their level of shape similarity.

However, we have forgotten the issue of correspondence. As noted previously
(see Fig. 3), even for the same sequence of physical shapes, altering the cor-
respondence alters the vector fields, and hence will in general give a different
distance between shapes.

2.1 Global & Local Re-Parameterisations

Consider a general path on the space of curves c(θ, t), and suppose that we now
consider a global re-parameterisation of the path, so that c(θ, t) → c(ψ(θ), t).
This will leave the correspondence unchanged along the path, and the vector
fields unchanged, but will change the integration measure, and hence the path
energy, unless we choose a metric that is invariant under re-parameterisation.
That is, Gc(h, k) is invariant under the transformation θ → ψ(θ). This invariance
is important, otherwise we can reduce the energy cost of finite deformations to
zero by simply identifying a suitable choice of re-parameterisation (see [11], §3.1).

However, even for such a re-parameterisation invariant metric, the path en-
ergy will not be invariant under a local re-parameterisation, ψ(θ, t). Since the
re-parameterisation function is different at different points along the path, it
changes the correspondence and the vector fields ct (see Fig. 3), and thus in
general, it changes the path energy. Hence using re-parameterisation-invariant
metrics does not solve the pairwise correspondence problem.

It would seem a sensible course to nail the issue of correspondence down at the
start, and this is the approach taken by Michor & Mumford. Their approach rests
on the observation that a purely tangential vector field generates not changes of
shape of a curve c, but changes of parameterisation of c. A general vector field
can be decomposed into tangential and normal components, where:

h(θ) = h⊥(θ) + h‖(θ), h‖(θ) .= 〈h(θ), vc(θ)〉vc(θ), h⊥(θ) .= 〈h(θ), nc(θ)〉nc(θ), .

This means that purely normal vector fields are perpendicular to the directions
in shape space that represent pure re-parameterisations, hence always perpen-
dicular to the orbit of a shape under the action of the diffeomorphism group
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of the parameter space M . They then use what we will call the normality pre-
scription, where they project out the degrees of freedom in the vector fields that
correspond to re-parameterisation, replacing the inner product in Rn with a term
that depends only on the normal components. For the H0 metric:

〈h, k〉 → 〈h⊥, k⊥〉 ≡ 〈h, nc〉〈k, nc〉
This normality prescription is not without some undesirable effects. In [11],
Michor and Mumford state that they were looking for the simplest Riemannian
metric, the obvious candidate being the re-parameterisation-invariant H0 metric:

G0
c(h, k) .=

∫
〈h(θ), k(θ)〉|cθ|dθ ≡

∫
〈h(s), k(s)〉ds,

which can be re-written in terms of the arc-length parameter s and which is
obviously related to the simple sum-of-squared-distances metric for polygonal
shapes represented by a finite number of points.

However, if we apply the normality prescription, then this metric goes hor-
ribly wrong (see [11], §3.10), and all geodesic distances can be reduced to zero!
It was this problem with the H0 metric that led Michor & Mumford to consider
higher-order derivative terms (local metric (3a)), or the addition of curvature-
dependent terms (almost-local metric (3b)), whilst still keeping the normality
prescription.

What the normality prescription does, in effect, is assign an equal cost to all
possible correspondences, by ignoring the tangential component that generates
such changes of correspondence. This is not the same as choosing one particular
way of assigning correspondence, which would be equivalent to assigning an
infinite cost to all other correspondences. This freedom to move along shapes is
one way of seeing why the geodesic distances can be reduced to zero – points
can move from one shape to the second for zero cost if they can complete the
journey by sliding along a shape, and adding saw-teeth stretching between the
two shapes, as intermediate shapes are allowed this under the prescription.

Our contention is that since the normality prescription does not work for the
H0 metric, then it seems to us unwise to continue with it.

But perhaps the correspondence problem can be improved by moving to a
different representation of shape? We mention here two alternatives.

