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Compac are interested in the weighing of fruit in a very short time,
in an assembly-line situation. The fruit bounces and rocks in its
weighing cradle, affecting the transient voltage output by the two
load cells used to weigh the assembly. Compac find that their low-
pass filter and averaging technique is not as accurate as they would
like, for heavier fruit and shorter weighing times. In this report, we
consider and solve simple models for harmonic motion, for bouncing
and for rocking of fruit. We also consider beam-bending equations
for the motion of a load cell, and power spectra of fruit weighing
data produced by Compac. Some consideration is given to using
the data to fit critical parameters for the load cells, which govern
how they vibrate when loaded with fruit. We find that the bouncing
(and not the rocking) of fruit is the likely cause of the lower frequency
oscillations that affect accuracy for heavier fruit and/or faster speeds.

1. Introduction

Compac Sorting Equipment Auckland (Compac) is a company that manu-
factures and exports high-speed, accurate sorting systems for fruit and vegeta-
bles. Their sizers operate at 10-15 pieces of fruit per second per lane. Each piece
of fruit is weighed separately, in less than 1/10 of a second. Compac require a
mathematical model of the weighing process, that will help to improve accuracy
of weighing heavier fruit (more than 250g) at higher speeds (in less than a tenth
of a second).

They also asked for help with reducing the size and inherent stability of
the weighing assembly — it would be a lot easier and quicker if it could be
integrated into the system that pulls the fruit along on a chain, rather than
the most successful present setup, which has a separate weighing table bolted
securely to the floor, and carefully aligned with the fruit track.
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Table 1: Nomenclature

symbol definition units
a load cell plate width m
b a parameter in J -
A beam cross-sectional area m2

E beam Young’s modulus Pa
F applied force kg.m.s−2

I beam moment of inertia kg.m2

J moment of inertia kg.m2

k spring constant for a load cell kg.s−2

M total mass of fruit, carrier and load cell kg
R amplitude m
T distance between load cells m
x1 displacement in load cell 1 m
x2 displacement in load cell 2 m
y beam displacement m
λ decay constant s−1

ν effective damping in a load cell kg.s−1

ω frequency s−1

ρ beam density kg . m−3

θ (x1 − x2)/T -
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High-speed weighing 3

Each fruit is carried separately (Fig. (1)), and weighed along with its carrier
by passing it over two load cells. The carrier (Fig. (2)) has four contact points.
Two points on each side of the carrier slide along a steel plate mounted on a
load cell. The load cell is cantilevered, is typically rated to 6kg, and is sensitive
to shear rather than bending. Fig. (3) is a picture of one load cell with an car-
rier moving over it (hand-held). A load cell contains resistances which change
under compression/tension, arranged in a Wheatstone Bridge. The spacing be-
tween fruit containers is such that about 100mm is needed for each fruit, and 10
fruit/second corresponds to a speed of about 1 m/s. The voltages are sampled
at 4 kHz using a 12 bit ADC.

Figure 1: Kiwifruit in their containers. Movement is right to left. Each container
can rotate fruit, tip fruit out, and float free of the chain (vertically) while being
weighed.

In the existing approach, the signal from each loadcell is amplified and low-
pass filtered. The filter is a fifth-order Butterworth filter set at about 55 Hz.
The tail end of the signal is averaged, to obtain a mass that is required to be
accurate to less than 1g. Empty containers are weighed initially, and (during
fruit sorting) whenever they randomly happen to be empty. Each container is
tracked individually, as their weights differ. The method also corrects for any
drift in the tare weight of each container during a sorting run.

2. Data Analysis
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Figure 2: Detailed drawing of a fruit carrier. Towing direction is right to left.
The top part floats independently of the lower part, when on the loadcell.

Figure 3: A loadcell with the steel plate on top, and a (handheld) carrier moving
over it from right to left. Note the two tracks worn into the steel plates by the
moving contact points of the carrier.
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Compac provided data from a number of tests, showing filtered and unfil-
tered voltages from a pair of load cells for a variety of fruit of known weight,
travelling at various speeds. A large effort went into examining this data, and
the power spectra (see section (4.)), to see what were the dominant frequencies
and how these frequencies changed with speed and mass.

Fig. (4) shows a typical set of filtered and unfiltered voltages from a pair of
load cells, for a 200g weight at 0.5m/s. Note that the low-pass filter is successful
in removing most of the oscillation, so that averaging the last part of the filtered
signals is found to give an accurate representation of the weight of fruit and
carrier.

