Deadline Distribution Strategies for Scientific
Workflow Scheduling in Commercial Clouds

Vahid Arabnejad, Kris Bubendorfer and Bryan Ng
School of Engineering and Computer Science, Victoria University of Wellington, New Zealand
Email: {vahid, kris and bryan.Ng}@ecs.vuw.ac.nz

Abstract—

Commercial clouds have become a viable platform for per-
forming a significant range of large scale scientific analyses —
due to the offerings of elasticity, specialist hardware, software
infrastructure and pay-as-you-go cost model. Such clouds repre-
sent a low upfront capital cost alternative to the use of dedicated
eScience infrastructure. However, there are still significant tech-
nical hurdles associated with obtaining the best performance for
the cost - it is easy to provision commercial clouds inefficiently
resulting in great and potentially unanticipated expense.

In this paper we introduce a new heuristic scheduling algo-
rithm Deadline Distribution Ratio (DDR) to address the workflow
scheduling problem with the objectives of minimizing the cost
of Cloud computing resources while satisfying a given deadline.
Within this context, we also investigate a range of different
deadline distribution strategies and their effect on the overall
scheduling performance. We then compare the DDR algorithm
against three other published algorithms, using five different
scientific workflows generated using the pegasus workflow gen-
erator, on a CloudSim simulation that implements a pricing
model based on AWS. In general, the DDR algorithm returns
the lowest costs across the majority of deadlines and workflows,
while maintaining a high scheduling success rate.

1 INTRODUCTION

Basic research and consequently, scientific discovery, are in
the midst of a disruptive transformation, as traditional exper-
imental and observational approaches are enhanced and even
supplanted by computational and data-intensive approaches.
Researchers in almost every field are now faced with new
opportunities and challenges that impact every stage of the
research lifecycle due to the exponential growth of data
volumes, data heterogeneity, and exploding analytical com-
plexity. Unfortunately small to medium research laboratories
and groups often lack the human and financial resources [1]]
to acquire and operate such large scale scientific discovery
intrastructures.

This has resulted in a migration of science workflows [2],
[3] from dedicated infrastructure - to commercial clouds [4],
using execution engines such as Globus [5[, and more recently
paradigm shifts such as that envisioned by the recently pro-
posed discovery cloud [[1]]. Such schemes require considerable
software infrastructure to meet the needs of the science com-
munity, and such software needs to operate efficiently and cost
effectively. One critical element is the provisioning of pay-per-
use instances, and the subsequent scheduling of workflow tasks
over them — in essence we need to complete execution on time
and within budget. Scientific workflows vary in size from a
couple of tasks to thousands, or million of tasks and these

need to be scheduled in parallel and dependency order over,
potentially, many instances. This is a workflow scheduling
problem - and is inherently NP-complete.

There are two significant phases to solving such a workflow
scheduling problem: selecting the task to be scheduled, and
selecting the instance to be provisioned. The choices made
in these phases naturally have a significant impact on the
overall cost of the resulting schedule and if it can meet
its overall deadline. One approach is to divide or distribute
the deadline over the workflow as sub-deadlines to ensure a
more manageable constraint satisfaction problem, and then to
provision the instances to meet these sub-deadlines [6], [7].
This leaves us with two fundamental questions:

o« What are the different possible ways to distribute a

deadline over a workflow?

o How do these different strategies effect cost?

To answer these questions in this paper, we explore a range
of strategies for distributing a deadline over a workflow and
evaluate these using a cloudSim simulation. We find that the
choice of distribution strategy has a significant impact on
performance. We then incorporate these findings as the basis
for a new heuristic scheduling and provisioning algorithm,
Deadline Distribution Ratio (DDR). We then compare the cost
and success rate performance of DDR against three previously
published algorithms JIT [8]], ICPCP [9] and our prior work
PDC [6]. The CloudSim simulation used in the evaluations
implements an AWS pricing model and use five different
scientific workflows generated using the Pegasus workflow
generator.

Our paper is organized as follows: Section [2| gives an
overview of existing approaches to scheduling workflows.
In Section 3] we define the workflow scheduling problem
and describe our system model. In Section [d] we present
our workflow scheduling algorithm. In Section [3] and [6] we
outline our CloudSim-based simulation followed by results
and performance evaluation. Finally, we summarize our work
in Section [71

2 RELATED WORK

Allocating workflow tasks to resources can be separated
into two stages, the first being scheduling and the second
is provisioning [10]]. Given a set of resources, the workflow
task scheduling phase aims to determine the optimal execution
order and task placement with respect to user and workflow
constraints [[11f], [[12]]. The resource provisioning phase aims

to determine the number and type of resources required and
then to reserve these resources for workflow execution [13]],
[14].

