
NOMAD: Appli
ation Parti
ipationin aGlobal Lo
ation Servi
eKris Bubendorfer and John H. HineS
hool of Mathemati
al and Computing S
ien
es, Vi
toria University of Wellington,P.O.Box 600, Wellington 6001, New ZealandKris.Bubendorfer�vuw.a
.nz, John.Hine�vuw.a
.nzAbstra
t. The rapid growth of the world wide web has led to the widerappre
iation of the potential for Internet-based global servi
es and ap-pli
ations. Currently servi
es are provided in an ad ho
 fashion in �xedlo
ations, whi
h users lo
ate and a

ess manually. Mobility adds a newdimension to the lo
ation of su
h servi
es in a global environment. Mostsystems supporting mobility rely on some form of home-based redire
-tion whi
h results in una

eptable residual dependen
ies. Nomad is amiddleware platform for highly mobile appli
ations. A signi�
ant 
ontri-bution of the Nomad platform is a novel global obje
t lo
ation servi
ethat involves the parti
ipation of both appli
ations and global stru
tures.1 Introdu
tionMobile 
ode is a powerful paradigm for the 
reation of distributed software [1℄.Appli
ations 
onstru
ted of mobile 
ode are able to exe
ute more eÆ
iently, ex-ploit heterogeneity and dynami
ally adapt to 
hanges in their environment. TheNOMAD (Negotiated Obje
t Mobility, A

ess and Deployment) [2℄ ar
hite
tureis a platform that provides a distributed systems infrastru
ture to support ap-pli
ations 
onstru
ted of mobile 
ode. The 
hallenges fa
ed by su
h appli
ationsin
lude: the dis
overy of resour
es required for exe
ution, the establishment ofrights to a

ess these resour
es, and the ability of an appli
ation to lo
ate and
oordinate its 
omponent parts. These issues are addressed by three 
omple-mentary platform elements. Firstly NOMAD embodies an ele
troni
 Market-pla
e, through whi
h appli
ations lo
ate and obtain the resour
es they require.Se
ondly, appli
ations form 
ontra
ts with the virtual ma
hines on whi
h theyexe
ute, spe
ifying the quality of servi
e to be provided. Lastly, NOMAD pro-vides a global lo
ation servi
e, to tra
k the migration of 
ode throughout thesystem, and to enable the various 
omponents of an appli
ation to 
oordinate tosatisfy their 
olle
tive goals. The ability to rapidly and reliably lo
ate a mobileobje
t or other resour
e is a 
riti
al and limiting fa
tor in the growth of anylarge s
ale distributed system.Lo
ation servi
e resear
h has previously 
on
entrated on ar
hite
tures witha geographi
al or organisational basis [3{7℄. Most middleware lo
ation servi
es,



