NOMAD: Application Participation
in a
Global Location Service

Kris Bubendorfer and John H. Hine

School of Mathematical and Computing Sciences, Victoria University of Wellington,
P.0.Box 600, Wellington 6001, New Zealand

Kris.Bubendorfer@vuw.ac.nz, John.Hine@vuw.ac.nz

Abstract. The rapid growth of the world wide web has led to the wider
appreciation of the potential for Internet-based global services and ap-
plications. Currently services are provided in an ad hoc fashion in fixed
locations, which users locate and access manually. Mobility adds a new
dimension to the location of such services in a global environment. Most
systems supporting mobility rely on some form of home-based redirec-
tion which results in unacceptable residual dependencies. Nomad is a
middleware platform for highly mobile applications. A significant contri-
bution of the Nomad platform is a novel global object location service
that involves the participation of both applications and global structures.

1 Introduction

Mobile code is a powerful paradigm for the creation of distributed software [1].
Applications constructed of mobile code are able to execute more efficiently, ex-
ploit heterogeneity and dynamically adapt to changes in their environment. The
NOMAD (Negotiated Object Mobility, Access and Deployment) [2] architecture
is a platform that provides a distributed systems infrastructure to support ap-
plications constructed of mobile code. The challenges faced by such applications
include: the discovery of resources required for execution, the establishment of
rights to access these resources, and the ability of an application to locate and
coordinate its component parts. These issues are addressed by three comple-
mentary platform elements. Firstly NOMAD embodies an electronic Market-
place, through which applications locate and obtain the resources they require.
Secondly, applications form contracts with the virtual machines on which they
execute, specifying the quality of service to be provided. Lastly, NOMAD pro-
vides a global location service, to track the migration of code throughout the
system, and to enable the various components of an application to coordinate to
satisfy their collective goals. The ability to rapidly and reliably locate a mobile
object or other resource is a critical and limiting factor in the growth of any
large scale distributed system.

Location service research has previously concentrated on architectures with
a geographical or organisational basis [3—7]. Most middleware location services,



II

such as those offered by CORBA and Java RMI, do not address the question
of mobility on a global scale, nor solve problems with residual dependencies.
Other technologies such as Mobile IP [8] do not address location independence,
transparency or residual dependencies.

This paper presents the Nomad location service, the design of which involves
the participation of both applications and global infrastructure.

2 An Overview of the Nomad Architecture

NOMAD consists of loosely coupled cooperating virtual machines, named De-
pots, that host distributed applications. Each Depot independently provides a
collection of local resources ranging from CPU cycles through to consistency
protocols, which are made available to applications in return for payment. Ap-
plications utilise these resources to provide services to their clients, and negotiate
to alter their resource profile as the demand for their services changes.

An application within NOMAD is a logical grouping of mobile code that
performs one or more services (functions) for some client (another application,
user etc.), employing the resources of one or more Depots. An application can
range from a single mobile agent, implemented within a single piece of code
and offering a single service, through to a collection of many pieces of mobile
code offering many different services. The distinction is that an application is an
autonomous unit of administration and identity, that is, the parts are cohesive
and managed collectively.

Many language based objects, such as integers and strings, are too small to
be independently mobile. An application’s objects are arranged (by the program-
mer) into Clusters. The Cluster is a sophisticated wrapper that provides both
mechanisms for mobility, and isolation of namespaces. References within a Clus-
ter are handled by standard run-time support for intraprocess communication,
while all references outside the Cluster take place as interprocess communica-
tions via proxies.

An application is responsible for: initiating negotiation for resources, direct-
ing the distribution of its own clusters, handling unrecoverable failures, and
maintaining part of the location service. Each application controls its degree of
distribution by placing and replicating its clusters to achieve QoS goals such as
reduced latency to clients, redundancy and concurrent processing. The applica-
tion negotiates with Depots via the NOMAD Marketplace for the resources that
it requires. For their part, Depots use policies [9] to price their resources and to
organise such things as the balance of work amongst a federation of Depots, or
the quality of service ranges that individual Depots offer. A federation of Depots
(as shown in Fig. 1) reflects common ownership, or administration of the Depots.