As there are several recent and comprehesive surveys [2],
[3]] on workflow scheduling, we need not duplicate the authors
efforts. Therefore, for brevity, we only include a review
of directly related deadline constrained workflow schedulers
designed for a pay-per-use cloud environment.

One of the main strategies in the literature in deadline con-
strained workflow scheduling is distributing deadline among
tasks [9], [[15]-[17]. The distribution phase usually consists
of two steps, workflow partitioning and deadline assignment.
In the workflow partitioning, tasks can be considered as inde-
pendent tasks in levels versus dependent tasks into different
paths.

Deadline Bottom Level (DBL) [15] and Deadline Top Level
(DTL) [16] are the most popular deadline distribution heuris-
tics. DBL categorizes tasks in bottom-top direction while DTL
partition tasks in the opposite direction, top-bottom. In the
DBL heuristic, tasks are grouped in different levels where there
are no dependencies between tasks in each level. However,
tasks in DTL are categorized into paths as synchronization
task or a simple task. A synchronization task is defined as a
task which has more than one parent or child [|16].

In the deadline assignment step, the overall deadline is di-
vided and distributed in proportion to the minimum execution
time of each level. However, in DBL, first the primary esti-
mation on fastest instances is calculated. Then, the difference
between the user-defined deadline and the primary estimation
is distributed uniformly among all levels.

In Deadline Early Time (DET) [17], tasks are partitioned
into two types: critical and non-critical activities. All tasks on
the critical path are scheduled using dynamic programming un-
der a given deadline. Non-critical tasks are backfilled between
critical tasks. However, the communication time between tasks
in a workflow is not taken into account by the DET scheduler.

In [18]], we introduced the Proportional Deadline Con-
strained (PDC) algorithm for scheduling e-Science workflows
on commercial clouds. The PDC distributes the deadline
proportionally based on the task execution time over the levels.

Latest Finish Time (LFT) is also used to distribute deadline
to individual tasks in several algorithms [8], [9]. LFT is the
latest time at which a task can finish its execution such that the
whole workflow can finish before the user defined deadline.

Infrastructure as a service (Iaas) Cloud Partial Critical Paths
(IC-PCP) [9] categorizes tasks in partial critical paths (PCP).
In the next step, the deadline is distributed to defined paths.
However, after execution of each PCP, the value of LFT needs
to be recalculated.

The Just in Time (JIT) algorithm proposed by Sahni and
Vidyarthi in [8] is a dynamic cost minimization deadline
constrained algorithm. The JIT algorithm attempts to combine
pipeline tasks into a single task that can abrogate the data
transfer time between co-located tasks. The majority of algo-
rithms prioritize tasks to find the best candidate for execution
however, no such policy is used in JIT.

3 WORKFLOW AND SYSTEM MODELS

A Directed Acyclic Graph (DAG) is the most common
representation of a workflow [19]. A workflow is defined as a
graph G = (T, E) where T = {to, 11, ...,t,} is a set of tasks
represented by vertices and E = {e;; | t;;t; € T} is a set
directed edges denoting data or control dependencies between
tasks ¢; and ¢;.

An edge e;; € I represents the precedence constraint as
a directed arc between two tasks ¢; and t; where ¢;,t; € T.
The edge indicates that task ¢; can start only after completing
the execution of task ¢; with all data received from ¢; and this
implies that task ¢; is the parent of task ?;, and task ¢; is the
successor or child of task ¢;. Each task can have one or more
parents or children. Task ¢; cannot start until all parents have
completed.

The cost of executing task ¢; on instance p; is calculated
as:

. wy?
TaskCostf: = {]\Z -‘ * Cj, (1)
where ¢; is the cost of instance p; for one time interval. The
execution time of task ¢; on instance p; is denoted by wi ’
and [V; is the number of intervals.
The overall cost of executing all tasks in a workflow is
defined as:
Cost, = Z TaskC’ostf:j. 2)
t;€G

We assume that cloud vendors provide access to unlimited
number of instances and the instances are heterogeneous (de-
noted by P = {po,p1...pn}, where h is the index of the
instance type). We also assume that all instances and storage
services are located in the same region and also assume that
the average bandwidth between the instances is essentially
identical.

4 THE DDR ALGORITHM

In this section we outline our new Deadline Distribution
Ratio (DDR) algorithm. In addition to the two phases of task
selection and instance selection, when we perform deadline
distribution, we also need to introduce two additional phases,
giving:

(A) Workflow partitioning: The workflow is partitioned into
dependency free bags of tasks, called levels.

(B) Deadline Distribution: The user-defined deadline (1) is
divided and distributed between levels. Each level gets its
own level deadline. All tasks in the same level, have the
same level-deadline.

