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Abstract

Image super-resolution involves interpolating a non-uniformly sampled composite image at uniform locations of 
a high-resolution image. Interpolation methods used in the literature are generally based on arbitrary functions. 
Optimal (in least squares sense) interpolation kernels can be derived if the ground-truth high-resolution data is 
known, this is obviously impractical. An observation that the optimal kernels for very different images are 
similar suggests that a kernel derived on one image can interpolate another image with good results. This paper 
extends this idea by developing two image models that capture the important characteristics of an image and uses 
the models to derive optimal kernels. One of the models results in linear interpolation and the other one results in 
a piece-wise cubic kernel similar to that of cubic spline. This later model is experimentally shown to be near 
optimal for three different images. The notion of deriving optimal interpolators from the image model and the 
model of image capturing process provides a unifying framework that brings together linear and cubic 
interpolators and gives them a theoretic backing.

Keywords: optimal, interpolation, super-resolution, non-uniform, least-squares, image, model

1 INTRODUCTION
Digital image capture produces discrete 
representations of continuous scenes. This 
discretisation in both space and intensity is a sampling 
process that creates aliasing, and information at 
frequencies above the Nyquist rate is lost. It is 
common to wish to construct a higher resolution image 
from a template image or a set of images, but the 
aliasing and loss of frequency information makes this 
an ill-posed (inverse) problem.

The typical solution to this problem (known in the 
literature as image super-resolution reconstruction, or 
simply super-resolution) is to use an ensemble of 
related lower-resolution images. As each of these 
images has aliased the higher frequency information 
slightly differently, under certain conditions it is 
possible to ‘unwrap’ some of the aliasing and 
reconstruct the lost higher frequencies.

This paper describes a novel method of interpolation 
from irregularly spaced data points that is suitable for 
super-resolution. The method is demonstrated on the 
problem of super-resolution of an image based a 
number of lower-resolution images that capture scene 
from a slightly different positions. In this work, only a
global translational motion is considered, created, for 
example, by a camera shifted laterally by a small 
amount. Images within the ensemble can be assumed 
to have a minute displacement relative to each other. 
Ideally, the relative displacement should be subpixel in 
order to increase the overlap between all of the images 
and to minimise the change in perspective. While the 
methods are derived for one dimensional images for 
space reasons, the extension to two dimensions is not 
difficult and follows the same form.

There are numerous methods [1] of performing super-
resolution. Many of them are computationally 
expensive in nature, but allow for complicated motion 
models, significant noise and image degradation, and 
other aspects that are not considered in this work. 
Given assumptions of global translational motion, low
noise and linear space and time invariant blur due to 
the imaging sensor point spread function (PSF), image 
super-resolution reconstruction can be split into three 
distinct steps:

• Registration

• Reconstruction \ Interpolation

• Deblurring

Image registration is a technique that can be used to 
determine the relative translations between the input 
images. Generally, the desire is to do this from the 
contents of the images alone, without any prior 
knowledge. There are many different methods for 
performing registration [2]; however, in the context of 
image super-resolution, image registration is required 
to determine the offsets between the images with 
accuracy down to a small fraction of a pixel [3].

Once the images have been registered, all the pixels 
from the ensemble can be combined to form a 
composite image. The resultant image is no longer 
sampled on a uniform rectangular grid, but due to 
global translational motion, it has a semi-uniform 
structure, as can be seen in Figure 1. Reconstructing 
the image data at all points on a high resolution grid 
requires that the semi-regular data is interpolated and 
resampled. It is this interpolation problem that is 
addressed in this paper.
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Figure 1. Composite image exibits a semi-uniform 
structure.

For the full super-resolution approach, a deblurring 
procedure can now be applied that restores the high 
frequencies that have been suppressed by the low-
resolution imaging process. In this paper we do not 
perform this deblurring, as it obfuscates the results of 
the interpolation and makes ground truth comparisons 
of different interpolation methods impossible. For this 
reason, the results of experiments are reported using 
comparison with ground truth values from high 
resolution images blurred by the PSF from the low-
resolution imaging process.