An application within Nomad consists of at least: a Contact Object (CO),
Service Object (SO) and Location Table (LT). Figure 1 illustrates a client (C1)
bound to the CO of Application 1, with which it must negotiate in order to
obtain a service object. This situation is shown by client (C2), which is bound
to the SO of Application 2 and from which it is receiving the requested service.



111

Depot

Federation 1

Depyt

Federation 2

Client

Application 1 Clusters

O Application 2 Clusters

Fig. 1. Interactions.

Each Depot [10] consists of a Depot Manager and a set of managed virtual
hosts (vHosts). Management policies dictate how each Depot will react to spe-
cific circumstances: how it will ensure levels of service and how it interacts with
Depots within and outside of its federation. The Depot Manager is also respon-
sible for responding to negotiation, charging, and arranging the hosting of the
global NOMAD infrastructure components. A vHost is a virtual machine on
which application code executes. A vHost is responsible for managing physical
resource use, security, fault detection, and communication.

The Marketplace provides a set of services allowing applications to discover
available resources and to contract with Depots for the provision of those re-
sources. Negotiation within the Marketplace utilises the the Vickrey auction [11]
protocol. Applications requiring a contract construct a description of their re-
quirements in a resource description graph.

The combination of the consistent local infrastructure provided by the Depot
architecture, and the global infrastructure provided by NOMAD services, com-
bine to form a consistent and interlocking environment for distributed mobile
applications. The location service provides dynamic binding to mobile objects
and the initial discovery of services — by providing a reference for an appropriate
contact object.

The remainder of this paper includes section 3.1, a short introduction on
naming that illustrates how the Nomad location service, integrates with the pro-
posed Internet Engineering Task Force uniform resource naming scheme (URN).
The contribution of this paper, however, is in the design of the Nomad location
service, and this starts with the underlying motivation in section 3.2.



v

3 The Nomad Location Service

A location service needs to track the location of each mobile object throughout
that object’s lifetime. In a large scale distributed system the location service may
have to deal with billions of objects, some of which will be moving frequently.
Scaling a system to this degree requires wide distribution, load balancing and a
minimum of coordinating network traffic. The general capabilities required for
the Nomad location service are that: a client should be able to locate and bind
to a target application for which it holds only a name, the relocation of an object
should be supported in a manner that is transparent to the users of that object,
an application should be able to locate and bind to all of its element objects,
and the service should scale.

3.1 Naming

The URN [12-14] is a human readable name which is translated into a physical
location (possibly a URL) by a URN resolver.

The purpose or function of a URN is to provide a globally unique, per-
sistent identifier used for recognition, for access to characteristics of the
resource or for access to the resource itself [12].

URNSs are intended to make it easy to map other namespaces (legacy and
future support) into the URN-space. Therefore the URN syntax must provide
a means to encode character data in a form that can be sent using existing
protocols and transcribed using most keyboards [15].

Each URN has the structure <URN> ::= "urn:"<NID>":"<NSS>. The NID
(namespace identifier) distinguishes between different namespaces, or contexts,
which may be administered by different authorities. Such authorities could in-
clude ISO, ISBN, etc. The NSS (namespace specific string) is only valid within its
particular NID context, and has no predefined structure. As pointed out in [13],
the significance of this syntax is in what is missing, as it is these omissions
which make the URN persistent. That is, there is no communications protocol
specified, no location information, no file system structure and no resource type
information.

URN resolution can be broken down into two steps; finding a resolver for
a particular URN, and then resolving that URN. Finding a specific resolver
requires a Resolver Discovery Service (RDS) [16,14] as shown in Fig. 2. It is
important to emphasise that the RDS need not cope with the high degrees of
mobility, as found in Nomad, but rather must cope with the lesser mobility of
NID resolvers.

