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Abstract

The cochlear microphonic (CM) is an electrical signal generated in the

cochlea in response to sound. These electrical signals reflect mechanical

activity in the cochlea and the excitation process of generating them.

In other words, like other electrical vital signs such as the Electro-

cardiogram (ECG) and the Electroencephalogram (EEG), knowledge

of how the CM is generated can allow its interpretation to be used as

a diagnostic tool for audiologists. The CM allows the functionality of

the ear to be examined, particularly when screening the hearing of an

infant or any person who cannot cooperate during behavioural testing.

In addition, the CM can show which specific parts of the cochlea are

damaged and do not work properly. However, the difficulty of obtain-

ing this signal and simplicity of other methods such as Otoacoustic

Emissions have discouraged the use of the CM as a tool for studying a

number of cochlea functions. The CM can provide an extremely valu-

able technique for investigations in hearing research and it can also

have viable clinical applications.

An integrated model of the cochlea is presented by which the dis-

crepancy between basilar membrane and CM tuning curves can be

explained. The results of the model also suggest that Spontaneous

Cochlear Microphonic (SCOMIC) should exist in the cochlea. The ex-

istence of this spontaneous electrical signal has not been previously

reported.

PACS numbers:
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I. INTRODUCTION

The CM is an AC signal which is similar to the acoustic stimulus signal and is referred

to as the steady-state part of the Auditory Evoked Potential (AEP) (Pickles, 2008). These

compound graded responses are generated through the mechanical and electrical activity of

the cochlea. The CM has been known for more than eighty years, but difficulty of obtaining

these very small signals and uncertainty in the generation process of them causes them to

rarely be used as an indication of cochlear performance (Teal et al., 2011; Cheatham et al.,

2011). Improvement in measuring techniques has permitted the reliable non-invasive record-

ing of these signals (Masood et al., 2012; Poch-Broto et al., 2009) which traditionally have

been recorded invasively through transtympanic electrocochleography.

Even though improvements in observation and measuring techniques can reveal much in-

formation about the CM, there are still some gaps between what can be measured and the

actual cochlear function. Therefore modelling plays an essential role in developing a better

understanding of the origin of this biopotential and its behaviour. The simple and widely

used model of generating the CM is the resistance microphone model (Davis, 1965; Gelfand,

2010). In this model, the resting potentials of the cochlea are modelled by two batteries.

The primary battery is in the hair cells, the accessory battery is in the stria vascularis,

and the mechano-electrical transduction (MET) channels are modelled by variable electrical

resistors. Accordingly, the current through the hair cells is modulated by the changing elec-

trical resistances resulting from cilia deflection. These processes result in electrical potential

changes which comprise the CM.

Furthermore a network model of the resistors and batteries has been used to simulate the

generation and distribution of the cochlear potentials (Strelioff, 1973). The model can be

enhanced by including details of the electrical properties of the organ of Corti. The electrical

component values of a detailed model of a radial section of the organ of Corti have been

measured heuristically based on actual measurements of potentials inside the cochlea (Dal-

a)Electronic address: paul.teal@vuw.ac.nz
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los, 1983, 1984) . Although the generation of the CM was not directly addressed in these

papers, the parameter values and their proposed detailed electrical configuration are suitable

for modelling the CM. Recent experiments have shown that some previous measurements

of the parameter values pertinent to outer hair cells (OHCs) were not accurate enough and

revised values have been measured (Johnson et al., 2011).

In this work, an integrated detailed model of the electrical and mechanical properties of

the cochlea is presented using these new physiological measurements. We also explain the

discrepancy between basilar membrane and CM tuning curves based on the results of the

model. In addition, we investigate the possibility of the existence of Spontaneous Cochlear

Microphonic (SCOMIC) based on the model. The SCOMIC will be generated due to activ-

ity of hair cells in the generation sites of Spontaneous Otoacoustic Emission (SOAE) and

this investigation is explained in detail in Sections II.B and IV.

The remainder of this paper is arranged as follows: The nonlinear electromechanical model

is described in Section II; frequency and time domain analyses are presented in Sections III

and IV and conclusions are given in Section V.

II. MODELLING

Vibrations of the basilar membrane cause the stereocilia of the outer hair cells to deflect

resulting in changing MET channel currents. The alternation of these nonlinear currents

activate mechanical amplifiers which amplify low-level basilar membrane displacement and

compress high-level basilar membrane displacements (Ashmore et al., 2010). Since these

channels are embedded in the electrical network of the organ of Corti, changing their currents

also produces changes in extracellular current flow and creates the CM (Cheatham et al.,

2011). These currents and their nonlinear effects result in an active force on the basilar

membrane and tectorial membrane. This system is referred to as the cochlear amplifier.