(C) Task Selection: A task is selected based on its priority in
the ready list for execution.

(D) Instance Selection: The instances are chosen to meet the
available deadline.

Critically this section also introduces six base and 14
combined distribution strategies that are evaluated in this paper
as part of the overall DDR algorithm.

4.1 Workflow partitioning

We aim to maximize task parallelism by arranging tasks in
levels, where within each level no tasks have dependencies on
another in the same level. Each level can therefore be thought
of as a bag of tasks (BoT) containing a set of independent
tasks. To allocate all tasks into different levels we categorize
tasks in bottom-top direction. We describe the level of task
t; as an integer representing the maximum number of edges
in the paths from task ¢; to the exit task. The level number
(denoted by Np,) associates a task to a BoT. For the exit task,
the level number is always 1, and for the other tasks, it is
determined by:

Np (t;) = max {Np(tj)+ 1}, 3)

tjEsuce(t;)
where succ(t;) denotes the set of immediate successors of
task ¢;. All tasks are then grouped into Task Level Sets (TLS)
based on their levels.

TLS(¢) = {;| Ny, (t:) = ¢}, &)

where £ is an integer denoting the level in [1... N (tentry)]-

4.2 Deadline Distribution

4.2.1 Initial Estimation: The initial estimated deadline for
each level (¢) is calculated as:

InitialTsd(f): Toax {ECT(t;)}, 3)

TLS(¢)
where ECT(¢;) denotes the Earliest Completion Time (ECT)
of task ¢; over all instances and the ECT is defined as

ECT(t;) = {InitialT.q(0), EST (t;)} + wy,, (6)

max
Lepred(t;)
where EST (t;) is defined in equation. 9] pred (t;) denotes
the set of predecessors of task ¢;; w;, denotes the minimum
execution duration for task ¢; and ¢ indicates the parent level
t;. The task, teniry has no predecessors, its ECT is equal to
zero. In equation [5 the maximum ECT of all tasks in a level
is used as the overall estimate for that level. This duration is
effectively the absolute minimum time that is required for all
tasks in a level to complete execution in parallel.

4.2.2 Deadline Distribution Strategies: The main idea of
deadline distribution is simple as distribute deadline among
different levels and try to complete its execution before any
assigned sub-deadline such that the global deadline can be
met.

The baseline deadline distribution strategies are:

o Random (R): The deadline is allocated randomly over the

levels in the workflow.

o Uniform (U): Each level gets a 1/L share of the deadline,
where L is the total number of levels.

o Height Proportional (H): Each level gets a share of the
user deadline proportional to its distance from the entry
node.

o Width Proportional (W): Each level gets a share of the
user deadline proportional to the number of tasks within
that level.

o Area Proportional (A): Combines width and height strate-
gies to set the deadline for each level.

o Length Proportional (L): Each level gets a share of the
deadline non-uniformly based on the proportion of its
length. levels with longer tasks gain a larger share of the
user deadline.

We now present an example to show how the deadline is
distributed among different levels. Random needs no further
explanation, so the example will only detail the rest of baseline
strategies. Figure |1| shows the structure of a sample workflow
with ten tasks and their dependencies. In this figure, the left
column shows level numbers calculated by equation [3] The
right column is obtained by counting tasks in each level starts
from the exit task. In this example N,,,,=5 which is the
maximum level in the workflow. Also, a deadline of 165 is
assumed. This Number is arbitrary and serves as an example.

[ceverNarmber| [rask outer]

5 {10}

4 {ee]}

3 {4567}
: (2]

1 {1]’

(a)

Fig. 1: A Sample Workflow with 10 tasks.

Each strategy distributes the user deadline based on the
following basis (see Table [I| for the complete set of deadline
shares and assigned sub-deadline to each level):

o Uniform: Each level gets 165/5 share of deadline as our
workflow has five levels.

o Height Proportional: Each level is assigned a weighted
share of deadline relative to its height in the workflow.
This is calculated by:

Nmaz=

Zak—m

The Deadline Factor (DF) is calculated by:
deadline

pr = deadline_ 1%
Lweight 15

wezght

=11

For instance, level 4 consisting task B and C are assigned
a share of the deadline equal to 4 x DF =4 x 11 = 44.
o Width Proportional: Each level gets a share of deadline
depending the number of tasks in corresponding level:
deadline

165
DF=——""° -2

= 16.5.
tasknumbers 10 05

For instance, the deadline share assigned to level 4 with
two tasks is 2 x DF =2 x 16.5 = 33.

o Area Proportional: In this strategy, the deadline share
allocated to each level is a combination of height and
width strategies. Calculated by:

10
Lweight = Z k = 55.
k=1
The Deadline Factor (DF) is calculated by:
DF — deadline _ @ _3
Lweight 55

The deadline then is distributed based on the sum of
numbers in the right column in Fig. [T} For example, level
3 is allocated the share (4+5+46+7) x DF = 22x3 = 66.
o Length Proportional: After calculating the estimated
deadline value for all levels, we distribute the user dead-
line among all tasks non-uniformly based on a deadline
proportion denoted by Xgeqdrine N €quation m

TD — I?’LitialTsd(l)
InitialTsq(1)

Kdeadline= @)
where InitialTsq(1) is the level that contains the exit
task.