URNSs solve the naming problem, and use of the RDS integrates the superset
of URN schemes. However, the location problem remains unaddressed, and so-
lutions to the location problem are domain specific. The remaining parts of this
paper are dedicated to documenting the design of the Nomad location service.
From the point of the naming system, the Nomad location service fulfils the role
of URN Resolver for the Nomad context.



Resolver
Discovery

< gton® edu
m‘phor\e'.\’\7-1‘“8““1g Service
find urt: S (elecom.co-"%
ask un.

find urn:phone;

nz:wellingron:edu:victoria
+64—O4~472—1000 s

Resolver

-victori2

Client

Fig. 2. Resolver Discover Service.

3.2 Exploiting Application Locality

Existing systems, such as those cited in Sect. 1, have one thing in common: a
reliance on geography — either based partly on country codes as in the DNS,
or totally as with the quad tree mapping in Globe. The major argument be-
hind Globe’s use of a geographical structure is to provide locality of reference.
In highly mobile systems such as Nomad this no longer holds true, as applica-
tion objects are envisioned as using their mobility to move closer to clients and
resources. Using an organisational basis is also problematic for the same reasons.

Instead there is another form of locality which can be exploited — the locality
of reference within an application. If you interact with an application object once,
chances are that you are quite likely to interact with it, or a related object from
the same application, again.

The Nomad location service endeavours to take advantage of this and builds
the basis of its location service around the concept of the application. That is,
each application is wholly responsible for tracking and locating its objects on
behalf of itself, the Nomad system and its clients. In order to do this, the appli-
cation maintains a set of location tables (LTs) that hold the current locations
of all of the application’s Clusters, and consequently their objects. In addition
to providing locality of reference, an application’s location tables exhibit a high
degree of inherent load distribution (they are as distributed as the applications
themselves), and permit the application to tailor its location table to suit its

Y

needs and reference characteristics.

3.3 Design Overview

The Nomad location service must meet two distinct requirements; the discov-
ery of services and the resolution of out-of-date bindings. Discovery provides an
external interface used to establish an initial binding, while rebinding occurs
internally and transparently. These two systems act independently but syner-
gistically and are illustrated in Fig. 3. In addition, this figure highlights the
separation between the Nomad level services above the dividing line, and the
application level ones below.

The following list is a brief overview of the various location service compo-
nents which feature in Fig. 3:



VI

Discovery Rebinding

YP LTL

pewon

uonesddy

| \
Lol
| i
v |

SO

Fig. 3. Discovery and rebinding are complementary parts of the location service.

— Yellow Pages (YP): The Yellow Pages is the Nomad URN resolver, re-

turned by the URN RDS from Fig. 2. The Yellow Pages takes a textual URN
string and returns a reference to a contact object representing the service
named. This is a Nomad level service.

— Contact Object (CO): Part of the application responsible for negotiating

with the client to provide needed services. Once negotiation is successfully
completed, the contact object returns a service object interface to the client.

— Service Object (SO): This is any object within the application which

provides a contracted service to a client. It is to this object that the final
binding is made.

— Location Table Object (LT): A required part of each application within

Nomad. A location table contains references to all of the Clusters composing
an application and is responsible for tracking their movement.

— Location Table Locator (LTL): The location table locator is a well known

Nomad service. It is responsible for locating and tracking all the location
tables of all of the applications executing within Nomad. The initial reference
to the LTL is obtained via the Yellow Pages and cached by each Depot.

— Local Interface Repository (LIR): This is not part of the location service

as such (not shown in Fig. 3), rather it is part of the Depot architecture. It
is maintained by the local Depot and acts as a source of useful references,
such as the LTL. The LIR may be accessed by both applications and vHosts
resident on a particular Depot.

Each mobile Cluster has a reference to a location table object, which is

shared by all mobile Clusters belonging to the same application. The location
table object, which is in its own mobile Cluster, has in turn a reference to the
global location table locator. All objects created in a mobile Cluster share the
same location table.