The first is the elastic approach [6, 7, 15], which rather than the shape func-
tion c(s), uses the speed function cs. In particular, the square-root-elastic (SRE)
representation uses the variable and metric:

q(θ) .=
cθ(θ)√
|cθ(θ)|

, GSRE(∆q1,∆q2)
.=

∫
〈∆q1,∆q2〉dθ, (8)

where ∆q1,∆q2 are elements of the tangent space to the space of speed functions.
However, we can re-write this in terms of the elements of the tangent space to
the space of shape functions, to find that:

GSRE ⇒
∫

1
|cθ|

(
〈hθ, kθ〉 − 3

4
〈hθ, vc〉〈kθ, vc〉

)
dθ.
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Hence we see that the SRE metric is just a particular combination of re-parameter-
isation invariant terms involving just the first derivatives of the vector field, cho-
sen so as to give the metric a simple form in the space of speed functions. The
issue of correspondence is as in the case of parameterised shape, and we note
that in [7], Joshi et al. find the detailed correspondence and the path between a
pair of shapes by explicit optimisation.

The second, and more intriguing approach, is that given by the use of con-
formal mappings [13]. For any simple closed planar shape, there always exists a
conformal (angle-preserving) mapping from the interior of the shape to the unit
disc. This hence defines a conformal parameterisation of the shape, in terms
of the mapping between points on the curve and points on the unit circle. We
can also consider the inverted shape (for a shape c ⊂ C, and a point z0 in the
interior of the shape, the inverted shape is given by 1

c−z0
), and find the confor-

mal parameterisation of that. In general, the conformal parameterisation of the
shape and the inverted shape are different, and the difference between the two
is a diffeomorphism of the unit circle. Sharon & Mumford [13] show that it is
possible to (almost) uniquely reconstruct a shape purely from knowledge of this
element of the diffeomorphism group of the unit circle, and hence establish a
way to represent shapes in terms of this diffeomorphism group. They can then
apply metrics on the diffeomorphism group to generate a metric on the space of
shapes, and also, from the group multiplication, obtain an intriguing multiplica-
tion of two shapes to give a third shape. This method has been generalized by
Lui et al. [9] to the case of planar objects with other topologies. However, the
entire method still rests on favouring a particular method of parameterisation
over any other, and is limited to purely planar shapes.

Rather than trying to consider each method of shape representation and each
method of defining a distance between shapes on a case-by-case basis, we will
instead move on to consider the general geometric setting for shape distances.

3 Correspondence & Connections

In this section, we first start by discussing what it is about shapes and spaces of
shapes that makes them distinct from other spaces. In particular, we will focus
on the notion of spatial localization.

Let us suppose we have some general method of shape representation and
a shape space S, shapes c ∈ S, and a Riemannian metric (Gc(·, ·)) defined on
such a space. By general, we mean that our shape representation should be such
that it can also represent infinitesimal, localised deformations of any permitted
shape – this can be thought of in terms of growing an infinitesimal bump or
pit at any point on any shape. For a finite-dimensional representation of shape,
such as the simple polygonal or spline-based representations, this requirement
becomes the ability to move only a single point, plus the ability to increase the
number of points used in the representation as required. We will then associate
such bumps and pits with localized elements of the tangent space to the space
of shapes, which we will refer to as bump vectors. For a general shape, growing a



8 Twining, Marsland, & Taylor

bump at one of two distinct points on the shape should be recognized as distinct
directions in the tangent space, since they generate distinct shapes in the finite
limit. Hence we will refer to a shape c, where A and B are distinct points on the
shape, and distinct elements of the tangent space at c, kA ∈ TcS and kB ∈ TcS,
which correspond to growing a localized bump at point A or at point B.

It is important to note that our intuitive ideas of shape and shape change
rest on the notion of locality. In particular, we have the idea that, in general,
spatially-separated small perturbations of a single shape represent distinct de-
grees of freedom, provided these perturbations are sufficiently far apart. In terms
of the metric and our bump vectors, this can usefully be stated in the form that
Gc(kA, kB) → 0 as |A − B|Rn increases5. Hence we restrict ourselves to shape
metrics that have some notion of spatial locality and localization. The local and
almost-local metrics in (3a) & (3b) obviously have this property, and we will
consider a more non-local metric later in this section.