We then compute length of each level deadline as a
function of this deadline proportion to each level as
follows:

Tsd(g) = InitialTyy (f) + (Kdeadline X |Im'tialTSd(€) |) .

(®)
Intuitively, the levels with longer executing tasks gain a
larger share of the user deadline.

In Table I} two rows are specified for each level. The first
row indicates the share of deadline that each level gets. The
second row is the final value of assigned sub-deadline to each
level that is calculated based on the cumulative value with
previous levels. Clearly, the sub-deadline value for level 1
should be equal to the total deadline. For instance, in Height
strategy in level 4, the share of deadline is 44 (indicated in
red) and the assigned sub-deadline is 99 (shown in blue).
The Length Proportional strategy is not compared in Table [I]
because it involves the execution time for each task that is not
part of this example.

We also combine the baseline strategies to produce different
variant strategies. For example, combination of the three strate-
gies, Initial Estimation(E), Width(W) and Length Proportional
(L) gives us a new strategy to distribute deadline which is
named EWL. In this strategy, first, estimated deadline for all
levels are calculated. Then, the leftover deadline is distributed

TABLE I: Deadline distribution for each strategy over each
level for a total deadline of 165 in Figure [}

Uniform Height Width Area
. 165
share of deadline | — =33 |5xDF =55|1xDF =16.5 | 10xDF = 30
Level 5 5
sub-deadline 33 55 16.5 30
. 165 .
share of deadline | — =33 |4xDF =44 | 2xDF =33 |17xDF =51
Level 4 5
sub-deadline 66 99 49.5 81
. 165
share of deadline | — = 33 |3xDF =33 | 4xDF =66 |[22xDF =66
Level 3 5
sub-deadline 99 132 1155 147
. 165 P
share of deadline | — = 33 |2xDF =22 | 2xDF =33 | 5xDF =15
Level 2 5
sub-deadline 132 154 148.5 162
. 165
share of deadline | — =33 | IXDF =11 |1xDF =16.5| IxDF =3
Level 1 5
sub-deadline 165 165 165 165

based on the combination of Width and Length strategies. This
gives a total of 14 different strategies that are evaluated in our
experiments. Some of the generated strategies are shown as
exemplars in Figure [2]

Initial : Length -
Estimation (Hz‘_%ht) (Propotional) (V\(I\',‘\j,;h
(E) (L)

(a)

Fig. 2: Producing different strategies.

4.3 Task Selection

In each step of our algorithm, those tasks which are ready to
execute are put in the task ready list. A task is ready when all
of its parents have been executed and all its required data has
been provided. Therefore, there are no dependencies between
tasks that are at the same level. In order to select a proper
task for execution, all tasks in the ready list are prioritized
with their Earliest Start Time (EST). The EST is the soonest
possible time that a task can start its execution which depends
on finish time of its parent. The Earliest Start Time (EST) of a
task ¢; is calculated on the instance with the shortest execution

time and defined as:

However, with this strategy, tasks can take much longer time

0 i = tonrd if the resources are slower and leads to some delay in the EST

EST(i) =
max {EST() 4wy, + C; J} , Otherwise
tjEpred(t;)
)
where wy, is the execution time of task ¢; on the fastest

instance type. The amount of data transferred from task ;
to task t; is called communication time (denoted by Cj ;).
For each task the EST on all VMs is calculated. The task that
starts first will be the best candidate for execution.

4.4 Instance Selection

In the Instance Selection phase we aim to identify the
most suitable instance to execute tasks. The Instance selection
decision for each task aims to minimize the total cost of
workflow execution while also attempting to meet the tasks
sub-deadline.

We introduce an objective function referred to as Instance
Comparative Ratio (ICR).