IIsu
h as those o�ered by CORBA and Java RMI, do not address the questionof mobility on a global s
ale, nor solve problems with residual dependen
ies.Other te
hnologies su
h as Mobile IP [8℄ do not address lo
ation independen
e,transparen
y or residual dependen
ies.This paper presents the Nomad lo
ation servi
e, the design of whi
h involvesthe parti
ipation of both appli
ations and global infrastru
ture.2 An Overview of the Nomad Ar
hite
tureNOMAD 
onsists of loosely 
oupled 
ooperating virtual ma
hines, named De-pots, that host distributed appli
ations. Ea
h Depot independently provides a
olle
tion of lo
al resour
es ranging from CPU 
y
les through to 
onsisten
yproto
ols, whi
h are made available to appli
ations in return for payment. Ap-pli
ations utilise these resour
es to provide servi
es to their 
lients, and negotiateto alter their resour
e pro�le as the demand for their servi
es 
hanges.An appli
ation within NOMAD is a logi
al grouping of mobile 
ode thatperforms one or more servi
es (fun
tions) for some 
lient (another appli
ation,user et
.), employing the resour
es of one or more Depots. An appli
ation 
anrange from a single mobile agent, implemented within a single pie
e of 
odeand o�ering a single servi
e, through to a 
olle
tion of many pie
es of mobile
ode o�ering many di�erent servi
es. The distin
tion is that an appli
ation is anautonomous unit of administration and identity, that is, the parts are 
ohesiveand managed 
olle
tively.Many language based obje
ts, su
h as integers and strings, are too small tobe independently mobile. An appli
ation's obje
ts are arranged (by the program-mer) into Clusters. The Cluster is a sophisti
ated wrapper that provides bothme
hanisms for mobility, and isolation of namespa
es. Referen
es within a Clus-ter are handled by standard run-time support for intrapro
ess 
ommuni
ation,while all referen
es outside the Cluster take pla
e as interpro
ess 
ommuni
a-tions via proxies.An appli
ation is responsible for: initiating negotiation for resour
es, dire
t-ing the distribution of its own 
lusters, handling unre
overable failures, andmaintaining part of the lo
ation servi
e. Ea
h appli
ation 
ontrols its degree ofdistribution by pla
ing and repli
ating its 
lusters to a
hieve QoS goals su
h asredu
ed laten
y to 
lients, redundan
y and 
on
urrent pro
essing. The appli
a-tion negotiates with Depots via the NOMAD Marketpla
e for the resour
es thatit requires. For their part, Depots use poli
ies [9℄ to pri
e their resour
es and toorganise su
h things as the balan
e of work amongst a federation of Depots, orthe quality of servi
e ranges that individual Depots o�er. A federation of Depots(as shown in Fig. 1) re
e
ts 
ommon ownership, or administration of the Depots.An appli
ation within Nomad 
onsists of at least: a Conta
t Obje
t (CO),Servi
e Obje
t (SO) and Lo
ation Table (LT). Figure 1 illustrates a 
lient (C1)bound to the CO of Appli
ation 1, with whi
h it must negotiate in order toobtain a servi
e obje
t. This situation is shown by 
lient (C2), whi
h is boundto the SO of Appli
ation 2 and from whi
h it is re
eiving the requested servi
e.



III
Depot

Depot

Depot

Depot

Depot

Federation 1

Federation 2

C Client

Application 2 Clusters

Application 1 Clusters

co

so

C1

C2

Fig. 1. Intera
tions.Ea
h Depot [10℄ 
onsists of a Depot Manager and a set of managed virtualhosts (vHosts). Management poli
ies di
tate how ea
h Depot will rea
t to spe-
i�
 
ir
umstan
es: how it will ensure levels of servi
e and how it intera
ts withDepots within and outside of its federation. The Depot Manager is also respon-sible for responding to negotiation, 
harging, and arranging the hosting of theglobal NOMAD infrastru
ture 
omponents. A vHost is a virtual ma
hine onwhi
h appli
ation 
ode exe
utes. A vHost is responsible for managing physi
alresour
e use, se
urity, fault dete
tion, and 
ommuni
ation.The Marketpla
e provides a set of servi
es allowing appli
ations to dis
overavailable resour
es and to 
ontra
t with Depots for the provision of those re-sour
es. Negotiation within the Marketpla
e utilises the the Vi
krey au
tion [11℄proto
ol. Appli
ations requiring a 
ontra
t 
onstru
t a des
ription of their re-quirements in a resour
e des
ription graph.The 
ombination of the 
onsistent lo
al infrastru
ture provided by the Depotar
hite
ture, and the global infrastru
ture provided by NOMAD servi
es, 
om-bine to form a 
onsistent and interlo
king environment for distributed mobileappli
ations. The lo
ation servi
e provides dynami
 binding to mobile obje
tsand the initial dis
overy of servi
es | by providing a referen
e for an appropriate
onta
t obje
t.The remainder of this paper in
ludes se
tion 3.1, a short introdu
tion onnaming that illustrates how the Nomad lo
ation servi
e, integrates with the pro-posed Internet Engineering Task For
e uniform resour
e naming s
heme (URN).The 
ontribution of this paper, however, is in the design of the Nomad lo
ationservi
e, and this starts with the underlying motivation in se
tion 3.2.