2 INTERPOLATION
Digital images are samples of a continuous scene and 
are inherently defined on a discrete set of locations
(generally a regular rectangular grid, but can also be 
irregular). However, it is often desired to obtain the 
value of a point at an arbitrary location. This requires 
reconstructing the underlying continuous function, 
which can then be resampled at arbitrary locations.

This problem is referred to as interpolation. 
Unfortunately, unless there is some prior knowledge 
about the shape of the underlying function, this 
problem is under-determined – there is an infinite 
number of continuous functions that pass through the 
defined sample points. Different interpolation methods 
make different assumptions about the underlying 
continuous function in order to select a unique solution 
(e.g. band-limitedness, smoothness, etc).

Given a continuous function representing the captured 
scene (blurred by the PSF) ( )g x , x∈� , let us define
a discrete input image ( )If p sampled at a set of 
discrete grid locations P , such that:

( ) ( ) on the grid
elsewhereI

g p
f p

undefined
= 


(1) 

The problem of interpolation is then, to estimate the 
continuous image ( )g x�  from ( )If p .

If we consider interpolation to be a filtering function, 
this can be implemented as a spatial convolution. 
Then, the reconstructed continuous function is a linear 
combination of input values:

( ) ( ) ( ) ,I p
p

g x f p H x p p P= − ∈∑� , (2) 

where ( )pH ⋅  is some interpolation function associated 
with input point p .

In the case of resampling a digital image it is not 
necessary to reconstruct the complete continuous 
surface; only the values at the new sample locations 
are required. Let ( )Of q  be the output discrete image, 
sampled at new locations q Q∈ :

( ) ( )
( ) ( ), ,

O

I p
p

f q g q

f p H q p q Q p P

=

= − ∈ ∈∑
�

(3) 

Since images in general have limited spatial 
correlation, it makes little sense to use all of the input 
samples to interpolate each desired point. Generally, 
only a small neighbourhood of input points that are 
within a certain distance to the interpolated point are 
used:

( ) ( ) ( ) ,, , ,O I p q w
p

f q f p H q p q Q p P= − ∈ ∈∑ (4) 

where { }2
, | ,q wP p p P p q w∈ − <�  is a set of points 

within some predetermined distance w of the output 
point q (also called the region of support). 

Standard methods in literature include the spline 
approximations (typically cubic splines in one 
dimension, and thin-plate and B-splines in two 
dimensions) as well as linear approximations. 
However, the choice of interpolant is arbitrary and 
does not generally imply an understanding of the 
underlying data or image capturing process. While 
experimentation can show that one method works 
better than another for some particular dataset, in this 
paper we suggest an alternative approach where the 
interpolant is optimised (in the least squares sense) on 
a typical image model.

2.1 Optimal Interpolation

Instead of using an arbitrary interpolation function, we 
can derive the interpolator that is optimal for a 
particular image, the input locations P  and desired 
sample locations Q . For image processing it is 
common to measure reconstruction error as the mean-
squared error (MSE). This corresponds to minimising 
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the 2L  norm ( ) ( ) 2Og q f q− , which leads to an 
unbiased estimator. Another benefit is that it 
(obviously) leads to a least-squares optimisation 
problem, which can be solved directly rather than 
iteratively for this case.

For super-resolution problem there is some regularity 
in the semi-uniform composite image (see Figure 1, 
where the same pattern of points is repeated 
throughout the image). The method proceeds by 
exploiting this regularity, by reasoning that where the 
distribution of data points within the region of support 
of a particular output pixel is the same, the weights 
allocated to the input pixels inside that support is also 
the same in the case of all of those output pixels. This 
set of weights can then be optimised to minimise 
common error amongst all of those output pixels.

In 1D, if the resolution is to be increased by an integer 
factor N  then there will be N  of these local 
neighbourhood patterns and hence N  sets of weights 
to be individually optimised.

Let us break all of the output points Q  into N  sets 
nQ , such that the regions of support of the points in 

each set have a common pattern. This is demonstrated 
in Figure 2, where a compound image is resampled at 
uniform locations with double the sampling rate of 
input images. It consists of two low resolution images 
with offsets of 0.0 and 0.2 relative to the high 
resolution grid. The interpolated grid locations are 
indicated with dashed vertical lines and regions of 
support with 0.5w = are shown for each interpolated 
point. It can be seen that all region of support patterns 
for points in 1Q are identical in terms of relative 
positions of the input and output pixels and the same 
for set 2Q .