For modelling purposes usually this amplification effect is a simplified to (nonlinear) active

damping gain which is driven by basilar membrane and tectorial membrane displacement
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and velocity and acts as an active force on mechanical parts (Elliott et al., 2007; Neely

and Kim, 1986). In other models (Mistŕık et al., 2009) the effect is analysed separately

without considering physical links between acoustical, mechanical, fluid and electrical parts.

Simplified versions of these physical links have been considered in some proposed models

but investigating the CM was not the main objective of those models (Ramamoorthy et al.,

2007; Liu and Neely, 2010). The mechanical part of our model is similar to to the well-known

model of Neely and Kim (1986), which has been the basis of many other models (Liu and

Neely, 2010). This model has been summarised in Fig. 1. For more details of each part, the

reader is referred to (Liu and Neely, 2010). For integrity of our current work we repeat some

of the equations from (Liu and Neely, 2010, 2009; Teal et al., 2011).
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FIG. 1. (Liu and Neely, 2010)’s model. (a) shows the model of the ear canal. (b) shows

the model of the middle ear (Redrawn with permission, from Liu and Neely (2010)) (c)

shows the macromechanics model of the cochlea. (d) shows the micromechanics model of

the cochlea.
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A. Cochlear Micromechanics

Cochlear micromechanics represents the mechanical and dynamic behaviour of a radial

slice of the organ of Corti and the basilar membrane. The basilar membrane consists of

transverse beamlike fibres (Iurato, 1962) having only weak longitudinal couplings, and hence

for modelling purposes the organ of Corti can be divided into N sections. Each section of

micromechanical model consists of two parts representing the mass, stiffness and damping

of the basilar membrane and OHC load respectively, as shown in Fig. 1(D), and the force

(fOHC) which is induced by OHC Electromotility.

1. Mechano-electrical transduction current and electromotility

Somatic contractions of OHCs are one of the mechanisms which have been put forward

to explain the cochlear amplifier. This mechanism is activated by the MET current; details

of this mechanism can be seen in (Dallos et al., 1996).

A Boltzmann function can be fitted to the MET current response to hair bundle dis-

placement (Kennedy et al., 2005). In the present model, the MET current is described as

a nonlinear antisymmetric saturating function of displacement and velocity of the reticular

lamina (RL)(Liu and Neely, 2009). This nonlinear function is responsible for compression

and amplification of the cochlear amplifier. Reduction in the length of the OHC accumulates

charge Q and OHC contraction displacement ξo is linearly proportional to Q.

ξo = TQ (1)

where T is a piezoelectric constant. Q is a Boltzmann function of

Ṽ = VOHC − TfOHC (2)

and Cg = ∂Q/∂Ṽ . These equations are summarised in Fig. 2 (Liu and Neely, 2010)1.

Displacement and velocity of both RL and OHC together with OHC and hair bundle voltages

in each section of the organ of Corti construct a state vector as follows:

xn = [ξr, ξ̇r, ξo, ξ̇o, VOHC, VHB]
! (3)
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FIG. 2. OHC electrical model which is embedded in the electrical network of the organ of

Corti. the MET channel current (ir) is a Boltzmann function of the displacement of the hair

bundle i.e. I(η) = Imax

2 tanh 2η
Imax

where η = αvξ̇r + αdξr (Liu and Neely, 2010). iQ = dQ
dt

and

from equation (1), iQ = ξ̇o/T where ξ̇o is the velocity of the OHC contraction. Vst, Vsm, Vsv,

VOHC and VHB are the potentials of the scalae tympani, media, vestibuli, and of the outer

hair cells and hair bundles, respectively.

The set of N state vectors (plus six more variables representing the state of the middle ear)

creates a system with a 6N +6 length state vector x. By considering a linearised version of

the MET channel current (ir); the system can be represented in linear state-space form as

follows2:

ẋ(t) = Ax(t) +Bu(t) (4a)

y(t) = Cx(t) +Du(t) (4b)

Where

Bu(t) = [f(t), 0, · · · , 0]T

and A is a (6N + 6)× (6N + 6) state matrix and f(t) is a stimulus force (see Fig. 1). The

system output y(t) can be defined as any desired state variable. The C Matrix selects that

7



desired state variables and the D is the null matrix. The details of the formulations of A

are reported in Appendix A.