IV3 The Nomad Lo
ation Servi
eA lo
ation servi
e needs to tra
k the lo
ation of ea
h mobile obje
t throughoutthat obje
t's lifetime. In a large s
ale distributed system the lo
ation servi
e mayhave to deal with billions of obje
ts, some of whi
h will be moving frequently.S
aling a system to this degree requires wide distribution, load balan
ing and aminimum of 
oordinating network traÆ
. The general 
apabilities required forthe Nomad lo
ation servi
e are that: a 
lient should be able to lo
ate and bindto a target appli
ation for whi
h it holds only a name, the relo
ation of an obje
tshould be supported in a manner that is transparent to the users of that obje
t,an appli
ation should be able to lo
ate and bind to all of its element obje
ts,and the servi
e should s
ale.3.1 NamingThe URN [12{14℄ is a human readable name whi
h is translated into a physi
allo
ation (possibly a URL) by a URN resolver.The purpose or fun
tion of a URN is to provide a globally unique, per-sistent identi�er used for re
ognition, for a

ess to 
hara
teristi
s of theresour
e or for a

ess to the resour
e itself [12℄.URNs are intended to make it easy to map other namespa
es (lega
y andfuture support) into the URN-spa
e. Therefore the URN syntax must providea means to en
ode 
hara
ter data in a form that 
an be sent using existingproto
ols and trans
ribed using most keyboards [15℄.Ea
h URN has the stru
ture <URN> ::= "urn:"<NID>":"<NSS>. The NID(namespa
e identi�er) distinguishes between di�erent namespa
es, or 
ontexts,whi
h may be administered by di�erent authorities. Su
h authorities 
ould in-
lude ISO, ISBN, et
. The NSS (namespa
e spe
i�
 string) is only valid within itsparti
ular NID 
ontext, and has no prede�ned stru
ture. As pointed out in [13℄,the signi�
an
e of this syntax is in what is missing, as it is these omissionswhi
h make the URN persistent. That is, there is no 
ommuni
ations proto
olspe
i�ed, no lo
ation information, no �le system stru
ture and no resour
e typeinformation.URN resolution 
an be broken down into two steps; �nding a resolver fora parti
ular URN, and then resolving that URN. Finding a spe
i�
 resolverrequires a Resolver Dis
overy Servi
e (RDS) [16, 14℄ as shown in Fig. 2. It isimportant to emphasise that the RDS need not 
ope with the high degrees ofmobility, as found in Nomad, but rather must 
ope with the lesser mobility ofNID resolvers.URNs solve the naming problem, and use of the RDS integrates the supersetof URN s
hemes. However, the lo
ation problem remains unaddressed, and so-lutions to the lo
ation problem are domain spe
i�
. The remaining parts of thispaper are dedi
ated to do
umenting the design of the Nomad lo
ation servi
e.From the point of the naming system, the Nomad lo
ation servi
e ful�ls the roleof URN Resolver for the Nomad 
ontext.