In comparison, Fig. (5) shows the voltages for a rubber “orange” weighing
513.1g travelling at the same speed (0.5ms). There is more oscillation in the
filtered signals, which causes larger errors in measured weights. When fruit goes
faster, the main problem is that the signal time is shorter, so that there is less
time for the transients to decay to a steady voltage.

3. Springs and Rocking

Some existing studies [3; 2; 4] show that when the motion is that of a simple
harmonic oscillator, it is possible to filter out the transient oscillation and find
the steady state (the total mass) very rapidly. These adaptive filters essentially
use the characteristics of the load cell as a simple harmonic oscillator (frequency,
damping, effective mass), to rapidly find the added mass. For the cases presented
[3; 2; 4], it is found that an accurate mass is obtained within just one half cycle
of the oscillator. Besides its speed, an adaptive filter can handle a wide variety of
masses, unlike a fixed filter, which does not compensate for changes in natural
frequency with mass. This looks like a tempting approach for the Compac
problem, but as will be seen in the section on power spectra, the oscillations
observed in the Compac data have several important component frequencies,
not just one. This suggests that a simple harmonic oscillator might not be an
accurate enough model here.

We first considered simple models of the motion of a load cell when a weight
is placed on it, and of the possible rocking motion of the fruit and carrier. A
model which couples these two motions is presented here. The fruit and carrier
(treated as one mass) are allowed to rock sideways from one load cell to the
other, and to move up and down on the load cells. It is assumed that the carrier
is always in contact with the top of a load cell. The effect of horizontal velocity
along the top plate attached to the load cell is ignored here — model equations
for this are presented in a later section.
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Figure 4: Voltages from the two loadcells, as a 200g weight and its container
pass over at 5 fruit/second (0.5m/s). The weight is responsible for the central
part of the signal, between the values 634 and 1478. Also visible are the voltages
from empty containers before and after the weighted one. There is very little
time between one container leaving the loadcell and the next one coming onto it.
The two larger signals are the raw data, and the two lower amplitude signals are
the outputs from the analogue low-pass filters used by Compac. Some offsets in
voltages and times have been introduced to more clearly view the signals.
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Figure 5: Voltages from the two loadcells, as a 513g imitation orange and its
container cross at 5 fruit/second (0.5m/s). The two larger signals are the raw
data, and the two lower amplitude signals are the outputs from the analogue
low-pass filters used by Compac.
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Figure 6: A sketch of our simple model, incorporating up-and-down motion plus
rocking from side to side.

Then defining
x = (x1 + x2)/2

where x1 and x2 are the displacements about equilibrium in the two load cells,
and

θ = (x2 − x1)/T ,

where T is the distance between loadcells, equating the forces acting on the
system gives the simple damped harmonic motion

Mẍ + 2νẋ + 2kx = 0 , (1)

where M is the total mass of fruit plus carrier plus the effective mass of the
load cells, ν is the effective damping in each loadcell, and k is the effective
spring constant of each of the loadcells. Equating moments of inertia about the
midpoint at T/2 gives

2Jθ̈ + T 2νθ̇ + T 2kθ = 0 , (2)

where J =
∫

r2 dm is the moment of inertia of the system about the midpoint.
Note that the choice of coordinate system has decoupled the motion — the up-
and-down motion is represented by x, and can be solved independently of the
rocking motion represented by θ.

Initial conditions, if the fruit container with extra mass m was to arrive in
isolation, would be that x(0) = mg/(2k), since the displacement x from equilib-
rium is zero when the extra weight m/2 of fruit plus container on each loadcell
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has stabilised (and static force kx matches mg/2), and ẋ(0) = 0. However,
in practice the loadcells are still bouncing from the previous container leaving
them, so initial conditions will only approximate these values to some degree.

The general solutions to eqns. (1) and (2) take the form of decaying oscilla-
tions exp(λt), where for x,

λx = − ν

M

(
1±

√
1− 2kM

ν2

)
,

and for θ,

λθ = −T 2ν

4J

(
1±

√
1− 8kJ

T 2ν2

)
.

For up-and-down motion x, the frequency of oscillation is the imaginary part
of λx (in radians/s),

ωx =

√
2k

M
− ν2

M2
, (3)

and for rocking motion θ, it is

ωθ =

√
T 2k

2J
− T 4ν2

16J2
. (4)

Both frequencies decrease for heavier fruit (larger M and J). The damping rates
also decrease even more dramatically as the total mass increases.