B. Stability

The stability of the system can be assessed by examining the eigenvalues of the state

matrix A. Fig. 3 (a) and (b) show the locations of the roots of the linearised version of

the model. There are no poles having positive real part and the system is stable. However

inhomogeneities in physical parameters can make the system unstable (Elliott et al., 2007).

In the current model, the stability of the model is very sensitive to positive feedback gains

which result from OHCs motilities. Small perturbation in the gains of positive feedback

along the cochlea can cause instability. Fig. 3 (b) and (d) demonstrate such perturbation

and the resulting change in root locations, some of the poles have positive real part.

Although the nonlinearity in the MET channel current (ir) makes this system stable,

this system still oscillates at frequencies corresponding to those poles on the right hand side

of the origin in Fig. 3 (c) and (d). Each unstable pole can be considered as a source of SOAE

(Ku et al., 2008). These mechanical oscillations are consequences of electrical oscillations,

and accordingly, spontaneous cochlear microphonic (SCOMIC) will be generated due to

these electrical activities of hair cells in the generation sites of SOAE. This phenomenon is

discussed in Section IV.

III. FREQUENCY ANALYSIS

The CM which is usually recorded from the round window using a transtympanic mem-

brane electrode can be observed as the potential of the endolymphatic space above the basal

hair cells (Vsm in Fig. 2)(Mistŕık et al., 2009). Taking the Fourier transform of both sides of

(4), the frequency response of output y(jω) can be calculated as:

y(jω) = C (jωIA)−1Bu(jω) (5)
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FIG. 3. Root locations of the combined system. (a) shows root locations of the linearised

version of the model. (b) shows root locations of the system with small perturbations in the

feedback gain. These perturbations are shown in Fig. 7. (c) and (d) are magnifications of

(a) and (b) near the origin.

where matrix C extracts output variables of interest (in this case VOHC and VHB). Other

scalae potentials can be calculated using these two variables. Fig. 4 depicts the amplitudes

of these potential variables as a function of the cochlear length. Despite the very similar

amplitudes of these signals, they have a phase differences of π near their peaks and nearly
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FIG. 4. (a), (b) and (c) illustrate amplitudes of VOHC, VHB and VOHC + VHB along the

cochlea, respectively. Each graph shows the responses for six different stimulus frequencies:

625, 1150, 2050, 3700, 6700,12000 Hz

cancel each other (see Fig. 5). According to the model, the main reason of the broadness of

the CM tuning curves is the phase difference of π between VOHC and VHB.
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FIG. 5. Phase of VOHC and VHB. For clarity, only curves with the Characteristic Frequency

(CF)=3500 associated to the place 12.63 mm from the base in cochlea have been shown

IV. TIME DOMAIN ANALYSIS

For frequency analysis, we used the linearised version of the model. However, in order

to explore the nonlinear behaviour of the model, the model should be analysed in the time

domain. One approach to time domain analysis is using the state-space representation of

the model which forms a large system of ordinary differential equations that can be solved

numerically (Elliott et al., 2007; Liu and Neely, 2010; Teal et al., 2011). The differential

equations can also be derived by equivalent circuits for the nonelectrical parts of the model.

Representing the proposed model with equivalent electrical circuits provides access to nu-

merous powerful tools that have been designed for circuit analysis. The equivalent electrical

circuits of the proposed model are represented in Appendix B.

Fig. IV illustrates the time domain analysis for two different positions along the cochlea for

stable system including nonlinearity in the MET channel current.

A. Spontaneous Cochlear Microphonic

The origin of SOAE presumably is preexisting mechanical perturbations (Manley and

Fay, 2008) which can be considered the source of rapid change in cochlear amplifier gain for

some places along the cochlea (Elliott et al., 2007; Ku et al., 2008).

It has been shown (Neely and Kim, 1986) that the cochlear amplifier gain (γ) is responsible
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FIG. 6. VHB, VOHC and CM for two different positions along the cochlea. (a) and (c) show

VHB (solid line) and VOHC (dash line) for 5mm and 20mm from the base respectively. (b)

and (d) show the CM for 5mm and 20mm from the base respectively.

for the sharpness of the tuning curve of basilar membrane displacement. If it is assumed that

γ is fixed and independent of position along the cochlea, increasing the cochlear amplifier

gain can make the (linear) cochlear model unstable. Different assumptions about ways in

which γ can vary along the cochlea have been explored (Elliott et al., 2007; Ku et al., 2008)

and it has been shown that introducing instability to the model by rapid change of γ agrees

with previous conjectures about SOAEs (Zweig and Shera, 1995).
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FIG. 7. (a) illustrates perturbations in αv (b) illustrates perturbations in αd. In (a) and

(b), the preexisting mechanical perturbations assumed to occur about 5mm from the stapes

In the proposed model , the cochlear amplifier gain is determined by αv and αd (see Fig. 2).