V
Client

Resolver
Discovery

Service

ask urn.telecom.co.nz

URN
Resolver

find urn:phone:nz:wellington:edu:victoria

find urn:phone:nz:wellington:edu:victoria+64−04−472−1000Fig. 2. Resolver Dis
over Servi
e.3.2 Exploiting Appli
ation Lo
alityExisting systems, su
h as those 
ited in Se
t. 1, have one thing in 
ommon: arelian
e on geography | either based partly on 
ountry 
odes as in the DNS,or totally as with the quad tree mapping in Globe. The major argument be-hind Globe's use of a geographi
al stru
ture is to provide lo
ality of referen
e.In highly mobile systems su
h as Nomad this no longer holds true, as appli
a-tion obje
ts are envisioned as using their mobility to move 
loser to 
lients andresour
es. Using an organisational basis is also problemati
 for the same reasons.Instead there is another form of lo
ality whi
h 
an be exploited | the lo
alityof referen
e within an appli
ation. If you intera
t with an appli
ation obje
t on
e,
han
es are that you are quite likely to intera
t with it, or a related obje
t fromthe same appli
ation, again.The Nomad lo
ation servi
e endeavours to take advantage of this and buildsthe basis of its lo
ation servi
e around the 
on
ept of the appli
ation. That is,ea
h appli
ation is wholly responsible for tra
king and lo
ating its obje
ts onbehalf of itself, the Nomad system and its 
lients. In order to do this, the appli-
ation maintains a set of lo
ation tables (LTs) that hold the 
urrent lo
ationsof all of the appli
ation's Clusters, and 
onsequently their obje
ts. In additionto providing lo
ality of referen
e, an appli
ation's lo
ation tables exhibit a highdegree of inherent load distribution (they are as distributed as the appli
ationsthemselves), and permit the appli
ation to tailor its lo
ation table to suit itsneeds and referen
e 
hara
teristi
s.3.3 Design OverviewThe Nomad lo
ation servi
e must meet two distin
t requirements; the dis
ov-ery of servi
es and the resolution of out-of-date bindings. Dis
overy provides anexternal interfa
e used to establish an initial binding, while rebinding o

ursinternally and transparently. These two systems a
t independently but syner-gisti
ally and are illustrated in Fig. 3. In addition, this �gure highlights theseparation between the Nomad level servi
es above the dividing line, and theappli
ation level ones below.The following list is a brief overview of the various lo
ation servi
e 
ompo-nents whi
h feature in Fig. 3:



VI
YP

CO

LTL

LT

N
om

ad 
A

pplication

Discovery Rebinding

SOFig. 3. Dis
overy and rebinding are 
omplementary parts of the lo
ation servi
e.{ Yellow Pages (YP): The Yellow Pages is the Nomad URN resolver, re-turned by the URN RDS from Fig. 2. The Yellow Pages takes a textual URNstring and returns a referen
e to a 
onta
t obje
t representing the servi
enamed. This is a Nomad level servi
e.{ Conta
t Obje
t (CO): Part of the appli
ation responsible for negotiatingwith the 
lient to provide needed servi
es. On
e negotiation is su

essfully
ompleted, the 
onta
t obje
t returns a servi
e obje
t interfa
e to the 
lient.{ Servi
e Obje
t (SO): This is any obje
t within the appli
ation whi
hprovides a 
ontra
ted servi
e to a 
lient. It is to this obje
t that the �nalbinding is made.{ Lo
ation Table Obje
t (LT): A required part of ea
h appli
ation withinNomad. A lo
ation table 
ontains referen
es to all of the Clusters 
omposingan appli
ation and is responsible for tra
king their movement.{ Lo
ation Table Lo
ator (LTL): The lo
ation table lo
ator is a well knownNomad servi
e. It is responsible for lo
ating and tra
king all the lo
ationtables of all of the appli
ations exe
uting within Nomad. The initial referen
eto the LTL is obtained via the Yellow Pages and 
a
hed by ea
h Depot.{ Lo
al Interfa
e Repository (LIR): This is not part of the lo
ation servi
eas su
h (not shown in Fig. 3), rather it is part of the Depot ar
hite
ture. Itis maintained by the lo
al Depot and a
ts as a sour
e of useful referen
es,su
h as the LTL. The LIR may be a

