
Geothermics 00 (2013) 1–8

Geothermics

Feedpoint Viscosity in Geothermal Wellbore Simulation

Mark J. McGuinness

School of Mathematics, Statistics and Operations Research, Victoria University of Wellington, Wellington, New Zealand. Mark.McGuinness@vuw.ac.nz

Abstract

We consider the appropriate way to average reservoir and wellbore viscosities at a feedpoint, when simulating production in a geothermal well.
Large differences in these values can arise when flashing occurs in a liquid-dominated reservoir, which may manifest as non-monotonic flowrates
in simulated output curves. Integrating Darcy’s law for flow to a feed from wellbore to reservoir gives an integral average for the reciprocal of
viscosity as a function of pressure that is consistent with the productivity index formulation used in the geothermal wellbore simulators GWELL
and SwelFlo. The average is related to the concept of pseudopressure, and various approximations to the integral average are considered, with
the result that a trapezoidal rule provides a quick and accurate method. The critical shape of the dependence of average viscosity on wellbore and
reservoir pressures is calculated, that separates monotonic from non-monotonic flowrate behaviour, and is found to plot as a straight line. The
integral average also reveals that intuition is correct — flow to a feed is monotonic in the pressure there, despite possibly dramatic changes in
viscosity.
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1. Introduction

One of the uses of a geothermal wellbore simulator is to com-
pute an output curve, a graph of flowrate versus pressure at the
wellhead, for a given wellbore setup. The investigation in this
paper was motivated by the observation that when using the
simulator GWELL (Aunzo, 1990; Aunzo et al., 1991; Bjorns-
son, 1987), if the flashpoint crosses the dominant feedpoint,
production from the feed and the well can drop despite an in-
creasing pressure difference across the feed, which is counter-
intuitive. This behaviour is anticipated from any geothermal
wellbore simulator that has too simplistic a treatment of fluid
properties at feedpoints.

The problem is illustrated in the output curve in Fig. 1, pro-
duced by the geothermal wellbore simulator SwelFlo (2013) de-
veloped by the author, using the same feed flowrate setup as that
in GWELL. The well has one feed at bottomhole. More details
on how the well is setup may be found in Appendix B. The
output curve is computed by imposing a range of pressure dif-
ferences across the feed, and integrating up the wellbore to sat-
isfy steady-state conservation of mass, momentum and energy,
to find the resulting flow and pressure at the wellhead. Flow
into this feedpoint should intuitively be monotonic in the pres-

sure difference between wellbore and reservoir. However, when
the flash depth (the transition from liquid to two-phase flow)
reaches the bottomhole feed, the change to higher kinematic
viscosity in the well due to increased steam content, together
with the averaging method used to compute viscosity, some-
times leads to a reduced simulated flowrate despite increasing
pressure difference across the feed. This drop in flowrate at the
feed is echoed as a drop in the wellhead flowrate, as wellhead
pressure drops.

When flow becomes two-phase, variations in relative perme-
ability, density and viscosity in the flow from reservoir to
well become important (Grant, 1982). The original coding in
GWELL at the well bottom (the lowest feedpoint by defini-
tion in the simulator), uses a simple average of wellbore and
reservoir densities, relative permeabilities, and dynamic vis-
cosities. The arrival of the flashing front at the feed then leads
to an increase in average kinematic viscosity, and a net reduc-
tion in flowrate, despite an increase in imposed pressure dif-
ference between reservoir and well. This non-monotonic flow
behaviour is surprising - what is expected to actually happen is
that flowrate increases with pressure drop. We explore the idea
here that fluid properties between reservoir and wellbore need
to be more carefully treated to ensure this monotonicity.
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Figure 1. An output curve for a well with a single feedpoint at the bottom, with
flowrate on the vertical axis versus wellhead pressure on the horizontal axis.
GWELL averages have been used to approximate the viscosity of the fluid at
the feed. The output curve shows near a pressure of 14 bara, a counterintuitive
reduction in flowrate as wellhead pressure is further reduced. Prior to the re-
duction, the flash point travels down the wellbore as bottomhole and wellhead
pressures decrease. The observed decrease in flowrate at 14 bara coincides
with the arrival of the flashing front at the single bottomhole feedpoint, and oc-
curs despite a continually increasing pressure difference between feedpoint and
reservoir. The simulator used was SwelFlo. More details on the well setup may
be found in Appendix B.