Fig. 7 depicts an idealised small perturbations along the cochlea. Fig. 3 shows the effect of

these perturbations on the root locations for the linearised version of the model.

Fig. 8 shows their effect on the behaviour of the basilar membrane velocity and of the CM.

Preexisting mechanical perturbations cause oscillation in the basilar membrane which can

be detected in the ear canal as SOAEs. Analogously these perturbations also produce

Spontaneous Cochlear Microphonic (SCOMIC).

V. CONCLUSIONS

The CM is an electrical signal which has not received enough attention since its discovery

eighty years ago. This signal can be used as a valuable tool for studying the hearing mech-
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FIG. 8. (a), (b) and (c) show how the step stimulus wave propagates in the basilar membrane

along the cochlea for t = 0.2, t = 1 and t = 2 msec respectively. (d), (e) and (f) show how

the CM wave propagates in the basilar membrane along the cochlea for t = 0.2, t = 1 and

t = 2 msec respectively. Time domain analysis of nonlinear cochlear model indicates that

in addition to SOAEs; preexisting mechanical perturbations produce Spontaneous Cochlear

Microphonic (SCOMIC) too.

anism as well as having other possible clinical applications. By modelling the mechanisms

which are involved in generating this signal, the physiological understanding of cochlear

function can be examined and extended.

In this research, an integrated mechano-electrical model of the human hearing system is

proposed. The results of the proposed model have shown that small rapid perturbations

in feedback gain which have been previously hypothesised to be the generation source of
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SOAEs can generate Spontaneous Cochlear Microphonic (SCOMIC) as well. Even though

this signal has not yet been reported, it could play important role in auditory research.

Actual recording of this signal can show whether previous hypotheses about the generation

source of SOAE are valid or should be amended to explain this phenomenon. The existence

of SCOMIC can also provide a better understanding of the main sources of active processes

inside the cochlea.

In this paper, by using circuit equivalents for non-electrical parts; the entire model has been

represented as an electrical circuit. Using electrical circuit analysis software all potentials

of electrical network of the organ of Corti can be readily accessed. The results of examining

potentials of the OHC and the organ of Corti of the model have shown that the sharpness

difference between the basilar membrane velocity and the CM is the result of the phase

difference between the hair bundle potential and the OHC potential.

The results of the proposed model agree with previous physiologically measurable parame-

ters and outcomes of other similar models. This research can be extended by attempting to

determine the existence or non-existence of SCOMIC and also by interpreting the CM signal

produced by a hearing system having impaired OHCs. The combination of CM, audiograms

and otoacoustic emissions may help audiologist to distinguish OHC hearing loss (Sensitivity

loss) or inner hair cells loss (Clarity loss)(Killion and Niquette, 2000) for prescribing suitable

hearing aids or treatments.

APPENDIX A: STATE SPACE FORMULATION

The dynamic behaviours of the proposed model can be explored by the state-space

representation of the model. For evaluating stability, the linearised version has been used.

The state matrix A which has been introduced in Section II.A.1 can be written as the

sum of four matrices that correspond to the middle ear and the earphone diaphragm AME,

micromechanics AC, electrical coupling AG and pressures AP. The first six elements of

state vector x are [xd, vd] which represent the displacement and velocity of the earphone

15



diaphragm (Liu and Neely, 2010) and [xm, vm, xs, vs] which represent the displacement and

velocity of the malleus-incus and stapes-eardrum system (see Fig. 1 (a) and (b)). The first

six rows and six columns of AME are the coefficients of these state variables after writing

equilibrium equations for different parts of Fig. 1 (a) and (b) and all other elements of this

matrix are zeros.

Combining the derivative of equation (1) with ξ̇r = ∂ξr/∂t and with the equilibrium equations

Fig. 1(d) results in 4 × N state equations which can be used to construct matrix AC. The

equations related to the velocity of RL (ξ̇r) also include P (Fluid pressure).