essed by both appli
ations and vHostsresident on a parti
ular Depot.Ea
h mobile Cluster has a referen
e to a lo
ation table obje
t, whi
h isshared by all mobile Clusters belonging to the same appli
ation. The lo
ationtable obje
t, whi
h is in its own mobile Cluster, has in turn a referen
e to theglobal lo
ation table lo
ator. All obje
ts 
reated in a mobile Cluster share thesame lo
ation table.As an example, 
onsider a 
lient whi
h holds a textual URN for a servi
ewhi
h it needs to use. This requires the dis
overy fa
et of the lo
ation servi
eand the �rst step is to �nd a resolver for the URN using the RDS. On
e theRDS system identi�es the Yellow Pages as the Nomad URN resolver, the nameis resolved returning a binding to an appli
ation spe
i�
 
onta
t obje
t. The



VIIservi
e is then provided to the 
lient via a servi
e obje
t returned through the
onta
t obje
t.When an obje
t moves, all existing bindings held on that obje
t be
omeoutdated. Resolving these bindings needs the rebinding hierar
hy of the lo
ationservi
e. On
e a binding is outdated, subsequent invo
ations on that obje
t willfail. The lo
al proxy representing the binding will transparently rebind via a
a
hed referen
e to the obje
t's Cluster's lo
ation table. As the lo
ation table isalso a mobile obje
t, it may also have moved, requiring the rebinding to resortthe next level | the lo
ation table lo
ator (LTL).
Name Service

Location Table

LT Locator

Update Often

Update Infrequently

Update Rarely

Widely Distributed

Subset of Machines

Backbone of Machines

Fig. 4. Division of Labour.Figure 4 illustrates the division of labour between the 
omponents of thenaming and lo
ation servi
e resulting from this lo
ation servi
e ar
hite
ture. Asthe load in
reases towards the bottom of the pyramid, so does the degree ofdistribution.The remainder of this paper is dedi
ated to dis
ussing in greater detail, theindividual lo
ation servi
e 
omponents. Se
tions 3.4 through 3.7 are arrangedfollowing the di�erent phases of an appli
ation's life within the system, that is,its 
reation, registration, dis
overy, mobility and rebinding.3.4 Creating an Appli
ationLet's �rst 
onsider 
reating an appli
ation from outside Nomad. To do this, alaun
her negotiates for an initial vHost on whi
h the appli
ation 
an be started.The laun
her then invokes the 
reateAppli
ation method on the vHost, trig-gering the events detailed in Fig. 5. The vHost starts by 
reating a Cluster forholding the new appli
ation's lo
ation table, and sets the resolver1 for the lo
a-tion table Cluster to be the lo
ation table lo
ator. The lo
ation table obje
t isthen instantiated inside the new Cluster.The vHost next 
reates a Cluster for the appli
ation obje
t and sets its re-solver to the newly 
reated lo
ation table obje
t. It then instantiates an obje
tof the spe
i�ed appli
ation 
lass in the appli
ation Cluster and returns to thelaun
her the interfa
e (if any) on the appli
ation obje
t. From this point the ap-pli
ation will start to exe
ute and 
onstru
t itself independently of the laun
her.1 Ea
h mobile Cluster has a 
a
hed referen
e to its resolver.



VIII
vHost.createApplication(...)

Application Executes

LTL

LTL.map(LTCluster, location)

LT
Create

Create
App

vHost

Application stub

LT.map(AppCluster, location)

Create a LT cluster
Get LTL from LIR
Set LT cluster resolver to LTL
Create LT in LTCluster

Create an App. cluster
Set App. cluster resolver to LT
Create App. object in App cluster

Return App. object stubFig. 5. Creating an appli
ation in NomadThe steps for one Nomad appli
ation to 
reate another appli
ation are simi-lar.3.5 Registering a Servi
eThe 
reation of the appli
ation will not automati
ally 
reate a 
orrespondingentry in the Yellow Pages. It is now up to the appli
ation to register a URN viathe steps illustrated in Fig. 6. Otherwise it 
an simply remain anonymous to theoutside world and respond only to the holder of the interfa
e returned upon its
reation.
App 2