For a general space, the tangent spaces at two distinct points are not equiv-
alent, just as the tangent plane to a sphere at the pole is a different plane to the
tangent plane at a point on the equator. A connection provides a recipe (called
parallel transport) for mapping elements of the tangent space at one point into
elements of the tangent space at any other point. For the particular case of a
Riemannian metric, there is a unique (torsion-free) connection (the Levi-Civita
connection) that preserves the metric. In terms of the Gâteaux derivatives of the
metric we defined earlier (6), this connection is given by:

Γc(h, k) .=
1
2

(Hc(h, k)−Kc(h, k)−Kc(k, h)) , (9)

where it should be noted that this formula is general, and not specific to the case
of a parametric representation of shape. An element k of the tangent space at
the point c can then be parallel-transported by an infinitesimal amount ε in the
direction h, to give the element of the new tangent space, which can be written
as:

k ∈ TcS → k + εΓc(h, k) ∈ Tc+εhS. (10)

Tangent space vectors can then be parallel-transported a finite distance along
paths in the space by integrating up the above result, and in general, the exact
result will depend on the path chosen, even with fixed endpoints6.

We can now see how this construction of parallel-transport applies to the
issue of correspondence between shapes. If we take a bump vector kA on one
shape, we can parallel-transport this tangent-space vector along a path between
shapes, and hence generate the corresponding element of the tangent space on
our second shape. If this new element is also localized, then its location provides
us with a (rough) correspondence between the shapes.

We take as our example a metric on parametric shapes, where the connec-
tion can be computed in closed form. In this case, we already know the answer
5 That is, they become orthogonal at sufficient spatial separation.
6 This dependence of the result of parallel transport on the exact path taken is one

definition of the curvature of the underlying manifold.
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as to the correspondence between shapes we expect to recover, it is just the
correspondence given by parameter value. We take a translation-invariant H1

metric:
Gc(h, k) =

∫
1
|cθ| 〈hθ, kθ〉dθ,

which is also re-parameterisation invariant. Unlike the H1 metric used by Younes [15],
it does not include the extra factor of 1

lc
, which would make it scale-invariant.

To compute the Gâteaux derivative (5), we note that the only piece that varies
is the |cθ| term, which gives:

Dc,mGc(h, k) = −
∫

1
|cθ|2 〈vc,mθ〉〈hθ, kθ〉dθ.

To compute the connection, we take a specific form for the bump vector k(θ)
(a top-hat function, given by a constant vector α between θ0 and θ1, and zero
elsewhere), so that:

kθ(θ) = a (δ(θ − θ0)− δ(θ − θ1)) .

If we then also let θ1 → θ0 (so that terms such as f(θ1)− f(θ0) can be taken to
vanish in the limit), then using the definitions (6) & (9), we find that

Γc(h, k)(θ) =
1

2|cθ| [〈vc, hθ〉α + 〈vc, α〉hθ − 〈α, hθ〉vc] (θ) if θ = θ0, else 0.

Hence, as we might have expected, any change in k(θ) under parallel transport is
localized at θ0. Note also that if the change of shape h(θ) is locally a translation
(hθ(θ0) = 0), then there is no change in k(θ) under parallel transport, which
reflects the fact that the metric is an H1 metric. And in general, since the result
contains terms in the three directions α, vc(θ0), and hθ(θ0), the direction of k(θ)
may change under the transport, even though the foot-point remains unchanged.