As an example, consider a client which holds a textual URN for a service

which it needs to use. This requires the discovery facet of the location service
and the first step is to find a resolver for the URN using the RDS. Once the
RDS system identifies the Yellow Pages as the Nomad URN resolver, the name

is

resolved returning a binding to an application specific contact object. The



VII

service is then provided to the client via a service object returned through the
contact object.

When an object moves, all existing bindings held on that object become
outdated. Resolving these bindings needs the rebinding hierarchy of the location
service. Once a binding is outdated, subsequent invocations on that object will
fail. The local proxy representing the binding will transparently rebind via a
cached reference to the object’s Cluster’s location table. As the location table is
also a mobile object, it may also have moved, requiring the rebinding to resort
the next level — the location table locator (LTL).

Update Rarely Backbone of Machines
Name Service

Update Infrequently Subset of Machines

LT Locator

Update Often Location Table Widely Distributed

Fig. 4. Division of Labour.

Figure 4 illustrates the division of labour between the components of the
naming and location service resulting from this location service architecture. As
the load increases towards the bottom of the pyramid, so does the degree of
distribution.

The remainder of this paper is dedicated to discussing in greater detail, the
individual location service components. Sections 3.4 through 3.7 are arranged
following the different phases of an application’s life within the system, that is,
its creation, registration, discovery, mobility and rebinding.

3.4 Creating an Application

Let’s first consider creating an application from outside Nomad. To do this, a
launcher negotiates for an initial vHost on which the application can be started.

The launcher then invokes the createApplication method on the vHost, trig-
gering the events detailed in Fig. 5. The vHost starts by creating a Cluster for
holding the new application’s location table, and sets the resolver! for the loca-
tion table Cluster to be the location table locator. The location table object is
then instantiated inside the new Cluster.

The vHost next creates a Cluster for the application object and sets its re-
solver to the newly created location table object. It then instantiates an object
of the specified application class in the application Cluster and returns to the
launcher the interface (if any) on the application object. From this point the ap-
plication will start to execute and construct itself independently of the launcher.

! Each mobile Cluster has a cached reference to its resolver.



VIII

LTL.map(LTCluster, location)

VvHost.createApplication(...) Create aLT cluster Create

|

|

Get LTL from LIR |
ﬁ ‘

|

|

Set LT cluster resolver to LTL
Create LT in LTCluster

Create an App. cluster I
Set App. cluster resolver to LT Create |
Create App. object in App cluster —) }
|
|
|
|
|

Return App. object stub

Application stub

1

VHOSt Application Executes
[

|
|
|
|
|
|
|
} 1 LT.map(AppCluster, location)
|
|
|
|
|
|
|
|
|
|

Fig. 5. Creating an application in Nomad

The steps for one Nomad application to create another application are simi-
lar.

3.5 Registering a Service

The creation of the application will not automatically create a corresponding
entry in the Yellow Pages. It is now up to the application to register a URN via
the steps illustrated in Fig. 6. Otherwise it can simply remain anonymous to the
outside world and respond only to the holder of the interface returned upon its
creation.

Fig. 6. Registering a service



IX

The application starts by obtaining a reference to a contact object (CO)
representing itself, usually by creating it. The next step is to find the Yellow
Pages with which the application needs to register, by using the Depot’s LIR
to acquire a reference to the Yellow Pages. With the Yellow Pages stub, it then
registers the URN::CO association.

There is no dictate over what mappings are registered, combinations could
include; one URN to one contact object, multiple URNs to one contact object,
or multiple URNs to multiple contact objects.

As an example of what may be registered, consider the following URN which
an application wishes to register: urn:nomad:apps/currencyconverter. The
associated contact object may offer different levels of service e.g. gold, silver and
bronze, and will return the appropriate service object for each level. Alternatively
the application could register three different URNs, each with a unique contact
object for the individual service levels.

3.6 Obtaining a Service

Figure 7 illustrates the four steps and seven messages which are needed to obtain
a service from an application, starting from a textual service name. The example
given here shows the initial binding to a Whiteboard application — from outside
the Nomad system. From within the system, the RDS step would be unnecessary
as the reference to the Yellow Pages is available from the LIR, the external access
is shown here for completeness.