Fluid pressure acting on the basilar membrane (see Fig. 1 (C)) can be expressed in terms of

other state variables. The following equations govern cochlear macromechanics:

∂xP = −
ρ

A
∂tU (A1)

∂xU = wξ̇r (A2)

where P denotes the pressure difference between the two cochlear chambers (scala vestibuli

and scala tympani), x denotes the longitudinal direction from the base to the apex, ρ denotes

the effective fluid mass density, A denotes the cross-sectional area of the fluid chamber, and

U denotes the volume velocity along the x-direction. w is the width of the basilar membrane.

The boundary conditions for the equation (A1) are:

∂xP |x=0 = −ρv̇s (A3)

∂xP |x=L =
−ρ

Amh
P (L) (A4)

where mh represents the mass of the fluid at the helicotrema (refer to (Liu and Neely, 2010)

for more details). By combining equations (A1) and (A2) and ignoring the derivative term

of cross-sectional area, the pressure can be modelled as follows:

∂2
xP = −

ρ

A
w∂2

t ξr (A5)

By using the finite differential method, and appropriate boundary conditions at the base

and apex ( equations (A3) and (A4) ) and the equilibrium equation for the micromechanical
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part of the model ( see Fig. 1 (d) ), equation (A5) can be rewritten in matrix form as:

(

D2 −Diagonal(
ρ

A
w)

)

P = LX (A6)

Where D2 is an N × N tridiagonal centered finite difference approximation matrix with

appropriate boundary conditions at the base and apex. Pressure P (x) only appears in state

equations related to the velocity of RL ξ̇r, so a coefficient matrix Pξ̇r
is required to rearrange

pressure values to suitable matrix format. Therefore:

AP = Pξ̇r

(

D2 −Diagonal(
ρ

A
w)

)−1
L (A7)

For obtaining equations related to OHC and hair bundle voltages nodal analyses have been

used. Using Kirchhoff’s laws for each node in electrical model (Fig. 2) results in the following

equation:

GV = EX (A8)

where

V = [Vst(1) Vsm(1) Vsv(1) V̇OHC(1) V̇HB(1) · · · V̇HB(N)]!

the right side of equation (A8) is made up of a combination of VOHC, VHB, ir and iQ in each

row and this combination can be written as EX. It is worth mentioning that I(η) # η has

been used for linearisation (see the caption of Fig. 2 and (Liu and Neely, 2010)).

Matrix K can be made to extract 2×N equations related to state variables V̇OHC and V̇HB.

Therefore:

AG = KG−1E (A9)

and finally

A = AME +AC +AP +AG (A10)
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APPENDIX B: EQUIVALENT ELECTRICAL CIRCUIT

The analogy between simple mechanical and electrical systems is straightforward (Sen-

turia, 2001). Consider the mechanical system in Fig. 9. Newton’s second law mandates the

following equation:

F = Kx+M
d2x

dt2
+B

dx

dt
(B1)

By using Kirchhoff’s current and voltage laws for the electrical circuit in Fig. 9 the following

equation can be written:

V =
1

C

∫ t

0

idt + L
di

dt
+Ri (B2)

If we assume that the velocity ẋ is equivalent to the electrical current i (the velocity and

FIG. 9. A mechanical system and its equivalent electrical circuit. i represents the electrical

current in the electrical system and x represents the displacement. By taking the velocity

ẋ equivalent to the electrical current i, and appropriate values for each component in both

the electrical circuit and the mechanical system, the output for both will be identical.

current goes through a series of elements and are called through variables), the force f is

equivalent to the voltage v (the force and voltage are called across variables). We can

represent these equivalents as ẋ ⇔ i and f ⇔ v. Using this notion, B ⇔ R, M ⇔ L and

K ⇔ 1/C. The differential equations (B1) and (B2) are equivalent and the mechanical

system and electrical circuit in Fig. 9 become equivalent (see (Senturia, 2001) for other

examples). This analogy can be extended to acoustic and fluid systems.
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1. Equivalent Circuit of the Sound Source and Middle Ear Models

The models of the sound source and middle ear are composed of simple acoustical and

mechanical components which can be converted to equivalent circuits by exploiting the

approach of the previous section. Those models also include lever gains and the pressures

on changing cross sectional areas both of which can be represented by ideal transformers.