Finally, we consider an extension to the metrics we have considered so far.
In [5], Glaunès et al. considered a non-local curve-matching energy term for
finitely-separated curves (derived from a norm on the space of currents), which
was incorporated within the large deformation diffeomorphic mapping frame-
work. This energy was of the form:

E(c, c′) = F (c, c)− 2F (c, c′) + F (c′, c′), (11a)

F (c, c′) .=
∫

dθ

∫
dφ K (c(θ), c′(φ))〈cθ, c

′
φ〉, (11b)

where c(θ) and c′(φ) are two parametric curves, and K (x, y) ≡ K (|x − y|) is a
kernel function (such as a Gaussian). If we take an infinitesimal difference of
curves, c′ = c + εh, and make the approximation that:

K (c(θ) + εh(θ), c(φ) + εh(φ)) ≈ K (c(θ), c(φ)),

then we obtain the final non-local Riemannian metric in the form:

Gc(h, k) =
∫

dθ

∫
dφ K (c(θ), c(φ))〈hθ(θ), kφ(φ)〉.
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This is translation and re-parameterisation invariant, and an obvious generaliza-
tion of the H1 metric that we considered previously (and a similar generalization
can obviously be applied to the other metrics considered earlier (3a) & (3b)).

Note that the original energy term for finitely-separated curves does not
involve an explicit correspondence between the curves based on parameter value,
and was in fact invariant to local re-parameterisations. However, when we made
the simplifying assumption to replace K (c, c′) etc. by K (c, c), we removed this
invariance, and instead replaced it by the correspondence according to parameter
that we had in the cases of the local and almost-local metrics. It should seem
that we have taken a case without correspondence, and put it back in by hand!

This is not quite the case: the original formulation assigned an explicit cor-
respondence based on points in the plane. The positioning of the curves in the
plane then allowed the distance between points on the two curves to act to
establish the notion of locality and the meaning of local differences in shape
between the curves. The optimisation over diffeomorphisms of the plane that
Glaunès et al. [5] then use to match curves is the equivalent of the optimisation
over correspondence that we propose. We note that other formulations (such
as shape representation using distance maps), also employ point-to-point corre-
spondence across the plane as an alternative to point-to-point correspondence
between shapes.

4 Optimising Correspondence

We have seen from the previous section that the question of correspondence is
inextricably tied up with the use of Riemannian metrics on shape spaces. There
are then three possible approaches to dealing with this issue:

(1) Define a method of determining correspondence a priori. Examples would
be basing correspondence on equal fractional arc-length, or the use of the
conformal parameterisation that formed part of the work in [13]. The prob-
lems are that this choice is essentially arbitrary, and that a method that
gives sensible interpolation for pairs of shapes from one class may not give
suitable results for shapes from a different class.

(2) Try to factor-out these degrees of freedom. This is essentially the approach
taken in the normality prescription case (see §2.1), where all possible corre-
spondences are assigned an equal weight. But as we have already noted, the
simplest H0 metric fails in this case, which does not seem a desirable result.

(3) Determine the optimum correspondence in a data-driven fashion. This can
then obviously be extended to find the optimum pose.

In the pairwise case, given the absence of any other data, the only information
we have that distinguishes between different correspondences is the geodesic
distance itself. Hence, it would seem sensible to allow this to define the optimum
pairwise correspondence, despite the complication of a further optimisation step.
This was the approach taken by Joshi et al. [7], in the case of the square-root-
elastic metric.
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Fig. 4. A set of training shapes, correspondence indicated by colour, for two different
correspondences (Left: correct, Right: arc-length). Bottom: The Euclidean mean.

When we come to the groupwise case, why can we not just take the pairwise
correspondences defined as above to create a groupwise correspondence? The
problem is that, in general, the correspondence defined between shapes A and
B, and between A and C, will not agree with that defined between B and C.
Geometrically, this is because parallel-transport around a closed loop gives a
result other than the identity (which is a definition of curvature). This question
did not arise in earlier work (such as Davies et al. [3]), since the Riemannian
metric used there was Euclidean.

The obvious solution is to define correspondence via some reference shape,
which makes the groupwise correspondence consistent by construction, the ob-
vious candidate being the Karcher mean. The mean shape also gives us another
advantage, in that we can use length/area on the mean in order to define our
integration measure (3a), as was done in [3].