In particular, we consider the question of how to most appro-
priately compute an average value for the viscosity of the flow
from reservoir to wellbore, without actually simulating that
reservoir flow. We integrate Darcy’s law, and we find that the
appropriate average to use is an integral average of the recipro-
cal of two-phase viscosity over the pressure range from well to
reservoir.

This integral average has appeared before in the geothermal lit-
erature. Tokita and Itoi (2004) present it in their development of
the simulator MULFEWS, which is designed to more carefully
integrate reservoir flow with wellbore flow. The development
here shows further that this treatment of flowrate to a feedpoint
has much to recommend it.

The theory is summarised in the next section of this paper. It
is then related to the concept of pseudopressure, and a critical
linear average viscosity is found that separates monotonic from
non-monotonic flows. Then simulated output curves are found
to behave consistently with our results.

2. Feedpoint productivity

The usual definition of feedpoint productivity P1 in the geother-
mal context is in t/hr/bar,

P1 =
Q̃(

P̃res − P̃well

)
where Q̃ is the flowrate at the feed (t/hr), P̃res is reservoir pres-
sure in bars, and P̃well is wellbore pressure in bars. An estimate
of P1 is usually determined in a discharge test at given well-
bore and reservoir viscosities. When increased production rates

are simulated for an output curve, the wellbore viscosity can re-
duce appreciably, especially if the flashpoint reaches the feed-
point. To allow for changes in viscosity, we rewrite the above
equation in the form of Darcy’s law for flow, as

Q =
Σ

ν
(Pres − Pwell) (1)

where the number Σ is called a productivity index (units m3), ν
is the kinematic viscosity (m2.s−1), and flowrate and pressures
are now in kg/s and Pa. This productivity index is related to the
more usual productivity P1 by:

Σ =
P1 ν1

3.6 × 105 .

Usually P1 is estimated from, and valid for, just one set of
known flow conditions from a discharge test, which give ν1,
and then it is desired to use it to obtain an output curve. The
best way to calculate the output curve is to estimate a value
for the productivity index Σ from the given value of P1. This is
then used in equation (1) to calculate the flows Q at a feedpoint,
given various pressures in the wellbore. This approach properly
accounts for the effects of changes in viscosity on feed flowrate
— the productivity index Σ is independent of these.

This method for determining the productivity of a feedpoint by
using a productivity index Σ is used in the wellbore simulators
GWELL (Aunzo, 1990; Aunzo et al., 1991; Bjornsson, 1987)
and SwelFlo (2013).

This formulation is straightforward to apply when ν is roughly
the same in the reservoir and in the wellbore. When ν varies
significantly between well and reservoir pressures, as it does
when flow becomes two-phase in the reservoir, some care is
needed in calculating an effective average value of ν.

Equation (1) can be written in terms of varying ν(P), with a
pressure gradient dP/dr across a surface at pressure P, in the
form of Darcy’s law (Nield and Bejan, 1998),

W = −
kA
ν(P)

dP
dr

, (2)

where k is an effective permeability of the surface to flow, W is
the mass flow rate (positive if flowing outwards from the well
to the reservoir), r is distance from the well, and A is the cross-
sectional area of the surface normal to the flow. Furthermore, ν
is in general the two-phase kinematic viscosity,

1
ν

=
krl

νl
+

krv

νv
,

where krl = 1 − S and krv = S are relative permeabilities for
liquid and steam, respectively; S is steam saturation; and νl

and νv are kinematic viscosities for liquid and steam phases of
water, respectively.

Rearranging this, and using Q = −W so that positive Q corre-
sponds to production, and integrating with respect to distance r
from origin at the centre of the wellbore to undisturbed reser-
voir at a distance R in a one-dimensional reservoir with constant
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area A gives∫ R

0
Qdr = kA

∫ Pres

0

dP
ν(P)

. (3)

Hence

Q =
kA
R

∫ Pres

0

dP
ν(P)

, (4)

and this can be written in the desired form Q = Σ
νeff

(Pres−Pwell)
provided that Σ = kA

R , and

1
νeff

=

(
1

Pres − Pwell

) ∫ Pres

Pwell

dP
ν(P)

. (5)

This is the integral average value of 1/ν when plotted against
pressure, so that areas under curves match, as illustrated in
Fig. 2. The value for effective viscosity for flow to the feedpoint
that is most consistent with Darcy’s law will be obtained by cal-
culating numerically the integral above. Note that when flow
is single phase, and/or the kinematic viscosity is practically
constant, this formulation drops back to the simple case (1).
The integral average of the reciprocal of viscosity provides a
smooth combination of both single and two-phase flow condi-
tions.