App 1

get LIR
vHost

LIR stub

App 3 LIR
LIR.get(YellowPages)

YellowPages stub

YPApp 4

get CO 

YellowPages.put(name, CO)Fig. 6. Registering a servi
e



IXThe appli
ation starts by obtaining a referen
e to a 
onta
t obje
t (CO)representing itself, usually by 
reating it. The next step is to �nd the YellowPages with whi
h the appli
ation needs to register, by using the Depot's LIRto a
quire a referen
e to the Yellow Pages. With the Yellow Pages stub, it thenregisters the URN::CO asso
iation.There is no di
tate over what mappings are registered, 
ombinations 
ouldin
lude; one URN to one 
onta
t obje
t, multiple URNs to one 
onta
t obje
t,or multiple URNs to multiple 
onta
t obje
ts.As an example of what may be registered, 
onsider the following URN whi
han appli
ation wishes to register: urn:nomad:apps/
urren
y
onverter. Theasso
iated 
onta
t obje
t may o�er di�erent levels of servi
e e.g. gold, silver andbronze, and will return the appropriate servi
e obje
t for ea
h level. Alternativelythe appli
ation 
ould register three di�erent URNs, ea
h with a unique 
onta
tobje
t for the individual servi
e levels.3.6 Obtaining a Servi
eFigure 7 illustrates the four steps and seven messages whi
h are needed to obtaina servi
e from an appli
ation, starting from a textual servi
e name. The examplegiven here shows the initial binding to a Whiteboard appli
ation | from outsidethe Nomad system. From within the system, the RDS step would be unne
essaryas the referen
e to the Yellow Pages is available from the LIR, the external a

essis shown here for 
ompleteness.
RDSClient 1

Client 2

Client 3

Client 4

CO

SO

YP

find urn:nomad:apps/whiteboard

find urn:nomad:apps/whiteboard

WhiteboardCO stub

WhiteboardCO.getWhiteBoard(this)

WhiteboardPublic stub

WhiteboardPublic.write(msg)

try yp.mcs.vuw.ac.nz

U
R

N
 N

am
ing

N
om

ad Location S
erviceFig. 7. Lo
ating an Obje
t.The �rst step involves the dis
overy of the URN resolver that resolves namesfor the domain urn:nomad. In Nomad the URN name resolver is the YellowPages, to whi
h a referen
e is returned by the RDS. The 
lient then queriesthe Yellow Pages with the same URN, and in reply gets a referen
e to the



XWhiteboard 
onta
t obje
t. The methods whi
h a 
lient 
an invoke on a 
onta
tobje
t depend upon the appli
ation | in this 
ase it is a request for a sharedWhiteboard. The Conta
t obje
t returns a WhiteboardPubli
 stub to the 
lientwhi
h is an interfa
e on the servi
e obje
t and is used to write to the Whiteboard.All four steps need only be performed on
e during intera
tion with a servi
e.However, when dealing with mobile obje
ts it is possible that an obje
t willhave moved sin
e it was last referen
ed. This then requires rebinding to o

urtransparently, as detailed in Se
t. 3.7.3.7 Moving and Rebinding an Obje
tFrom the perspe
tive of the lo
ation servi
e, moving an existing obje
t is sim-ilar to 
reating a new obje
t. The migration pro
ess transparently invokes themap method on the lo
ation table responsible for tra
king the migrating ob-je
t's Cluster. This ensures the 
orre
t binding of future referen
es, but does notresolve the issue of outstanding referen
es whi
h no longer spe
ify the 
orre
tlo
ation.
Object