Fig. 10 demonstrates the equivalent circuit for this part of the model.
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FIG. 10. Equivalent circuit of the sound source and middle ear models

2. Equivalent Circuit of Cochlear Macromechanics

By writing the finite difference approximation for (A1) and (A2), the following equations

are derived:

P (i)− P (i− 1)

∆x
= −

ρ

A(i)
∂tU (B3)

U(i+ 1)− U(i)

∆x
= wξ̇r (B4)
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The fluid velocity is equivalent to the current and the fluid pressure is equivalent to the

voltage, so (B3) represents an inductor in the circuit equivalent, with the inductance L(i) =

ρ
A(i)∆x. By using same approach, (A3) represents an inductor with the inductance Ĺ = ρ

As
∆x

and (A4) represents two resistors at the helicotrema with resistances R1 = ρ
A(N−1)mh

and

R2 =
1
∆x

.

3. Equivalent Circuit of Cochlear Micromechanics

The components of the circuit equivalent for cochlear micromechanics are presented in

Fig. B.3. Equation (B4) dictates that the current in the branch i should be w∆xξ̇r, therefore,

the electrical component values in the basilar membrane and OHC branches are adjusted

to meet this requirement. By considering equation (2), the dependent voltage source fOHC

relies on Q and VOHC. Q can be obtained by equation (1). This procedure can be accom-

plished by using a dependent current source and a capacitor in the circuit equivalent (see

Fig. B.3). VOHC(i) is the electrical potential of R4(i) in the potential coupling (see Fig. 2).

ir(i) depends on the displacement and velocity of the reticular lamina. ξ̇r can be obtained

by using the current of the basilar membrane and OHC branches. ξr can be calculated by a

dependent current source and a capacitor in the circuit equivalent (see Fig. B.3). Therefore,

η = αvξ̇r(i) + Vi.

The circuit representation of the model can be easily implemented in circuit analysis soft-

ware3

APPENDIX C: PARAMETER SELECTION

The parameters of the model vary with longitudinal position. Greenwood’s frequency-

place map constrains most of the parameters to be exponentially dependent on the distance

from the base (Liberman, 1982; Greenwood, 1990). In current work, the mechanical pa-

rameter values, have been taken from (Liu and Neely, 2010). However for agreement with

new measurements of electrical parameters (Johnson et al., 2011), some of parameters are
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FIG. 11. Equivalent circuit of the cochlea (cochlear macromechanics and micromechanics),

Vi = αdξr(i) and Q(x) = (T )−1ξo(x).

revised and are listed in table I.

ENDNOTES

1. Note the antisymmetric form of the equation based on (Johnson et al., 2011) has been

used.

2. For simplicity, although a linearised version of the model has been represented here

some of the following results retain the nonlinear form.

3. For this purpose, LTspice free SPICE software from Linear Technology Corporation

has been used( http://www.linear.com/designtools/software/).
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TABLE I. Parameters used in the model.

Property meaning (Unit) Base Apex reference

T Piezoelectric transformer ratio (m/C) 2.7× 106 2.8× 106 Estimated a

αd MET current’s sensitivity to RL displacement (A/m) 1.7× 10−2 3.8× 10−5 Estimated a

αv MET current’s sensitivity to RL velocity (C/m) 3.95× 10−5 4.3× 10−7 Estimated a

C4 Membrane basolateral capacitances (nF/m) 360 4200 Estimated b

C3 Membrane apical capacitances (nF/m) 72 840 Estimated c

R1 The impedances between SL and SV (Ωm) 10 10 Based on d

R2 The impedances between SV and SM (Ωm) 25 25 Based on d

R3 The membrane impedances of the hair bundle (Ωm) 170 340 Estimated b

R4 The membrane impedances of the OHCs (Ωm) 55 300 Estimated b

R5 The impedances between ST and SL (Ωm) 25 25 Based on d

R6 The impedances between SV and SM (Ωm) 27 27 Based on e

R8 The longitudinal resistors along the cochlea (MΩ/m) 3 3 Based on d

R9 The longitudinal resistors along the cochlea (MΩ/m) 5 5 Based on d

R11 The longitudinal resistor along the cochlea (KΩ/m) 150 150 Based on d

aEstimated based on Liu and Neely (2010) and agreement with Greenwood’s function.
bEstimated based on Johnson et al. (2011) and agreement with Greenwood’s function.
cThe membrane area of rat OHCs and the area of their hair bundles indicate C3/C4 = 0.2

independent of the location along the cochlea (Johnson et al., 2011), and we assumed the

ratio is true for human OHCs.
dRamamoorthy et al. (2007) note: the spiral ligament (SL) has been considered as electrical

ground (0V)
eStrelioff (1973)
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