. find urn:nomad:apps/whiteboard
Client 1

aes a2
WP

: find urn:nomad:apps/whiteboard
Client 2 _
S

Buiwren NYN

Wh\\e‘)

WhiteboardCO.getWhiteBoard(this)

Client 3

c )
‘003 P““\\
Wt

92IAISS UOJRI0T PeWoN

WhiteboardPublic.write(msg)

Client 4

Fig. 7. Locating an Object.

The first step involves the discovery of the URN resolver that resolves names
for the domain urn:nomad. In Nomad the URN name resolver is the Yellow
Pages, to which a reference is returned by the RDS. The client then queries
the Yellow Pages with the same URN, and in reply gets a reference to the



X

Whiteboard contact object. The methods which a client can invoke on a contact
object depend upon the application — in this case it is a request for a shared
Whiteboard. The Contact object returns a WhiteboardPublic stub to the client
which is an interface on the service object and is used to write to the Whiteboard.

All four steps need only be performed once during interaction with a service.
However, when dealing with mobile objects it is possible that an object will
have moved since it was last referenced. This then requires rebinding to occur
transparently, as detailed in Sect. 3.7.

3.7 Moving and Rebinding an Object

From the perspective of the location service, moving an existing object is sim-
ilar to creating a new object. The migration process transparently invokes the
map method on the location table responsible for tracking the migrating ob-
ject’s Cluster. This ensures the correct binding of future references, but does not
resolve the issue of outstanding references which no longer specify the correct
location.

local

some remote Invoke
client - -
invocation

proxy

e
Invoke
client | vHost
Reply

Fig. 8. Rebinding to an Object.

Fig. 8 illustrates what happens when one such outdated reference is used
to invoke a method on a remote object. The invocation by the client causes
the local proxy to use the object reference it held from the previous invocation.
The proxy contacts a vHost which no longer hosts the target object. When the
vHost’s communications stack attempts to invoke the remote method on the
object an exception occurs and an error is returned to the invoking proxy.

The local proxy next uses a cached reference to the location table responsible
for tracking the target object’s Cluster to request a new binding. The location
table replies with the new Cluster location and the proxy reissues the original
invocation to the object on its new vHost and caches the new location. Note that
the call to the location table is simply another remote invocation via a proxy.
Since the location table is also mobile, this may result in a cascaded rebinding,
as shown in Fig. 9.



XI
local

i some remote Invoke
client - -
invocation

proxy

Exro:

Invoke
| VvHost”
Reply

Fig. 9. Cascaded location table rebinding.

In Fig. 9, the call to the location table by the location table proxy fails. As
in Fig. 8, this results in an error being returned to the location table proxy. The
location table proxy then acts in exactly the same way as the local proxy and
uses its cached reference to contact the location table locator responsible for
tracking the target location table Cluster. The new Cluster location is returned,
the location table’s location is updated within the proxy, and the original query
reissued to the location table. The location table returns the new location of
the target object’s Cluster to the original proxy, and the original invocation is
reissued.

In the two previous examples all rebinding took place dynamically and trans-
parently to the application. It is worth summarising a few cases where trans-
parency can no longer be maintained:

— In the case where an object no longer exists, the same steps as shown in
Fig. 8 take place, except that the rebinding fails. At this point transparency
can no longer be maintained and the failure is handed back to the client.
How the application recovers is application dependent.

— Where there is a complete failure of the application, and the rebind
through the location table locator fails to find a valid location table, then
assuming the application can restart, all steps from Fig. 7 need to be re-
peated.

A significant advantage of the separate rebinding hierarchy is now evident —
it does not matter if the contact object references held by the Yellow Pages are



XII

outdated, as they will be automatically rebound the first time they are invoked
and found to be incorrect. This means that unless the application changes its
contact object, the Yellow Pages does not need to be immediately updated to
reflect changes due to mobility of the contact objects. Instead, the Yellow Pages
can utilise a lazy, best effort update as omissions, delays and inconsistencies will
be caught and then corrected by the rebinding system.