vHost

some remote

invocation

local

proxy

Invoke

Error: unknownCluster

proxy

LT

LT

new cluster location

Invoke

client

Reply
client

resolve

vHost’Fig. 8. Rebinding to an Obje
t.Fig. 8 illustrates what happens when one su
h outdated referen
e is usedto invoke a method on a remote obje
t. The invo
ation by the 
lient 
ausesthe lo
al proxy to use the obje
t referen
e it held from the previous invo
ation.The proxy 
onta
ts a vHost whi
h no longer hosts the target obje
t. When thevHost's 
ommuni
ations sta
k attempts to invoke the remote method on theobje
t an ex
eption o

urs and an error is returned to the invoking proxy.The lo
al proxy next uses a 
a
hed referen
e to the lo
ation table responsiblefor tra
king the target obje
t's Cluster to request a new binding. The lo
ationtable replies with the new Cluster lo
ation and the proxy reissues the originalinvo
ation to the obje
t on its new vHost and 
a
hes the new lo
ation. Note thatthe 
all to the lo
ation table is simply another remote invo
ation via a proxy.Sin
e the lo
ation table is also mobile, this may result in a 
as
aded rebinding,as shown in Fig. 9.



XI
some remote

invocation

local

proxy

vHost

Error: unknownCluster

proxy

LT

client

Invoke

Reply
client

Error: unknownCluster
vHost’

LTL

Invoke

resolve obj loc.

resolve LT loc.

resolve obj loc.
LT

new LT cluster location

new object cluster location

Object

?

?

vHost’’Fig. 9. Cas
aded lo
ation table rebinding.In Fig. 9, the 
all to the lo
ation table by the lo
ation table proxy fails. Asin Fig. 8, this results in an error being returned to the lo
ation table proxy. Thelo
ation table proxy then a
ts in exa
tly the same way as the lo
al proxy anduses its 
a
hed referen
e to 
onta
t the lo
ation table lo
ator responsible fortra
king the target lo
ation table Cluster. The new Cluster lo
ation is returned,the lo
ation table's lo
ation is updated within the proxy, and the original queryreissued to the lo
ation table. The lo
ation table returns the new lo
ation ofthe target obje
t's Cluster to the original proxy, and the original invo
ation isreissued.In the two previous examples all rebinding took pla
e dynami
ally and trans-parently to the appli
ation. It is worth summarising a few 
ases where trans-paren
y 
an no longer be maintained:{ In the 
ase where an obje
t no longer exists, the same steps as shown inFig. 8 take pla
e, ex
ept that the rebinding fails. At this point transparen
y
an no longer be maintained and the failure is handed ba
k to the 
lient.How the appli
ation re
overs is appli
ation dependent.{ Where there is a 
omplete failure of the appli
ation, and the rebindthrough the lo
ation table lo
ator fails to �nd a valid lo
ation table, thenassuming the appli
ation 
an restart, all steps from Fig. 7 need to be re-peated.A signi�
ant advantage of the separate rebinding hierar
hy is now evident |it does not matter if the 
onta
t obje
t referen
es held by the Yellow Pages are



XIIoutdated, as they will be automati
ally rebound the �rst time they are invokedand found to be in
orre
t. This means that unless the appli
ation 
hanges its
onta
t obje
t, the Yellow Pages does not need to be immediately updated tore
e
t 
hanges due to mobility of the 
onta
t obje
ts. Instead, the Yellow Pages
an utilise a lazy, best e�ort update as omissions, delays and in
onsisten
ies willbe 
aught and then 
orre
ted by the rebinding system.4 ImplementationThe lo
ation servi
e has been implemented in a Java prototype of the Nomadar
hite
ture. Lo
ation tables are 
reated and managed automati
ally as partof the Nomad mobile Cluster pa
kage. The system a