A frequency of zero corresponds to critical damping, and an imaginary value
for a frequency means the system is overdamped. In both cases there is no
oscillation, just exponential decay.

Now the moment of inertia J about the centre is written in the form MT 2/b2,
where b parametrises the moment of inertia. A symmetric load with centre of
mass in the centre, then corresponds to b ≥ 2, with b = 2 if half of M is directly
over each load cell, and b →∞ as M concentrates at the midpoint.

A sphere of uniform density and mass M has J = 2MR2/5 where R is the
radius of the sphere. If the mass of the carrier is ignored, then b2 = 5

2
T 2

R2 , and
if the fruit has a diameter roughly the same as the width of the carrier T , then
b2 ≈ 10.

Retaining a general dependence on b, it follows that

ω2
θ

ω2
x

=
b2

4

(
2k
M − ν2

M2
b2

4
2k
M − ν2

M2

)
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As the damping ν tends to zero, this ratio tends to b2/4 ≥ 1. The two
frequencies are equal if half of the load mass is concentrated directly over each
load cell. Otherwise, the frequency of rocking is larger.

For nonzero damping ν, the frequency ratio first increases above 1, then
decreases to zero, as b increases. That is, for sufficiently damped motion, it is
possible that the rocking frequency is less than the up-and-down frequency.

4. Power Spectra

A number of power spectra of the Compac data were examined, for the
different fruit weights and speeds. In Figs. (7) & (8) are shown computed spectra
for 15 datasets at 300cpm and 10 datasets at 600cpm, for two different fruit
masses. For each dataset, only a subset of the (unfiltered) data is used - 512
data points starting at the 800th data point for the 300cpm cases and 256 points
starting at the 400th data point for the 600cpm cases. In this way the spectra
are only for the loaded cups. Similar plots were made for the other weights.
Observations that can be made from the graphs are that

• There are two, or sometimes three, dominant frequencies in each of the
spectra.

• There is virtually always a frequency around 120Hz, this being the higher
of the two frequencies.

• The lower frequency generally decreases with increasing weight of fruit, and
its amplitude or relative importance generally increases with increasing
weight.

• There appears to be little dependence of the dominant frequencies on line
speed, although there is clearly more noise at the higher line speed.

• There is a reasonable amount of scatter between replicates of the same
fruit and line speed.

The problem for Compac is the lowest frequency, which gets past their low-
pass filter for heavier fruit. Higher speeds do compound the problem, as the
shorter times mean that damping has less chance to reduce amplitudes. A low-
pass filter also has a response time, before the filtered signal gets close to its
asymptotic (steady) value. This response time can become critical for faster
speeds. We noted that the lower frequency behaviour, as observed in the filtered
data, appears to be in phase between the two load cells, hence corresponding to
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Figure 7: Frequency spectra for 5 different standard fruit weights (137.2g, 200g,
293g, 403.5g and 573g) at a line speed of 300cpm.
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Figure 8: Frequency spectra for 5 different standard fruit weights (137.2g, 200g,
293g, 403.5g and 573g) at a line speed of 600cpm.
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up-and-down motion rather than rocking. The high frequency appears typically
to be a rocking motion, out of phase between the two loadcells.

A puzzle for us is that the high frequency is apparently almost independent
of mass. It is seen in all data, including data with no fruit in the container.
This contradicts our simple model, which predicts that frequencies will reduce
as mass is increased. It would be consistent with a rocking motion due to the
moment of inertia of the empty carrier, rocking independently of the fruit it is
carrying.

Another puzzle is the extra frequency that is sometimes seen in spectra. It
is suggestive of coupled oscillators, perhaps the carriers flexing under the weight
of the fruit being the extra oscillator. Coupled oscillators can exhibit a range
of interesting phenomena, including phase locking (where only one frequency
is seen, which may be between the natural frequencies of the separate oscil-
lators), and period-doubling bifurcations to chaotic behaviour. The first step
in the period-doubling sequence will give two frequencies, close to the original
frequency.

5. Filtered Data

We digitally filtered the data from one load cell for the 403.5g imitation
lemon, using a second-order Butterworth (low-pass) filter at various cutoff fre-
quencies, and compared with the Compac analogue filtered data. Fig. (9) shows
the results.

Compac’s filter appears to be set at about 60Hz, which may be a little higher
than desirable. The filtered signal from our 30Hz filter looks reasonably steady
after 1/20s. This may be too slow for faster fruit speeds, however. The lower
the filter cutoff frequency, the slower the filtered signal is to stabilise.