 Level! —ECT(t;,p;)
ICR p? _ deadlzne ‘ iy Mg 10
ti TaskCosty’ (10

where Levelgeqdiine 1S the deadline that is assigned to the
level which contains the task ¢;. The time needed for the
current task, (¢;), to execute on the instance p; is calculated
by ECT(¢#;). The ECT is the earliest time that a task can
complete execution on an instance (as defined in equation
[6). The value in the numerator of equation assesses the
differences between the sub-deadline and earliest completion
time of the current task on the instance p;. The denominator
is the cost of current tasks which is defined in [l

Most cloud providers like Amazon Web Services (AWS)
Elastic Compute Cloud (EC2) charge users based on 60 minute
intervals. When an instance is provisioned, the user is billed
for the entire billing interval even if the task completes before
the end of the interval. Therefore, if other tasks can execute on
the same instance within the remaining interval, their execution
cost can be considered zero. Thus, when allocating instances
we prioritize selecting instances with remaining idle billing
intervals. The first step of the algorithm explicitly considers
instances that have no cost to execute the current task as well
as ensuring that the earliest completion time does not exceed
the level deadline. The instance with minimum ECT is then
selected (the fastest one).

If no instances can be found in the previous step, our
algorithm provisions a new instance based on the highest ICR
value. In tight deadlines, there is a possibility that cheaper
instances cant meet the task level’s sub-deadline. Therefore,
the value of ICR is negative as its numerator is negative. If
this condition is met, more expensive instances are candidates
for the current task. In fact, the ICR value is trying to adjust
the cost and time for current task among all instances. For
cost minimization purpose, most of the proposed algorithms
like [20] try to schedule a task on a cheapest available
instance (slower) while still meeting its assigned sub-deadline.

of its children. To avoid this, the key concept of introducing
ICR in [I0lis to make a trade-off between time and cost.

5 EVALUATION

Public cloud provides instance types containing various
amounts of CPU, memory, storage and network bandwidth at
different prices. In this paper we use a resource model based
on the Amazon Elastic Compute cloud, where instances are
provisioned on demand. The pricing model is a pay as you
go with minimum hourly billing. Under this pricing model, if
an instance is used for one minute, a user pays for the whole
hour. The costs and instance types used in this paper are given
in Table [II} and were accurate in March 2016.

TABLE II: Instance Types

Type ECU Memory(GB) Cost($)
m3.medium 3 3.75 0.067
c4.large 3.75 0.105
c3.xlarge 14 7.5 0.21
m4.2xlarge 26 32 0.479
c4.4xlarge 62 30 0.838
c3.8xlarge 108 60 1.68

Our simulation scenario is configured as a single data-
center and six different instance types. The characteristics
of the instances are based on the Amazon EC2 instance
configurations presented in Table The average bandwidth
between instances is fixed to 20 MBps, based on the average
bandwidth published by AWS [21]]. The processing capacity
of an EC2 unit is estimated at one Million Floating Point
Operations Per Second (MFLOPS) [22]]. The estimated execu-
tion times are scaled by instance type CPU performance. In
an ideal cloud environment, there is no provisioning delay
in resource allocation. However, some factors such as the
time of day, operating system, instance type, location of the
data center, and number of requested resources at the same
time, can cause delays in startup time [23]. Therefore, in
our simulation, we adopted a 97-second boot time based on
previous measurements of EC2 [23].

We use five common scientific workflows: Cybershake,
Epigenomics, Montage, LIGO and SIPHT, to evaluate the
performance of our algorithms with a realistic load. The
characteristics and task composition of these workflows have
been analyzed in published works [24], [25]. We vary the
deadlines from tight to relaxed and record the both the cost and
suceess rate. Additionally, we calculate the fastest schedule
(denoted by F'S) as a baseline schedule. Effectively, this
baseline is the fastest possible execution - ignoring costs and
is computed as:

(1)

where wf is the computation cost of task ¢; on the fastest
instance p;. A Critical Path (CP) is the longest path from the
entry to exit node of a task. If all tasks on the CP of a workflow
are executed on the fastest instance type, the fastest schedule
will be reached.

We define the deadline as a function of the fastest schedule
and this deadline is expressed in equation [I2] in which the
deadline varies from tight to moderate to relaxed:

deadline = a* F'S, 0< a < 20. (12)

The deadline factor « starts from 1 to consider very tight
deadlines (typically approaches the fastest schedule) and is
increased by one up to a value of 20, which results in a very
relaxed deadline.

The Amazon EC2 instances charge on an hourly interval
from the time of provisioning. We configure our simulator to
reflect this charging model and we use a time interval of 60
minutes in our simulations. To compare performance with re-
spect to different workflow sizes we evaluated workflows with
50, 100, 200, 500 and 1000 tasks. However, as these results
did not vary significantly we present here only workflows with
1000 tasks. We used the Pegasus workflow generator [24] to
create representative workflows with the same structure as five
real world scientific workflows (Cybershake, Epigenomics,
Montage, LIGO and SIPHT). For each workflow structure, and
each deadline factor, 100 distinct Pegasus generated workflows
were scheduled in CloudSIM and the performance of the
scheduling algorithms are detailed in the following section.