Figure 2. Regions of support of two filters required 
to resample a 1D compound image.

For each pattern nQ , the least-squares optimisation 
that is required can be formulated as:

( ) ( ) ( )
2

,min
n

I p
H Q p

g q f p H q p− −∑ ∑ (5) 

where ,,n q wq Q p P∈ ∈  and subject to the constraint:

( ) 1p
p

H q p q− = ∀∑ (6) 

Obviously, optimal interpolation is impractical 
because it requires knowing the exact output to 
calculate an approximation of the output! However, 
optimal interpolation kernels derived from ground
truth (simulated) data can provide useful insights into 
the interpolation process.

2.2 Simulated Optimal Interpolation

In this section we derive optimal interpolation kernels 
for three distinct images, pictured in Figure 3. Image 
‘bird’ offers a typical scene with many occluding 
objects, resulting in many sharp edges and relatively 
flat areas in between.  Image ‘cat’ includes many 
highly textured areas, which contain a lot of high-
frequency information. And image ‘face’ is a typical 
image which contains a combination of both texture 
(e.g. hair) and edges. The subject of the image – a 
human face – is also very familiar to us, which is good 
for assessing reconstruction error qualitatively.

The optimal kernels for a particular interpolation 
depend not only on the input data but also the relative 
position of input samples. Here we consider two 
example situations; both reconstruct the output from
two input images. In the first case the input images 
have shifts relative to the output grid of 0.0 and 0.5
low resolution pixels (i.e. the input samples are 
uniformly spaced); and the second case the shifts are 
0.0 and 0.2 of a low resolution pixel.

The discrete interpolation kernels are hard to visualise 
and compare because they also depend on the relative 
location of the output samples. Therefore it is more 
meaningful to compare the continuous interpolation 
functions, ( )pH x p− which specify the contribution of 
input pixel located at p  to reconstructing the 
continuous image at location x . Although in general 
each input point p  would have its own interpolation 
function ( )pH x p− , in the case of a global 
translational motion all input pixels belonging to a 
single input image have the same interpolation 

Figure 3. Test images: bird, cat, and face (Size reduced for display purposes)
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function (which is replicated at each of those pixel’s 
positions).

Unfortunately, deriving the continuous interpolation 
functions is not possible because we do not know the 
continuous underlying functions of the three images. 
However, the dimensions of the source images are 
2592x3840 pixels; hence, if the input low-resolution 
images are much smaller than this, the optimal kernels 
can be derived at a relatively high sample rate.

To derive 1D kernels the image data is treated in one 
dimension. To generate a low-resolution image from 
the source image, it is filtered using a 1x40 horizontal 
box average filter to simulate 1D area sampling. Then 
the image can be shifted by the required integer offset 
(for example 20 samples for offset of 0.5 and 8 
samples for offset of 0.2) and downsampled by a factor 
of 40 horizontally.

Then, by reconstructing the source image (blurred by 
the low-resolution PSF) at full resolution, we derive 
the interpolation functions at locations spaced by 
1/40th of a pixel. For these derivations we have used 
region of support 3w = , with the resulting kernels 
plotted in Figure 4. Kernels for only one of the input 
images are shown in each case – by symmetry, the 
kernels for the second input image are a mirror image 
of these.
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Figure 4. Optimal interpolation functions derived
from images ‘Bird’, ‘Cat’, and ‘Face’ at 
sample rate of 1/40th of a pixel and linearly 

interpolated for display purposes.

It can be clearly seen that the kernels generated from 
all three images are very similar. We only show 
kernels for two sets of relative displacements, but this 

generalises to other combinations of input image 
shifts.

From this we can conclude that the optimal kernels are 
only weakly dependent on the image content and using 
a kernel optimised on one image to interpolate another 
will result in a small increase in MSE from optimal. 
This supports the findings of reference [4], where it 
was shown that optimising a 2D kernel on one image 
and then using it to interpolate another image results in 
near optimal MSE for many different combinations of 
pixel positions.