4 TImplementation

The location service has been implemented in a Java prototype of the Nomad
architecture. Location tables are created and managed automatically as part
of the Nomad mobile Cluster package. The system accommodates transparent
replication of location tables, consistency and fault tolerance, details of which
appear in [2].

This paper has concentrated on the overall architecture of the twin discov-
ery and resolution hierarchies, and the novel application level location tables.
Development of a specific location table location service would be redundant, as
other research efforts, in particular Globe [5-7], are readily applicable solutions
for this component of the system.

5 Summary

This paper presents a novel solution to the design of a distributed location service
for large scale mobile object systems. The use of the application to optimise the
distribution of the location tables, limits the impact of the majority of updates
to these small and infrequently mobile data structures. The remaining global
workload only involves resolving the locations of the location tables themselves,
ensuring an implicit ability to scale. Higher level bindings are stable within the
discovery hierarchy.

The application architecture, which separates the roles of contact and service
objects, along with the use of application specific location tables, encourages
an application to intelligently distribute itself to meet negotiated client QoS
requirements.

References

1. Lange, D.B., Oshima, M.: Seven Good Reasons for Mobile Agents. Communica-
tions of the ACM 42 (1999) 88-89

2. Bubendorfer, K.: NOMAD: Towards an Architecture for Mobility in Large Scale
Distributed Systems. PhD thesis, Victoria University of Wellington (2001)

3. Mockapetris, P.: Domain Names: Concepts and Facilities. Network Working Group,
Request for Comments (RFC) 1034 (1987)

4. Comer, D.E.: Computer Networks and Internets. 1st edn. Prentice-Hall (1997)



10.

11.

12.

13.

14.

15.

16.

XIII

Ballintijn, G., van Steen, M., Tanenbaum, A.S.: Exploiting Location Awareness for
Scalable Location-Independent Object IDs. In: Proceedings of the Fifth Annual
ASCI Conference, Heijen, The Netherlands, Delft University of Technology (1999)
321-328

van Steen, M., Homburg, P., Tanenbaum, A.S.: Globe: A Wide-Area Distributed
System. IEEE Concurrency 7 (1999) 70-78

van Steen, M., Hauck, F.J., Homburg, P., Tanenbaum, A.S.: Locating Objects in
Wide-Area Systems. IEEE Communications Magazine 36 (1998) 104-109
Tanenbaum, A.S.: Computer Networks. 3rd edn. Prentice-Hall (1996)

Damianou, N., Dulay, N., Lupu, E., Sloman, M.: PONDER: A Language for Speci-
fying Security and Management Policies for Distributed Systems. Technical Report
DoC 2000/1, Imperial College of Science Technology and Medicine (2000)
Bubendorfer, K., Hine, J.H.: DepotNet: Support for Distributed Applications. In:
Proceedings of INET’99, Internet Society’s 9th Annual Networking Conference.
(1999)

Vickrey, W.: Counterspeculation, Auctions, and Competitive Sealed Tenders. The
Journal of Finance 16 (1961) 8-37

Sollins, K., Masinter, L.: Functional Recommendations for Internet Resource
Names. Network Working Group, Request for Comments (RFC) 1737 (1994)
Sollins, K.R.: Requirements and a Framework for URN Resolution Systems. In-
ternet Engineering Task Force (IETF) Internet-Draft (1997)

Slottow, E.C.: Engineering a Global Resolution Service. Master’s thesis, Labora-
tory for Computer Science, Massachusetts Institute of Technology (1997)

Moats, R.: URN Syntax. Network Working Group, Request for Comments (RFC)
2141 (1997)

Tannella, R., Sue, H., Leong, D.: BURNS: Basic URN Service Resolution for the
Internet. In: Proceedings of the Asia-Pacific World Wide Web Conference, Beijing
and Hong Kong (1996)