6 EXPERIMENTAL RESULTS

In this section, we first compare the performance of 14
deadline distribution strategies in our algorithm. Then, the
evaluation of the presented algorithm with other state-of-the-
art algorithms [8f], [9], [18]] is presented in @ The main
metrics evaluated in our comparison are the cost and success
rate (SR).

To compare the monetary cost between the algorithms, we
consider the cost of failure in meeting a deadline. For this
purpose, a weight is assigned to average cost returned by
each algorithm. Let k denote the set of a simulation runs that
successfully meets the scheduling deadline, thus the weighted
cost is calculated as:

> Cost, (k)

SR ’
where Cost, (k) is the cost for the experiments that meet the
deadline and SR denotes the success rate.

Costy, = (13)

6.1 Cost comparison for distribution strategies

To observe the precise behavior of each strategy, for each
dataset, we selected ranges for deadline from 5 to 10. This
range was chosen that gives us more detail about the perfor-
mance of all strategies to simplify interpretation of results.
Table lists the legends notation in Fig.] The first
observation is that different strategies have unstable trends
in tested datasets. For example, the Width (W) strategy has
the worst performance in CYBERSHAKE while gaining the

Algorithm Name Description

R Random

U Uniform

H Height

W Width

A Area

L Length

EU Estimation&Uniform

EH Estimation&Height

EW Estimation& Width

EA Estimation&Area

EL Estimation&Length

EHL Estimation&Height&Length
EWL Estimation&Width&Length
EAL Estimation&Area&Length

TABLE III: Explanation of legends in Fig.

almost lowest cost in MONTAGE. Similarly, the EL strategy
resembles the same trend in MONTAGE and SIPHT. This
is attributed to the fact that workflows differ remarkably in
their characteristics including structure, size, computation and
communication requirements.

Workflows consists of various components including pro-
cess, pipeline, data distribution, data aggregation and data
redistribution [24f]. The behavior of the EWL strategy indicates
a good performance with different datasets. This strategy
consider the number of tasks in a level and length of a level,
simultaneously. In the next section, we consider this strategy
to distribute the deadline in our algorithm.

While cost differences may seen negligible between some
of the strategies, for executing big datasets, the differencing
could be significant. This shows that the deadline distribution
strategy could play a key role in minimizing the cost.

6.2 Cost Comparison with other algorithms

Three state-of-the-art algorithms, IC-PCP [9], JIT [8]] and
PDC [18] were selected in order to compare with our DDR
algorithm. The cost and success rates of five scientific work-
flows in different deadline intervals are presented in Fig. [

The general results show that the JIT underperforms others
in terms of cost in all cases. For almost all workflows, the
DDR algorithm has the best performance including lowest
cost and highest success rate. There are instances where their
performance is poorer, but these are few and far between.
For example, in CYBERSHAKE and EPIGENOMICS with
very tight deadlines, our algorithm is unable to schedule some
workflows.

The IC-PCP algorithm has the worst success rate specially
in tight deadlines. The relaxing of the deadline should lead
to increase the success rate of each algorithm. However,
the behavior of IC-PCP in different intervals is contrary to
expectations. The highest failure occurs in EPIGENOMICS
while even in relaxed deadline, IC-PCP can find a schedule
for less than 25% before its deadline is reached. JIT performs
very well in most of the deadline intervals with nearly 100%
success rate. However, its the most expensive algorithm to find

MR EmH mEmEWL 6
U mWEH mmA
D
W EU B EHL B EA e
o
o
EEl. Emw EAL
2
5 6 7 8 9 10
Deadline Range
(a) Algorithm Name (b) CYBERSHAKE
80
20 —
60
e L5
[7] [7]
o o
Q40 (8]
20 —————
5
5 6 7 8 9 10 5 6 7 8 9 10
Deadline Range Deadline Range
(c) EPIGENOMICS (d) LIGO
20
10 >
15
e e
2 2
O 5 010 =~_
\ 5 \
e ——— —
0
5 6 7 8 9 10 5 6 7 8 9 10
Deadline Range Deadline Range
(e) MONTAGE (f) SIPHT

Fig. 3: Cost vs. deadline for different deadline distribution strategies

a schedule over all workflows and instance configurations. We
attribute that the main reason for this behavior in JIT is how
instances are selected [8]].