2.3 Optimal Interpolation Using a Model

Since the optimal kernels are almost the same for very 
different images, this implies that the dominant factor 
is the relative offset between the low resolution 
samples. There is some dependence on the actual 
image content, but if we a model that has similar 
critical characteristics to a class of images, then the 
optimal kernels derived from that model should be 
near optimal for that image class. For a simple model, 
a closed form expression can be found for the weights 
as a function of the input sample positions, 
significantly speeding up the process.

Images, or parts of images that have a lot of high-
frequency information, as for example the textured 
areas in image ‘cat’ or the hair in image ‘face’ would 
benefit from a model that has a wide frequency extent. 
A simple model comprised of a set of randomly 
located impulses should have similar characteristics to 
such images.

Most images comprise of multiple occluding objects.
This leads to many sharp edges that separate these 
objects. Frequently the areas between the edges are 
relatively flat compared to the height of the edges. 
Image ‘bird’ is an extreme example of this – to a first 
approximation it can be considered to be piece-wise 
constant with sharp edges separating the constant 
regions. This suggests that a set of randomly located 
step edges would be a suitable model to capture the 
important characteristics of such images.

With these two models, impulses and step edges, when 
considering a single region of support, we can consider 
an equivalent model of a single impulse or single step 
edge randomly located within the region of support. 
Since we cannot predict where the impulse or edge is 
located with respect to either the input or output 
sampling grids, the optimal kernels for a particular 
model are determined in such a way as to minimise the 
expected error over all possible locations.

To be consistent with the imaging model, the impulse 
or edge is convolved with a rectangular pulse (with 
width equal to one low-resolution pixel) to simulate 
area sampling. The impulse becomes a rectangular 
pulse and the step edge becomes a linear ramp, both of 
width equal to one low-resolution pixel:

( )
1   0.5 0.5

,
0           otherwise        I

x
M x

α α
α

− ≤ < +
= 


(7) 

58585858



( )
1 0.5

, 0.5 0.5 0.5
0 0.5

E

x
M x x x

x

α
α α α α

α

< −
= + − − ≤ < +
 > +

(8) 

where α  is the location of the centre of the blurred 
impulse or edge relative to the centre of the region of 
support ( 0x = ).

Let us define a region of support nP  around the output 
point, 0x = , with a common pattern of input pixel 
locations shared with a set of output points nQ :

, , ,n q w nP P q w q Q− ∀ ∈� (9) 

Then the desired output is ( )0,M α with the input set 
defined as

( ) ( ), , ,I nf p M p p Pα α= ∈ (10)

Assuming that α  is a random variable with 
continuous uniform probability distribution, equation 
(5) becomes

( ) ( ) ( )
1
2

1
2

2

0, ,min
w

I p
H pw

M f p H p dα α α
+

− −

− −∑∫ , (11)

where np P∈ .

To solve (11), the function is differentiated with 
respect to the weights ( )pH p−  and equated to zero to
give a system of equations linear in ( )pH p− , which 
can be solved by any standard method.
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Figure 5. Optimal kernels generated from impulse 
and edge models for input image offsets of  

[0 0.5] and [0 0.2].

Figure 5 shows the resulting kernels from the two 
models. There are again two input images located at 0 
and 0.5 low-resolution pixels in the first plot and 0 and 
0.2 in the second plot.

It can be seen that the impulse model only uses two 
nearest input points only (one on the left and one on 
the right of the output pixel) and performs linear 
interpolation between those. This is independent of the 
size of the region of support, as long as the region of 
support included at least one input sample on each side 
of the output sample.

The optimal kernels for edge model are piecewise 
cubic with separate cubic functions between the input 
sample locations. These kernels resemble closely the 
optimal kernels shown in Figure 4, implying that edge 
model captures the important characteristics of these 
images.

3 RESULTS

In this section we assess the performance of the 
kernels produced using the models described in 
previous section. The procedure is similar to the one 
described in [4]. We use two low-resolution images to 
reconstruct an image with twice the sampling rate of 
the input.