Figure 2. An illustration of the reciprocal of the effective viscosity. The black
circles show the way that reciprocal two-phase viscosity varies with pressure,
for a fluid with enthalpy 1200 kJ/kg. The shaded area under these between 30
and 120 bara, matches the finely shaded area under the value 1/νeff at 30 bara.
1/νeff is then an integral average of the reciprocal of viscosity, over the given
pressure range, and is given by the red squares. Values of 1/ν were calculated
in units of m−2.s, and have then been multiplied by 10−6 before plotting.

This integral average is essentially the same as the formulation
presented by Tokita and Itoi (2004) for their MULFEWS sim-
ulator, where they study the role of a feedpoint as the interface
between flow in the reservoir and flow in the well.

Also note that integrating Darcy’s law for other reservoir ge-
ometries, cylindrical and spherical with radial symmetry, also
leads to the same integral average of reciprocal viscosity. See
Appendix A for details.

2.1. Pseudopressure

The integral average appearing in eqn. (5) may be further inter-
preted by considering the quasi-steady equation for isothermal
gas flow in a porous medium (Grant, 1982, p.293)

∇

(
k
ν
∇P

)
= 0 . (6)

This can be rewritten as

∇2m = 0 (7)

where the pseudopressure m(P) is defined to be

m ≡
∫

1
ν

dP .

So the integral average of reciprocal viscosity is related to the
pseudopressure concept in a steam-dominated reservoir.

2.2. Approximating Pseudopressure

The simplest approximation to 1/νeff would be the usual arith-
metic average of 1/ν, using reservoir and wellbore values, that
is

1

ν(1)
eff

=
1
2

(
1
νwell

+
1
νres

)
. (8)

This will be an underestimate of 1/νeff , that is, will give values
of viscosity that are too large, as illustrated in Fig. 3.

A consideration of the shape of the graph of 1/ν versus pres-
sure as plotted in Fig. 3 shows that a better approximation if
flashing occurs in the reservoir, is to compute the pressure Pflash
at which flashing occurs, and then to take the more sophisti-
cated weighted average that results from adding the areas, one
between Pflash and Pres assuming it is a rectangle, and one be-
tween Pwell and Pflash, assuming it is a single trapezoid, to get
the formula

1

ν(2)
eff

=

1
νres

(2Pres − Pflash − Pwell) + 1
νwell

(Pflash − Pwell)

2 (Pres − Pwell)
.(9)

The average that is used at bottomhole in GWELL bears no
resemblance to any of the above approximations in formula-
tion, but does give numerical values that are seen in Fig. 3 to
be similar to the simple average 1/ν(1)

eff
. An average saturation

S̄ = (S well + S res)/2 is used to find average relative permeabil-
ities k̄rl = 1 − S̄ and k̄rv = S̄ ; an average vapour ρ̄v and liquid
density ρ̄l is calculated similarly; an average dynamic liquid µ̄l

and vapour viscosity µ̄v is calculated; then the average kine-
matic viscosity is taken in GWELL as

1
ν̄

=
k̄rlρ̄l

µ̄l
+

¯krvρ̄v

µ̄v
. (10)

Note that a twenty-point trapezoidal method for finding the area
under the curve is graphically indistinguishable from the accu-
rate integration method in Fig. 3. We will call the resulting
average effective viscosity ν(3)

eff
. Given the simplicity of imple-

mentation, this is the method recommended here for using in
geothermal reservoir simulators.
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Figure 3. Comparisons of different average reciprocals of effective viscosities.
The black circles show the actual values of 1/ν (m−2.s, multiplied by 10−6)
at each value of pressure. Average values of 1/ν must start at some pressure,
which is here taken to be a reservoir pressure of 120 bara for illustration pur-
poses. For averages, the wellbore pressure is the P-coordinate of the value plot-
ted. The correct integral average of the circles, the value with an area matching
that under the curve between the current P value and the value 120 bara, is given
by the red squares. These accurate values for the integral were calculated by
using an automatic Gauss-Kronrod integrator, with relative global error set to
0.1%. The three approximations shown are the simple average 1/ν(1)

eff
labelled

(1), the more careful average 1/ν(2)
eff

labelled (2), which gives a reasonably close
match to the accurate integral average, and the GWELL average, which gives
values similar to 1/ν(1)

eff
. A simple twenty-point trapezoidal rule numerical in-

tegration gave values that could not be distinguished graphically from the ac-
curate Gauss-Kronrod integrator (red squares). Fluid enthalpy is fixed at 1200
kJ/kg, flashing at about 60 bara. Carbon dioxide is set to 0.1 weight % .