ommodates transparentrepli
ation of lo
ation tables, 
onsisten
y and fault toleran
e, details of whi
happear in [2℄.This paper has 
on
entrated on the overall ar
hite
ture of the twin dis
ov-ery and resolution hierar
hies, and the novel appli
ation level lo
ation tables.Development of a spe
i�
 lo
ation table lo
ation servi
e would be redundant, asother resear
h e�orts, in parti
ular Globe [5{7℄, are readily appli
able solutionsfor this 
omponent of the system.5 SummaryThis paper presents a novel solution to the design of a distributed lo
ation servi
efor large s
ale mobile obje
t systems. The use of the appli
ation to optimise thedistribution of the lo
ation tables, limits the impa
t of the majority of updatesto these small and infrequently mobile data stru
tures. The remaining globalworkload only involves resolving the lo
ations of the lo
ation tables themselves,ensuring an impli
it ability to s
ale. Higher level bindings are stable within thedis
overy hierar
hy.The appli
ation ar
hite
ture, whi
h separates the roles of 
onta
t and servi
eobje
ts, along with the use of appli
ation spe
i�
 lo
ation tables, en
ouragesan appli
ation to intelligently distribute itself to meet negotiated 
lient QoSrequirements.Referen
es1. Lange, D.B., Oshima, M.: Seven Good Reasons for Mobile Agents. Communi
a-tions of the ACM 42 (1999) 88{892. Bubendorfer, K.: NOMAD: Towards an Ar
hite
ture for Mobility in Large S
aleDistributed Systems. PhD thesis, Vi
toria University of Wellington (2001)3. Mo
kapetris, P.: Domain Names: Con
epts and Fa
ilities. NetworkWorking Group,Request for Comments (RFC) 1034 (1987)4. Comer, D.E.: Computer Networks and Internets. 1st edn. Prenti
e-Hall (1997)



XIII5. Ballintijn, G., van Steen, M., Tanenbaum, A.S.: Exploiting Lo
ation Awareness forS
alable Lo
ation-Independent Obje
t IDs. In: Pro
eedings of the Fifth AnnualASCI Conferen
e, Heijen, The Netherlands, Delft University of Te
hnology (1999)321{3286. van Steen, M., Homburg, P., Tanenbaum, A.S.: Globe: A Wide-Area DistributedSystem. IEEE Con
urren
y 7 (1999) 70{787. van Steen, M., Hau
k, F.J., Homburg, P., Tanenbaum, A.S.: Lo
ating Obje
ts inWide-Area Systems. IEEE Communi
ations Magazine 36 (1998) 104{1098. Tanenbaum, A.S.: Computer Networks. 3rd edn. Prenti
e-Hall (1996)9. Damianou, N., Dulay, N., Lupu, E., Sloman, M.: PONDER: A Language for Spe
i-fying Se
urity and Management Poli
ies for Distributed Systems. Te
hni
al ReportDoC 2000/1, Imperial College of S
ien
e Te
hnology and Medi
ine (2000)10. Bubendorfer, K., Hine, J.H.: DepotNet: Support for Distributed Appli
ations. In:Pro
eedings of INET'99, Internet So
iety's 9th Annual Networking Conferen
e.(1999)11. Vi
krey, W.: Counterspe
ulation, Au
tions, and Competitive Sealed Tenders. TheJournal of Finan
e 16 (1961) 8{3712. Sollins, K., Masinter, L.: Fun
tional Re
ommendations for Internet Resour
eNames. Network Working Group, Request for Comments (RFC) 1737 (1994)13. Sollins, K.R.: Requirements and a Framework for URN Resolution Systems. In-ternet Engineering Task For
e (IETF) Internet-Draft (1997)14. Slottow, E.C.: Engineering a Global Resolution Servi
e. Master's thesis, Labora-tory for Computer S
ien
e, Massa
husetts Institute of Te
hnology (1997)15. Moats, R.: URN Syntax. Network Working Group, Request for Comments (RFC)2141 (1997)16. Iannella, R., Sue, H., Leong, D.: BURNS: Basi
 URN Servi
e Resolution for theInternet. In: Pro
eedings of the Asia-Pa
i�
 World Wide Web Conferen
e, Beijingand Hong Kong (1996)