6. Load-cells are Beams

We considered the cantilevered load-cells more carefully, since they are
beams rather than springs. With a forcing F (t) on the end x = L of a solid
cantilevered beam, and vertical displacement y, then if we ignore damping, a
force balance gives

ρA
∂2y

∂t2
+ EI

∂4y

∂x4
= 0 , (5)

where ρ is the density of the beam, A the cross-sectional area, E the Young’s
modulus, and I the moment of inertia about the point where it is secured x = 0.
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Figure 9: A graph showing raw data from one load cell, this data digitally filtered
by our own low-pass filter, and Compac’s analogue filtered data. The fruit was
a 403.5g lemon, and the digital filter is set at 70Hz, 50Hz and 30 Hz in the first,
second and third plots respectively.
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Boundary conditions are

y(0) = 0 ,
∂2y

∂x2
(L) = 0 ,

∂y

∂x
(0) = 0 ,

∂3y

∂x3
(L) =

F

EI
.

Separating variables with y = p(t)r(x) gives

d2p

∂t2
+ ω2p(t) = 0 , p(0) = p0 , p′(0) = ṗ0 , (6)

and

d4r

∂x4
− β4r(x) = 0 , r(0) = 0 , r′(0) = 0 , r′′(L) = 0 , r′′′(L) =

F

EIp(L)
, (7)

where

β4 =
ρAω2

EI
.

The equation for p is equivalent to that for simple harmonic motion, with effec-
tive mass and spring constant:

m ≡ ρAL , k ≡ EIβ4L .

For F = 0, the first few eigenvalues for β are

β1 ≈ 1.88/L , β2 ≈ 4.7/L , β3 ≈ 7.9/L ,

so that ω, the frequency of oscillation of the beam, varies as L−2.

This would make the load cell very sensitive to the position of the load,
if the load were to travel along the beam that is the load cell. But the load
travels along a plate, that is attached to the end of the load cell, as illustrated
in Fig. (10).

The design means that the load delivers a varying torque to the end of the
load cell. The load cells are designed to be sensitive to shear rather than bending,
minimising the effect of this varying torque.

We write down the undamped model equations here, for completeness.

For the load cell (1),

ρ1A1
∂2y1

∂t2
+ E1I1

∂4y1

∂x4
= 0 , 0 < x < L ,
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Figure 10: A sketch of load cell (1) plus steel plate (2). The fruit carrier slides
along the top plate, from the rear to the front, at roughly constant speed, while
it is being weighed.

and for the plate (2)

ρ2A2
∂2y2

∂t2
+ E2I2

∂4y2

∂x4
= F (x, t) , L− a/2 < x < L , L < x < L + a/2 .

Boundary conditions are,

x = 0 : y1 =
∂y1

∂x
= 0 ,

x = L± a/2 :
∂2y2

∂x2
=

∂3y2

∂x3
= 0 ,

and at x = L, there is a force f(t) and a moment m(t) on the loadcell, so that

y1 = y2 , y′1 = y′2 ,

E1I1
∂2y1

∂x2
= m(t) ,

[
E2I2

∂2y2

∂x2

]L+

L−
= −m(t) ,

E1I1
∂3y1

∂x3
= f(t) ,

[
E2I2

∂3y2

∂x3

]L+

L−
= −f(t) .

The square brackets indicate the jump in the value inside, across x = L.

6.1 Fitting Beam Parameters

A preliminary attempt was made to use the up-and-down model results
together with the data from Compac, to find the effective mass, damping and
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spring constant for a load cell. The filtered data is used, as this appears to have
the rocking motion removed. The expressions to be used are, frequency

ωx =

√
2k

M
− ν2

M2
,

and damping

ν = −
(

M

t1 − t2

)
ln
[
y(t1)
y(t2)

]
,

where t1 and t2 are two successive times at which the voltage is a maximum
(same phase). Another equation is needed to find the third parameter, and the
amplitude of oscillation is the remaining unused property of the signal.

Two methods for using amplitude are outlined here, the first assumes that
there is a constant forcing of the oscillator at frequency ωf which is responsi-
ble for a persistent signal after transients have died away. If the amplitude of
oscillation with weight m1 on the loadcell is R1, and with weight m2 is R2, then

R2
1

R2
2

=

(
k −m2ω

2
f

)2
+ ν2ω2

f(
k −m1ω2

f

)2
+ ν2ω2

f

.