A comparison of the output curves that can be obtained, when
simulating production from a geothermal well with SwelFlo us-
ing this original GWELL average viscosity, the simple approxi-
mation ν(1)

eff
, and the more accurate trapezoidal ν(3)

eff
, is presented

in Fig. 4. Note that the use of the more accurate average is
successful in ensuring that flowrate remains monotonic with re-
ducing wellbore pressure, through values where the flashpoint
reaches the feed. The wellbore geometry and feed properties
are outlined in detail in Appendix B.

Figure 4. Simulated output curves for a well with a single feedpoint at the
bottom, with flowrate on the vertical axis versus wellhead pressure on the hori-
zontal axis. The effect of using different averages to approximate the viscosity
of the fluid at the feed is illustrated. The output curves are different past the
arrival of the flashing front at the single bottomhole feedpoint, at about 13 bara
wellhead pressure, and 220 kg/s flowrate. The simple approximation ν(1)

eff
and

the GWELL average both exhibit a non-monotonic dependence of flowrate on
wellhead pressure, due to increased average feed viscosity. The more accu-
rate trapezoidal average ν(3)

eff
gives a monotonic increasing flowrate at the feed,

with increasing pressure differences driving the flow. The simulator used was
SwelFlo (2013). More details on the well setup may be found in Appendix B.

2.3. Critical average viscosity

One question that arises in this work is what is the critical slope
of average inverse viscosity at which the flowrate fails to be
monotonic in wellbore pressure. GWELL and the simple aver-
age have steep 1/ν slopes that lead to non-monotonic flowrates,
while the more accurate integral averages have gentler slopes
and lead to monotonic curves.

That is, when is the area sketched in Fig. 5, equal to Pres−Pf
ν0

,
where Pf is the flash pressure? This happens when

Pres − Pf

ν0
=

Pres − Pwell

νc
.

This equation may be rearranged to find the critical value
νc

νc = ν0

(
Pres − Pwell

Pres − Pf

)
.

This gives a straight line if νc is plotted against Pwell, as illus-
trated together with the various approximations discussed ear-
lier replotted as ν versus Pwell in Fig. 6. This value of average ν
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Figure 5. A sketch showing the area that corresponds to the value of Pres−Pwell
ν

and the graph of 1/ν versus Pwell, when Pres = 120. The 1/ν curve used for
illustration purposes here is the GWELL average. The 1/ν axis is in m−2.s,
after it is multiplied by 10−6.

would give a constant flowrate as Pwell drops below flash value.
Average values of ν graphing above this line, such as the sim-
ple average and the GWELL average, will give non-monotonic
flowrate behaviour, while values graphing below this critical
line give monotonic flowrates that continue to increase with
pressure differences across the feedpoint.

Figure 6. Values of ν times 106 (m2.s−1) versus pressure. The black circles are
actual viscosity values at the pressure given, while the other values are averages
as detailed in the text and in Fig. 3. The averages are taken between the pressure
given and the reservoir pressure Pres = 120. The three approximations shown
are the simple average ν(1)

eff
labelled (1), the more careful average ν(2)

eff
labelled

(2), which gives a reasonably close match to the accurate integral average (red
squares), and the GWELL average. The dashed red line shows the critical value
νc, below which the average will give a monotonic flowrate as wellbore pressure
is decreased further. Enthalpy is 1200 kJ/kg. Flash pressure is about 60 bara.

Note that the slope of this straight line may be easily changed in
a simulation, by changing the value of reservoir pressure. Mak-
ing this pressure larger will reduce the slope, and may hence
reveal non-monotonic flowrate behaviour if a simple enough
average has been used at the feed. Conversely, even when using
the GWELL average viscosity, reducing the pressure difference
to 4 bars for example causes monotonic behaviour. Getting rea-

sonable flowrates from such a small pressure difference would
require a very productive feedpoint.

3. Conclusions

An improved method for computing the average two-phase vis-
cosity at a feedpoint is derived by integrating Darcy’s law. This
average is more likely to give a feed flowrate that is monotonic
in wellbore pressure, during the process of generating an out-
put curve with a geothermal wellbore simulator. This improved
average is an integral average of the reciprocal of viscosity as a
function of pressure, so that flow at a feedpoint is given by the
formula

Q =
Σ

νeff

(Pres − Pwell)

where Σ (m3) is a productivity index, and the effective recipro-
cal two-phase viscosity is

1
νeff

=

(
1

Pres − Pwell

) ∫ Pres

Pwell

dP
ν(P)

,

and is related to the concept of pseudopressure in a gas reser-
voir.