7 CONCLUSION

In this paper we have presented the Deadline Distribu-
tion Ratio (DDR) algorithm for scheduling workflows in
dynamically provisioned commercial cloud environments. Our
approach focuses on addressing different ways of deadline
distribution in scientific workflow. For that purpose, we intro-
duced new strategies for deadline distribution assessed the ef-
fectiveness of these strategies in terms of cost and success rate.
Some strategies exhibit performance that is strongly dependent
on the workflow size and structure including process, pipeline,
data distribution, data aggregation and data redistribution.
In general, the strategy which takes into consideration the
execution time of each level as well as number of tasks in
the level, yields the lowest cost.

REFERENCES

[1] I. Foster, K. Chard, and S. Tuecke, “The discovery cloud: Accelerating
and democratizing research on a global scale,” in proceedings of the
IEEE International Conference on Cloud Engineering, 2016.

[2] F. Wu, Q. Wu, and Y. Tan, “Workflow scheduling in cloud: a survey,”
The Journal of Supercomputing, pp. 1-46, 2015.

[3] E. N. Alkhanak, S. P. Lee, and S. U. R. Khan, “Cost-aware challenges
for workflow scheduling approaches in cloud computing environments:
Taxonomy and opportunities,” Future Generation Computer Systems,
2015.

[4] D. Lifka, I. Foster, S. Mehringer, M. Parashar, P. Redfern, C. Stewart,
and S. Tuecke, “XSEDE cloud survey report,” Technical report, National
Science Foundation, USA, Tech. Rep., 2013.

[5] R. Madduri, K. Chard, R. Chard, L. Lacinski, A. Rodriguez,
D. Sulakhe, D. Kelly, U. Dave, and 1. Foster, “The Globus Galaxies
platform: delivering science gateways as a service,” Concurrency and
Computation: Practice and Experience, pp. n/a—n/a, 2015. [Online].
Available: http://dx.doi.org/10.1002/cpe.3486

[6] V. Arabnejad and K. Bubendorfer, “Cost effective and deadline con-
strained scientific workflow scheduling for commercial clouds,” in
proceedings of the 14th IEEE International Symposium on Network

[13]

[14]

[15]

[16]

(17]

[18]

[19]

[20]

[21]

(22]

[23]

[24]

K. Chard, K. Bubendorfer, and P. Komisarczuk, “High occupancy
resource allocation for grid and cloud systems, a study with drive,” in
proceedings of the ACM International Symposium on High Performance
Distributed Computing (HPDC), Chicago, Illinois, June 2010. [Online].
Available: publications/HPDC2010.pdf]

R. Chard, K. Chard, K. B. andLukasz Lacinski, R. Madduri, and I. Fos-
ter, “Cost-aware cloud provisioning,” in the IEEE 11th International
Conference on E-Science, August 2015.

Y. Yuan, X. Li, Q. Wang, and Y. Zhang, “Bottom level based heuristic for
workflow scheduling in grids,” Chinese Journal of Computers-Chinese
Edition-, vol. 31, no. 2, p. 282, 2008.

J. Yu, R. Buyya, and C. K. Tham, “Cost-based scheduling of sci-
entific workflow applications on utility grids,” in e-Science and Grid
Computing, 2005. First International Conference on, July 2005, pp. 8
pp—147.

Y. Yuan, X. Li, Q. Wang, and X. Zhu, “Deadline division-based heuristic
for cost optimization in workflow scheduling,” Information Sciences,
vol. 179, no. 15, pp. 2562-2575, 2009.

V. Arabnejad and K. Bubendorfer, “Cost effective and deadline con-
strained scientific workflow scheduling for commercial clouds,” in
proceedings of the 14th IEEE International Symposium on Network
Computing and Applications (NCA). Cambridge, MA USA: IEEE,
September 2015.

I. J. Taylor, E. Deelman, D. B. Gannon, and M. Shields, Workflows
for e-Science: Scientific Workflows for Grids. Springer Publishing
Company, Incorporated, 2014.

M. Malawski, G. Juve, E. Deelman, and J. Nabrzyski, “Cost- and
deadline-constrained provisioning for scientific workflow ensembles in
iaas clouds,” in Proceedings of the International Conference on High
Performance Computing, Networking, Storage and Analysis, ser. SC
’12. Los Alamitos, CA, USA: IEEE Computer Society Press, 2012,
pp. 22:1-22:11.

M. R. Palankar, A. Iamnitchi, M. Ripeanu, and S. Garfinkel, “Amazon
S3 for science grids: a viable solution?” in Proceedings of the 2008
international workshop on Data-aware distributed computing. ACM,
2008, pp. 55-64.

