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Summary

We model the growth of bacterial biofilms using the concept of extra-cellular polymeric substance
(EPS) as a polymer solution, whose viscoelastic rheology is described by the classical Flory-
Huggins theory. We show that one-dimensional solutions exist, which take the form at large
times of travelling waves, and we characterise their form and speed. Numerical solutions of the
time-dependent problem converge to the travelling wave solutions.

Figure 1: Geometry of the biofilm.
A bacterial layer grows upwards from
a wall at z = 0, and is bounded by
its surface at z = s. Nutrient flows
by, above this surface.

Biofilm growth sketch (thanks to Montana State University Center for Biofilm Eng).

Previous Models

Our work is based on the conceptual model of Cogan and Keener (2004, 2005), who consider the
biofilm as a biological gel consisting of EPS and water, in which bacterial cells occupy only a
small volume fraction. The asymptotic limit of their two fluid continuum model uses a dominant
balance between viscous stress and the osmotic pressure term. They find a 1D steady state with
constant interface growth velocity and examine the instability of this solution to spatial pertur-
bations. We also seek to provide a description of a uniformly growing biofilm. Our approach
deviates markedly from theirs: we use an explicit nondimensionalisation, choosing natural scales
to identify a different dominant balance.

Flory-Huggins

The Flory–Huggins free energy per unit volume is realised as an osmotic pressure – the additional
pressure required to equilibrate the polymer solution with pure solvent across a semi-permeable
membrane. This osmotic pressure is given in the relevant limit of large polymer volume and
φ� 1 as
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where φ is the volume fraction of polymer.

Polymer-Solvent Model I

We consider a biofilm in 0 < z < s as illustrated in Fig. 1, surrounded by nutrient-rich water,
behaving as a gel, and with an osmotic pressure described by the Flory-Huggins theory. We also
take both the polymer and the interstitial water to be viscous, and to interact via an interfacial drag
term. Biomass growth is assumed to be rate-limited by one nutrient, for example the dissolved
oxygen in water acting as the electron acceptor. Biomass is lumped in with the EPS in the model,
combining cellular growth and EPS production.

Mass conservation gives, noting that 1− φ is the volume fraction of water,

φt + ∇. (φv) = g(φ, c), −φt + ∇. [(1− φ)w] = 0, (2)

where v and w denote polymer and solvent phase-averaged velocities, and g is a growth term.

Polymer-Solvent Model II
The concentration c is that of the assumed rate-limiting nutrient, and satisfies

[(1− φ)c]t + ∇. [(1− φ)cw] = ∇. [(1− φ)D∇c]− r(φ, c), (3)

with D a diffusion coefficient, and r nutrient uptake by biomass. Assuming Monod kinetics,
g = Gφc

K+c, r = Rφc
K+c, where G, R and K are constants. Momentum equations for slow two-

phase flow are

0 = µ∇. [φ(∇v + ∇vT )]− fφ(1− φ)(v −w)−∇Ψ− φ∇p,

0 = µw∇. [(1− φ)(∇w + ∇wT )] + fφ(1− φ)(v −w)− (1− φ)∇p. (4)

Here, p is fluid pressure, Ψ is the osmotic pressure given by (1), µ is the long-time viscosity of
the polymer matrix, µw is the viscosity of water, and the term in f is an interfacial drag term.
The solvent viscous term is negligible, so that equation (4)2 is just Darcy’s law, and f is given by
f =

µw(1−φ)
kφ , essentially defining the permeability k. We assume that f is constant.

Eqns (4) are the same as those given by Cogan and Keener (2004). Cogan and Keener now argue
that since φ is small, the interfacial drag term can be ignored. This leads them to an approximate
model which is quite different to the one we derive here, where we find that in fact the interfacial
friction term is dominant.

Nondimensionalisation

If χ > 1
2, then a stable gel fraction φeq ≈ 6(χ − 1

2) can exist where Ψ = 0. This suggests that
we balance Ψ ∼ ELφ

3, expecting that this will be appropriate if the poorly constrained Flory
parameter χ is close to (and greater than) one half. So we choose the scales
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The lengthscale is based on a balancing the uptake and diffusion terms in the nutrient equation,
representing the depth of the active layer of biofilm. The time and velocity scales are chosen to
balance the growth rate. The pressure scale reflects a balance between the interfacial drag and
pressure terms in (4)2. The scale φ0 is chosen by balancing the osmotic and interfacial drag terms
in (4)1.

The non-dimensional forms of the equations (1), (2), (3) and (4) are
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,

−εφt + ∇. [(1− εφ)w] = 0,
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,

0 = β∇. [φ(∇v + ∇vT )]− φ(1− εφ)(v −w)−∇Ψ− εφ∇p,

0 = γ∇. [(1− εφ)(∇w + ∇wT )] + φ(1− εφ)(v −w)− (1− εφ)∇p,

Ψ = −λφ2 + 1
6φ

3 + O(ε). (6)

The parameters are defined by, and take the approximate values:

ε = φ0 ≈ 0.37× 10−2, κ =
K
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Reduced 1D Model

In one dimension the reduced model obtained by setting small parameters to zero can be written

φt + (φv)z =
φc

κ + c
, vz + Pzz = 0, czz =
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, (7)

where P (φ) =
∫ φ

6λ
Ψ′(φ) dφ

φ , subject to

φ = 6λ, c = 1, st = v on z = s; φz = cz = v = 0 on z = 0. (8)

It follows that v = −Pz, and thus that φ satisfies the nonlinear diffusion equation

φt = (Λφz)z +
φc

κ + c
, (9)

where we write Λ(φ) = Ψ′(φ) = 1
2φ(φ− 4λ) (since φP ′ = Ψ′). We therefore require φ > 4λ (no

phase separation) for the current problem to be well posed.

The 1D model has travelling wave solutions, functions of η = Ut−z. The appropriate conditions
in the far field are c→ 0, φ→ φ∞ as η →∞; both U and φ∞ must be determined as part
of the solution. With primes denoting differentiation with respect to η, the equations become
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κ + c
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. (10)

A first integral of these equations can be found. Numerical solutions of the resulting coupled
ordinary differential equations are plotted below, alongside numerical solutions of the transient
1D equations (7). The fully time-dependent solutions approach the travelling waves as time
increases. Further details may be found in [3].

Travelling-wave numerical solutions. Fully transient numerical solutions.

Conclusions

We model biofilm growing on an impermeable substratum based on the material properties of
a polymer solution. Estimates of typical scales lead to a different mathematical description to
earlier work. Solutions of the model converge to a travelling wave solution strongly dependent on

the dimensionless parameter λ =
φeq
6
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. The travelling wave solution provides the

expression U =
GD

R

cz|z=s

φ|z=0
for the growth velocity of the biofilm surface in dimensional terms.

This is also a good approximation in the time-dependent case of relatively thin biofilms for which
nutrient penetrates the full biofilm depth, and thus provides reasonable scope for comparison with
experiment.
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