We find that a twenty-point trapezoidal rule is accurate enough
to ensure monotonic dependence of feed flowrate on drawdown,
whereas simple two-point averages may not be, depending on
the pressure difference across the feedpoint. We also derive
a formula for the critical dependence of average feed viscos-
ity on pressures at the feed and in the reservoir, above which
the output curve will be non-monotonic if flashing moves from
wellbore to reservoir, while generating an output curve.

This study also answers the question, should the flowrate to a
feedpoint be monotonic in wellbore pressure there? That is, is
it possible that a reduction in feedpoint flowrate could result
from increased viscosity near the wellbore, despite the increase
in pressure drop that is causing the increased viscosity? The
formula

Q =
kA
f (R)

∫ Pres

Pwell

dP
ν(P)

,

where f (R) is a geometric term that depends on the wellbore
radius, the reservoir radius and the reservoir geometry, reveals
the answer — Q is monotonic in Pwell, since ν takes only posi-
tive values. Another way to see this is that the rate of change of
Q with Pwell is, by differentiating the above equation and using
the Fundamental Theorem of Calculus,

dQ
dPwell

= −
kA
f (R)

1
ν(Pwell)

which is clearly always negative, so that reduced wellbore pres-
sures should give increased flowrates.
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Appendix A. Radial Symmetry

Here we show that our simple linear development extends
to cylindrical and spherical geometries with radial symme-
try.

Appendix A.1. Cylindrical Geometry

In cylindrical geometry with radial symmetry, Darcy’s law for
the flow inwards (kg/s) across the curved surface of a cylinder
of height h at a distance r from the centre of a well is

Q =

(
2πrkh
ν

)
∂P
∂r

.

This rearranges to

Q
r

=
2πkh
ν

∂P
∂r

and integrating both sides with respect to r from wellbore value
Rwell to reservoir value Rres gives∫ Rres

Rwell

Q
r

dr =

∫ Rres

Rwell

2πkh
ν

∂P
∂r

dr = 2πkh
∫ Pres

Pwell

dP
ν(P)

assuming constant k and h, and assuming P is steady-state and
depends only on r. That is, evaluating the left-hand side and
rearranging,

Q =

(
2πkh

ln(Rres/Rwell)

) ∫ Pres

Pwell

dP
ν(P)

.

This takes the form used in simulations

Q =
Σ

νeff

(Pres − Pwell)

provided that

Σ =

(
2πkh

ln(Rres/Rwell)

)
and

1
νeff

=

(
1

Pres − Pwell

) ∫ Pres

Pwell

dP
ν(P)

.

Appendix A.2. Spherical Geometry

In spherical geometry with radial symmetry, Darcy’s law for
the flow inwards (kg/s) across the curved surface of a sphere at
a distance r from the centre of a feed is

Q =

(
4πr2k
ν

)
∂P
∂r

.

This rearranges to give, after integrating both sides with respect
to r from wellbore to reservoir in a similar approach to the pre-
vious subsection:

Q =

(
4πk

1/Rwell − 1/Rres

) ∫ Pres

Pwell

dP
ν(P)

.

This takes the form

Q =
Σ

νeff

(Pres − Pwell)

provided that

Σ =

(
4πk

1/Rwell − 1/Rres

)
and

1
νeff

=

(
1

Pres − Pwell

) ∫ Pres

Pwell

dP
ν(P)

.

Appendix B. Wellbore Simulation Details

The wellbore simulations used to illustrate the effects of feed
viscosity treatment were done with SwelFlo, a multiple feed-
point geothermal wellbore simulator developed by the author
that allows topdown and bottom up steady-state simulations of
two-phase flow of water and noncondensible gas, up a well-
bore of varying radius, roughness and inclination angle. The
generic well setup was a vertical well 2000m long, cased to
900m with casing of 0.16m radius and roughness 4.6×10−5m,
then with liner of 0.125m radius and 4.6×10−4m. No heat trans-
fer to or from the surrounding country was allowed. The reser-
voir fluid supplying the feed at bottomhole had 0.1% CO2 by
weight, was at a pressure of 140 bara, and an enthalpy of 1200
kJ/kg. The productivity index used was 10−12m3. Computa-
tions up the wellbore used a mesh size of 20m, with reduction
to 1m to more accurately find the flash depth when it occurs in
the well.
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