S. Ostermann, A. Iosup, N. Yigitbasi, R. Prodan, T. Fahringer, and
D. Epema, “A performance analysis of ec2 cloud computing services
for scientific computing,” in Cloud Computing, ser. Lecture Notes of
the Institute for Computer Sciences, Social-Informatics and Telecom-
munications Engineering, D. Avresky, M. Diaz, A. Bode, B. Ciciani,
and E. Dekel, Eds. Springer Berlin Heidelberg, 2010, vol. 34, pp.
115-131.

M. Mao and M. Humphrey, “A performance study on the vm startup
time in the cloud,” in Proceedings of the 2012 IEEE Fifth International
Conference on Cloud Computing, ser. CLOUD ’12. Washington, DC,
USA: IEEE Computer Society, 2012, pp. 423-430.

S. Bharathi, A. Chervenak, E. Deelman, G. Mehta, M.-H. Su, and
K. Vahi, “Characterization of scientific workflows,” in Workflows in
Support of Large-Scale Science, 2008. WORKS 2008. Third Workshop

Computing and Applications (NCA). Cambridge, MA USA: IEEE,
September 2015.

[7]1 V. Arabnejad, K. Bubendorfer, B. Ng, and K. Chard, “A deadline con-
strained critical path heuristic for cost-effectively scheduling workflows,”
in proceedings of the 8th IEEE International Conference on Utility and
Cloud Computing (UCC)). Limassol, Cyprus: IEEE, December 2015.

[8] J. Sahni and D. Vidyarthi, “A cost-effective deadline-constrained dy-
namic scheduling algorithm for scientific workflows in a cloud environ-
ment,” Cloud Computing, IEEE Transactions on, vol. PP, no. 99, pp.
1-1, 2015.

[9] S. Abrishami, M. Naghibzadeh, and D. H. Epema, “Deadline-constrained

workflow scheduling algorithms for infrastructure as a service clouds,”

Future Generation Computer Systems, vol. 29, no. 1, pp. 158 — 169,

2013, including Special section: AIRCC-NetCoM 2009 and Special

section: Clouds and Service-Oriented Architectures.

F. Wu, Q. Wu, and Y. Tan, “Workflow scheduling in cloud: a survey,”

The Journal of Supercomputing, pp. 1-46, 2015.

R. Calheiros and R. Buyya, “Meeting deadlines of scientific workflows

in public clouds with tasks replication,” Parallel and Distributed Systems,

IEEE Transactions on, vol. 25, no. 7, pp. 1787-1796, July 2014.

R. Sakellariou, H. Zhao, E. Tsiakkouri, and M. D. Dikaiakos, “Schedul-

ing workflows with budget constraints,” in in Integrated Research in

Grid Computing, S. Gorlatch and M. Danelutto, Eds.: CoreGrid series.

Springer-Verlag, 2007.

[10]

(1]

(12]

[25]

on, Nov 2008, pp. 1-10.

G. Juve, A. Chervenak, E. Deelman, S. Bharathi, G. Mehta, and K. Vahi,
“Characterizing and profiling scientific workflows,” Future Generation
Computer Systems, vol. 29, no. 3, pp. 682 — 692, 2013, special Section:
Recent Developments in High Performance Computing and Security.

http://dx.doi.org/10.1002/cpe.3486
publications/HPDC2010.pdf

15

10
Deadline Range

o
o
2

© o o o
o © K ©

(%) a1ey ssadang

o
ol

=500
L

15

10
Deadline Range

30

o (o]
Al -
($)1s09

(a) CYBERSHAKE

15

10
Deadline Range

o 1) o 0
401 N 15} 4V}
(%) ayey ssadang
§
o
PWDD
=500

15

10
Deadline Range

o o
o 0

(§)1509

150

(b) EPIGENOMICS

15

10
Deadline Range

0 o 0
N~ 0 [\

(%) ayey ssadang

15

10
Deadline Range

50

o o (o]
< (0] [
($)1s09

10

(c) LIGO

15

10
Deadline Range

o n o 0
m N o} 4V}
(%) ayey ssa29ng
: ¢
o ox
=00
=500

15

10
Deadline Range

30

Q e
($)1s09

(d) MONTAGE

15

10
Deadline Range

o 0 o o]
m N o} (4]
(9%) 916y ssagang
G
o Ox
=00
=500

15

10
Deadline Range

o o o
(V] -

aﬂgo

(e) SIPHT

Fig. 4: Cost vs. deadline for five different datasets

	Introduction
	Related Work
	Workflow and System Models
	The DDR algorithm
	Workflow partitioning
	Deadline Distribution
	Initial Estimation
	Deadline Distribution Strategies

	Task Selection
	Instance Selection

	Evaluation
	Experimental Results
	Cost comparison for distribution strategies
	Cost Comparison with other algorithms

	Conclusion
	References