The second method assumes zero initial voltage and zero rate of change
of initial voltage, before an extra (known calibration) mass m∗ moves onto the
loadcell, and the loadcell is again modelled as a simple harmonic oscillator. Then
ignoring damping, the output from the loadcell is

x =
m∗g

k
[1− cos(ωt)]

so that the first peak in x has height 2m∗g/k. We know the added calibration
mass m∗, so the first peak gives us k.

Some preliminary calculations using the first of these two amplitude methods
on the data provided by Compac suggest that

k ≈ 8000kg/s2 , meff ≈ 60g , ν ≈ 0.4kg/s ,

where meff is the effective mass of just the loadcell. These numbers are not very
accurately determined at present, but they do compare with the values listed in
[3] (for a different loadcell), k = 2700Pa, effective mass 500g, an damping factor
ν = 3.5kg/s.

Then if a = 6, assuming fruit and carrier rock as one, and the total mass
(fruit and carrier and load cells) with a 200g fruit added is

M = 200 + 122 + 60 + 60 ≈ 450g ,



18 Compac

the damping terms in expressions (3) and (4) for the frequencies are negligible,
and

J ≈ 10−4 , ωθ ≈ 600 , ωx ≈ 200 .

These correspond to frequencies of 100Hz and 35Hz respectively, for rocking and
for purely vertical motion.

6.2 The sound of a loadcell

We tapped the plate attached to a loadcell, and recorded the sound the
system made as a result. The waveform was found to have a significant frequency
component of about 120Hz. This could resonate with the rocking frequency of
the carriers, and thus explain why the higher frequency in the spectra of Figs (7)
& (8) is always about 120Hz.

7. Carrier Moment of Inertia

The moment of inertia of the floating part of a carrier was approximated
by taking it apart and estimating the weight distribution very roughly. We
found that J ≈ 4 × 10−5kg.m2. This corresponds to a rocking frequency of
120Hz provided that (ignoring damping and using equation (4) ) the effective
spring constant for a loadcell is k ≈ 5000kg/s, which is comparable to the value
obtained in section (6.1).

8. Conclusions and recommendations

We have studied the frequency components present in the output of loadcells,
for various sized fruit running at various speeds. Apart from a high frequency
which is of no concern to Compac, we typically see one or two lower frequencies,
which reduce as fruit mass increases, causing difficulties with oscillations getting
past the analogue filter.

We have developed models for simple harmonic motion in the vertical direc-
tion, and a side to side rocking motion between the two loadcells used to weigh
the fruit. Our modelling suggests that a reduction in frequency is generally to
be expected as mass increases.

One simple possibility for improving the estimation of fruit mass is to reduce
the cutoff frequency of the lowpass filter. The one used by Compac for the data
provided was set at a cutoff of about 60Hz. This could perhaps be reduced
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to 30Hz. However, this option might not help at higher operating speeds, as
reducing the cutoff frequency means a slower response time for the filter, and
there may not be enough time for the filtered signal to level off.

The key parameters are mass (and its distribution), effective spring constant,
and effective damping. Other options are to stiffen and reduce the effective mass
of the loadcells, thereby increasing oscillation frequency and damping. However,
we understand that Compac have tried stiffer loadcells, which are rated for heav-
ier masses. They then encounter difficulties associated with having to increase
the amplification of the signal from the loadcell, and becoming more vulnerable
to drift.

Compac could also consider stiffening and reducing the mass of the carriers
themselves. The presence in data of an extra frequency in the lower range raises
the question of whether flexing of the carriers might also be affecting the loadcell
signals.

One promising strategy is to use the understandings we have gained from the
modelling, rather than just filtering out the oscillations. We have shown that it is
feasible in principle to infer key parameter values from the oscillation frequency,
damping rate and oscillation amplitude. A joint approach, digitally combining
this information with filtered output, might be faster and more accurate than
the present setup.

Finally, a method that was considered during MISG’05, but which we did
not have the expertise to develop further, is that described in [3; 2; 4], which
uses an adaptive filtering technique. Such an approach apparently has a very
fast response time, which may be useful for larger fruit weights and faster line
speeds. It may be possible to develop an adaptive filter for the signal from a
pair of load cells, using the model developed in §3. Using the mean signal from
both cells will eliminate the higher-frequency rocking and simplify the adaptive
filter required.

In any case, taking the average of both raw signals from the load cells before
doing any processing is advisable. This will cancel the out-of-phase motion
(rocking motion) and should give a cleaner signal with an oscillation frequency
that depends on mass according to the usual simple harmonic motion (straight
up-and-down).
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