This now gives us our basic framework for groupwise shape analysis. However,
we still have to define the objective function that we are going to use to define the
optimum correspondence. The simplest suggestion is to just repeat the procedure
we used in the pairwise case, and take the sum of geodesic distances to the mean
(the compactness) to define both the mean (for fixed correspondence), and the
optimum correspondence. However, this repeated-pairwise approach does not
always work.

To give an example, consider the set of curves shown in Fig. 4, where we
have used the Euclidean metric, and integration measure computed on the mean
shape [3]. We take two different correspondences, the correct correspondence (on
the left), and arc-length correspondence (on the right). The correct correspon-
dence gives the mean as just another bump, whereas the arc-length case gives a
shape unlike any seen in the training set. However, if we follow the same colour
across examples, we see that distances from the mean will be larger for the cor-
rect correspondence, since the straight-line portions of the curve have to stretch
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Correct Arc-Length
Mean (Spread) Mean (Spread)

Eucl. 2.03 (1.37) 0.68 (0.11)
SRE 2.10 (1.39) 1.05 (0.25)

Table 1. Mean and spread of distances to mean shape for two choices of correspon-
dence, and using two different metrics.

and compress to accommodate the motion of the bump, as well as the motion
associated with the bump itself. In the arc-length case, although the mean is not
a bump, movements are minimal, hence this correspondence will be measured
as being more compact. For the same group of shapes, we also repeated the
analysis using the speed function representation and the SRE metric, as in (8).
The distance to their respective means, and the spread of values, are given in
the Table. It can be seen that, for both metrics, compactness fails as a means of
choosing the correspondence that is in accord with the mode of variation seen
in the input shape data.

5 Discussion

In this paper we have provided a framework for shape analysis and discussed
why the related problems of metric, correspondence, and connection all need
to be selected in a data-dependent way. This is particularly clear from our last
example. It could be argued that in this case a metric that gave greater weight
to shape similarity based on curvature would give a better result. However, that
would miss the essential point: what distinguishes the correct correspondence in
this case is not curvature per se, but the commonality of structure across the
group of shapes. The association of the edges of the bumps with regions of high
curvature should then be seen as an accident of the artificial shape construction.
From the point of view of modelling, it is obviously desirable that the mean
should reflect the common structure seen across the group, and unless we have
correctly identified the common structure across examples, we will be unable to
correctly represent the variation of this structure.

We note that the groupwise case is more complicated than the pairwise case,
in that we don’t want to just interpolate between pairs of example, but across
the whole sub-space in which the training data lies. It was for this reason that
more sophisticated groupwise objective functions (such as MDL [3]) were intro-
duced for the case of Euclidean shape spaces. The construction of such objective
functions will be more complicated in the non-flat case, since we can no longer
construct the simple pdf models on the shape space. Given this, we might ask
why we might need to use metrics other than the Euclidean one? One illustrative
example is where parts of an object undergo motion which is a rotation (such
as the thumb of a hand, see [2], Fig. 9.9). The MDL correspondence in this case
tends to linearize the motion by allowing points on the tip to slide, which is
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not quite the correct correspondence from a physical point of view. We will be
considering this further in the future.

We note that there do exist methods for modelling on non-flat shape spaces,
and these entail constructing models on the tangent space at the mean (e.g.,
principal geodesic analysis [4]), which again shows that it is necessary that the
mean itself is similar to the shapes seen in the group. Developing alternative
objective functions to compactness, in the spirit of MDL, is the obvious next
step, but is beyond the scope of the current paper.

In §3 we identified that the method of Glaunès et al. used a rotationally in-
variant kernel K (x, y). This kernel defines an inner product between parametric
curves c(θ) and c′(φ) [10], which clearly induces a particular Riemannian metric
on the space. This has been considered in the area of machine learning, where
the kernel mapping of a Support Vector Machine performs essentially the same
mapping. There, Burges [1] looked for locally invariant kernels under some sym-
metry and identified how the induced metric can be expressed in closed form. In
future work we will follow up this line to identify whether it is possible to choose
the kernel in a data-driven way for groupwise shape analysis.
Acknowledgements: Our thanks to S. H. Joshi for making available his matlab
implementation of the SRE metric.
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