With smallest possible offset of 1/40th of a pixel and 
two input images, there are 779 possible combinations 
of unique input image displacements. Instead of 
performing a Monte Carlo simulation using randomly 
selected combinations of displacements (as in [4]), all 
of the possible combinations are used. The errors are 
analysed in a similar way, with MSE calculated for 
each combination and sorted in ascending order to give 
the inverse cumulative distribution function (iCDF).

The effectiveness of the models is determined by 
comparing the results with other standard methods. 
Since the edge model gives a piecewise cubic kernel, 
suitable methods for comparison are the cubic spline, 
piece-wise cubic Hermite interpolating polynomial 
(PCHIP) [5], and modified Shepard’s method [6]. 
These methods are used extensively for interpolation, 
and are known to give good results despite the fact that 
they are arbitrary.

The cubic spline and PCHIP interpolation are used as 
implemented by the Matlab 7.1 interp1 function [5]. 
Our implementation of the modified Shepard’s method
uses least squares to fit a cubic polynomial to the 
points within the region of support, where each point’s 
value is weighted by its inverse distance to the output 
point.

The iCDF results for one of the images (‘cat’) are 
plotted in Figure 6, with median MSE tabulated in 
Table 1 for the other images. We choose to report the 
median because it is a robust estimator of the 
performance.
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Figure 6. Inverse cumulative distribution of the 
resultant MSE for different methods.

Table 1: Median MSE for the images relative to 
optimal interpolation.

bird cat face

Optimal 1.58E-04
100%

9.69E-05
100%

2.36E-05
100%

Edge Model 100.5% 100.5% 101.7%
Cubic Spline 100.5% 100.5% 101.7%
Shepard’s 113.1% 105.4% 112.2%
PCHIP 178.7% 138.8% 151.8%
Impulse Model 295.7% 215.2% 299.9%

For uniform sampling, the interpolating kernels from 
the edge model are identical to the cubic spline kernels
for a wide region of support ( 2w ≥ ). However, for 
non-uniform sampling the kernels become slightly
different as the offset between the input images 
becomes smaller. For narrow regions of support, the 
edge model kernels are only 0C  whereas the 
smoothness constraint of the spline makes it twice 
differentiable at the knot points. The difference in 
MSE is negligible (less than 0.1%).

Even though the impulse model does not perform as 
well as the edge model, it does perform significantly 
better on the ‘cat’ image than the other two. This 
supports the hypothesis that the contents of ‘cat’ is 
more impulse-like than the other two images. 
However, on closer examination, it was found that 
even the fine detail (such as the whiskers and fur) are 
still several very high resolution pixels wide. As a 
consequence, the edge model out-performed the 
impulse model.

4 CONCLUSIONS

Optimal interpolation kernels have been derived for a 
set of images, simulating the image capture process by 
using a very high resolution “ground truth” image. For 
a range of quite different images, the optimal kernels 
are very similar. The fact that they are only weakly 
dependent on image content implies that kernels 
derived from one image should give near optimal 
results on other images, particularly images with 
similar characteristics.

This result led to the proposal of using an analytic 
model of the image to capture the important 
characteristics of typical images. Deriving kernels 
from these models avoids the need for having ground 
truth data for performing the optimisation.

Two simple models based on observations of the 
image characteristics have been proposed. The optimal 
kernels for an impulse model are simple to derive 
analytically, and result in standard linear interpolation 
between the nearest sample on each side of the output 
sample. A step edge model considers images to be 
approximately piecewise constant with step edges 
between the regions. This results in piecewise cubic 
kernels that are very similar to the cubic spline kernels.

The impulse model did not perform as well as the edge 
model on the images tested. However the edge model 
gave almost optimal performance and was on par or 
better than the standard methods used for testing.

The significance of this work is that it provides a 
unifying framework that brings together both linear 
and cubic interpolators. Cubic spline interpolation is 
widely used because it is known to give good results. 
However it is based on an arbitrary function. Here we 
have shown that we can get an almost identical kernel, 
and similar results using a model that is derived 
explicitly from image characteristics and the imaging 
model.

The approach described in this paper can be readily 
extended to 2D images, however the analysis is a lot 
more laborious. A further extension of this work 
would be to include the lens point spread function and 
noise within the imaging model. 
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